MLIR  20.0.0git
HoistPadding.cpp
Go to the documentation of this file.
1 //===- HoistPadding.cpp - Hoisting for tensor::PadOp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions concerned with hoisting padding operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
24 #include "mlir/IR/AsmState.h"
25 #include "mlir/IR/Dominance.h"
26 #include "mlir/IR/Matchers.h"
30 #include "llvm/Support/Debug.h"
31 
32 using llvm::dbgs;
33 
34 #define DEBUG_TYPE "hoist-padding"
35 
36 #define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 using namespace mlir::linalg::detail;
41 
42 #ifndef NDEBUG
44  AsmState state(op->getParentOfType<func::FuncOp>());
45  (void)state;
46  if (auto forOp = dyn_cast<scf::ForOp>(op)) {
47  forOp.getInductionVar().printAsOperand(dbgs(), state);
48  dbgs() << " @ " << forOp.getOperation();
49  return true;
50  }
51  return false;
52 }
53 #endif
54 
55 static void debugPrintBackwardSlice(SetVector<Operation *> &backwardSlice) {
56  LLVM_DEBUG(llvm::interleaveComma(backwardSlice, DBGS() << "--backwardSlice:",
57  [](Operation *op) {
58  dbgs() << "\n";
59  DBGS() << "----";
60  if (debugPrintLoopInShortForm(op)) {
61  dbgs() << "\n";
62  return;
63  }
64  dbgs() << *op << "\n";
65  });
66  DBGS() << "\n";);
67 }
68 
69 /// Return at most nLevels of immediately enclosing scf::ForOp loops.
70 /// Stops at the first parent that is not an scf::ForOp.
71 /// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
72 /// Control-flow and other containing ops with regions are not modeled atm.
73 static void
74 getAtMostNEnclosingLoops(tensor::PadOp padOp, int nLevels,
75  SmallVector<scf::ForOp> &reverseEnclosingLoops) {
76  scf::ForOp outermostEnclosingForOp = nullptr;
77  Operation *nextEnclosingOp = padOp->getParentOp();
78  while (nLevels-- > 0 &&
79  (outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
80  LLVM_DEBUG(DBGS() << "loops: ";
81  debugPrintLoopInShortForm(outermostEnclosingForOp);
82  dbgs() << "\n");
83  reverseEnclosingLoops.push_back(outermostEnclosingForOp);
84  nextEnclosingOp = outermostEnclosingForOp->getParentOp();
85  }
86 }
87 
88 /// Return at most nLevels of immediately enclosing scf::ForOp loops.
89 /// Stops at the first parent that is not an scf::ForOp.
90 /// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
91 /// Control-flow and other containing ops with regions are not modeled atm.
92 static void
93 getEnclosingLoopsUntil(tensor::PadOp padOp, scf::ForOp untilLoop,
94  SmallVector<scf::ForOp> &reverseEnclosingLoops) {
95  scf::ForOp outermostEnclosingForOp = nullptr;
96  Operation *nextEnclosingOp = padOp->getParentOp();
97  while (outermostEnclosingForOp != untilLoop &&
98  (outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
99  LLVM_DEBUG(DBGS() << "loops: ";
100  debugPrintLoopInShortForm(outermostEnclosingForOp);
101  dbgs() << "\n");
102  reverseEnclosingLoops.push_back(outermostEnclosingForOp);
103  nextEnclosingOp = outermostEnclosingForOp->getParentOp();
104  }
105 }
106 
107 // Get all the ops in the backwards slice starting from `padOp` and that
108 // are dominated by the outermost enclosing loop.
109 // This also requires tracking ops defining values used in the region but
110 // defined above.
111 static void computeBackwardSlice(tensor::PadOp padOp,
112  scf::ForOp outermostEnclosingForOp,
113  SetVector<Operation *> &backwardSlice) {
114  DominanceInfo domInfo(outermostEnclosingForOp);
115  BackwardSliceOptions sliceOptions;
116  sliceOptions.filter = [&](Operation *op) {
117  return domInfo.dominates(outermostEnclosingForOp, op) &&
118  !padOp->isProperAncestor(op);
119  };
120  sliceOptions.inclusive = true;
121 
122  // First, add the ops required to compute the region to the backwardSlice.
123  SetVector<Value> valuesDefinedAbove;
124  getUsedValuesDefinedAbove(padOp.getRegion(), padOp.getRegion(),
125  valuesDefinedAbove);
126  for (Value v : valuesDefinedAbove) {
127  getBackwardSlice(v, &backwardSlice, sliceOptions);
128  }
129  // Then, add the backward slice from padOp itself.
130  getBackwardSlice(padOp.getOperation(), &backwardSlice, sliceOptions);
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // HoistPaddingAnalysis Implementation.
135 //===----------------------------------------------------------------------===//
136 
137 namespace {
138 /// Analysis class to support tensor::PadOp hoisting across multiple enclosing
139 /// loops. The failure conditions are:
140 /// 1. Pad op has a use that is not an input of a LinalgOp.
141 /// 2. Pad op does not have a constant padding value.
142 /// 3. There is no immediately enclosing scf::ForOp.
143 /// 4. The backward slice from the pad op to the scf::ForOp to hoist above
144 /// contains an unknown op with non index type operands, a region, or a
145 /// memory effect.
146 /// 5. The backward slice from the pad op to the scf::ForOp to hoist above is
147 /// empty.
148 /// 6. The source tensor of pad op is not defined by an extract slice op.
149 /// 7. The source tensor of the extract slice op is not defined outside of
150 /// the outermost enclosing scf::ForOp.
151 /// 8. There is no enclosing scf::ForOp that indexes the padded data.
152 /// Other cases succeed and will trigger hoisting of the pad op.
153 struct HoistPaddingAnalysis {
154  HoistPaddingAnalysis(tensor::PadOp padOp, int numLoops);
155  HoistPaddingAnalysis(tensor::PadOp padOp, scf::ForOp outermostEnclosingForOp);
156 
157  bool isValid() { return valid.has_value() && valid.value(); }
158  bool isInvalid() { return valid.has_value() && !valid.value(); }
159 
160  /// Footprint of the hoistedPackedTensor, computed from the packingLoops.
161  SmallVector<Value> getHoistedPackedTensorSizes(RewriterBase &rewriter,
162  Location loc) const;
163 
164  /// Performs optional hoisting to enable hoist padding to occur. This may be
165  /// necessary when `sliceOp` is not defined outside of the outermost enclosing
166  /// loop we want to hoist above.
167  ///
168  /// Example:
169  /// ```
170  /// %source = linalg.fill(%cst, %arg0)
171  /// // %source is available for packing here!
172  /// scf.for %i
173  /// scf.for %j
174  /// scf.for %k
175  /// %slice = tensor.extract_slice %source [%i, %j]
176  /// %padded_slice = tensor.pad %slice
177  /// ```
178  void enableHoistPadding(RewriterBase &rewriter);
179 
180  /// Common analysis builder to finalize the construction of the analysis once
181  /// optional `enableHoistPadding` has run.
182  /// `reverseEnclosingLoops.back()` is the loop to hoist above.
183  void finalizeHoistPaddingAnalysis();
184 
185 private:
186  /// Encodes whether the analysis is valid and hoisting can proceed.
187  std::optional<bool> valid;
188 
189  /// The padOp to hoist.
190  tensor::PadOp opToHoist;
191 
192  /// Immediately enclosing loops considered for hoisting padding.
193  SmallVector<scf::ForOp> reverseEnclosingLoops;
194 
195  /// Drop any non-index dependencies of `padOp` and `sliceOp` from
196  /// `backwardSlice`. The method follows the use-def chains of the index
197  /// operands consumed by `padOp` and `sliceOp` and drops the operations
198  /// not part of this index computation. Afterwards, the filtered
199  /// `backwardSlice` contains only the loops whose induction variable is
200  /// used, directly or indirectly, to index the padded tensor. The method
201  /// returns failure if the filtered backward slice contains an unexpected
202  /// operation.
203  ///
204  /// Example:
205  /// ```
206  /// %source = linalg.fill(%cst, %arg0)
207  /// scf.for %i
208  /// %unrelated = linalg.fill(%cst, %arg1) // not used to index
209  /// %source! scf.for %j (%arg2 = %unrelated)
210  /// scf.for %k // not used to index
211  /// %source!
212  /// %ubi = affine.min #map(%i)
213  /// %ubj = affine.min #map(%j)
214  /// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
215  /// %padded_slice = tensor.pad %slice
216  /// ```
217  /// dropNonIndexDependencies(%padded_slice, %slice)
218  /// removes [scf.for %k, linalg.fill(%cst, %arg1)] from backwardSlice.
219  LogicalResult dropNonIndexDependencies();
220 
221 public:
222  /// The outermost loop, determined by `nLevels` above which `padOp` will
223  /// be hoisted.
224  scf::ForOp outermostEnclosingForOp;
225 
226  /// Backward slice rooted at `padOp` and nested under
227  /// `outermostEnclosingForOp`.
228  SetVector<Operation *> backwardSlice;
229 
230  /// The scf::ForOp immediately enclosing `padOp` such that:
231  /// 1. they are nested under `outermostEnclosingForOp` (inclusive)
232  /// 2. whose induction variable is used, directly or indirectly, in the
233  /// computation of `padOp`.
234  /// The span of these loops determines the footprint of the packed tensor.
235  SmallVector<scf::ForOp> packingLoops;
236 
237  /// The ExtractSliceOp that feeds the PadOp we want to hoist.
238  tensor::ExtractSliceOp sliceOp;
239 
240  /// If non-empty, this is the unique scf::ForOp that consumes the `sliceOp`.
241  scf::ForOp padConsumingForOp;
242 };
243 
244 } // namespace
245 
246 HoistPaddingAnalysis::HoistPaddingAnalysis(tensor::PadOp padOp, int numLoops)
247  : valid(std::nullopt), opToHoist(padOp) {
248  // Get at most `numLoops` of immediately enclosing loops.
249  getAtMostNEnclosingLoops(opToHoist, numLoops, reverseEnclosingLoops);
250  if (reverseEnclosingLoops.empty()) {
251  LLVM_DEBUG(DBGS() << "--No immediately enclosing loop -> Skip\n");
252  valid = false;
253  return;
254  }
255  outermostEnclosingForOp = reverseEnclosingLoops.back();
256  sliceOp = opToHoist.getSource().getDefiningOp<tensor::ExtractSliceOp>();
257  if (!sliceOp) {
258  LLVM_DEBUG(DBGS() << "--Cannot find the extract slice op -> Skip\n");
259  valid = false;
260  return;
261  }
262 }
263 
264 HoistPaddingAnalysis::HoistPaddingAnalysis(tensor::PadOp padOp,
265  scf::ForOp outermostEnclosingForOp)
266  : valid(std::nullopt), opToHoist(padOp) {
267  // Get enclosing loops until outermostEnclosingForOp.
268  getEnclosingLoopsUntil(opToHoist, outermostEnclosingForOp,
269  reverseEnclosingLoops);
270  if (reverseEnclosingLoops.empty()) {
271  LLVM_DEBUG(DBGS() << "--No immediately enclosing loop -> Skip\n");
272  valid = false;
273  return;
274  }
275  this->outermostEnclosingForOp = reverseEnclosingLoops.back();
276  if (this->outermostEnclosingForOp != outermostEnclosingForOp) {
277  LLVM_DEBUG(DBGS() << "--Unexpected outermost enclosing loop -> Skip\n");
278  valid = false;
279  return;
280  }
281  sliceOp = opToHoist.getSource().getDefiningOp<tensor::ExtractSliceOp>();
282  if (!sliceOp) {
283  LLVM_DEBUG(DBGS() << "--Cannot find the extract slice op -> Skip\n");
284  valid = false;
285  return;
286  }
287 }
288 
289 void HoistPaddingAnalysis::enableHoistPadding(RewriterBase &rewriter) {
290  if (isInvalid())
291  return;
292  // If the padded data is not yet available before entering the outermost
293  // enclosing loop, try to apply hoisting on this outermost loop.
294  // TODO: we may want finer-grained hoisting of only that particular `sliceOp`.
295  if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.getSource())) {
296  outermostEnclosingForOp = cast<scf::ForOp>(
297  hoistLoopInvariantSubsets(rewriter, outermostEnclosingForOp));
298  }
299 }
300 
301 void HoistPaddingAnalysis::finalizeHoistPaddingAnalysis() {
302  if (isInvalid())
303  return;
304 
305  if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.getSource())) {
306  LLVM_DEBUG(DBGS() << "--outermostEnclosingForOp:\n"
307  << outermostEnclosingForOp << "\n"
308  << "--sliceOp: " << sliceOp << "\n"
309  << "--sliceOp.getSource(): " << sliceOp.getSource()
310  << "\n");
311  LLVM_DEBUG(DBGS() << "----Source not defined outside of loops -> Skip\n");
312  valid = false;
313  return;
314  }
315  if (sliceOp->hasOneUse()) {
316  padConsumingForOp = dyn_cast<scf::ForOp>(*(sliceOp->getUsers().begin()));
317  }
318 
319  // Check the region of `padOp` depends on a constant only. Adding hoisting
320  // support for arbitrary padding regions would require cloning all
321  // dependencies captured by the padding region.
322  Value paddingValue = opToHoist.getConstantPaddingValue();
323  if (!paddingValue ||
324  !isa_and_nonnull<arith::ConstantOp>(paddingValue.getDefiningOp())) {
325  LLVM_DEBUG(DBGS() << "Cannot find constant padding value -> Skip\n");
326  valid = false;
327  return;
328  }
329 
330  computeBackwardSlice(opToHoist, outermostEnclosingForOp, backwardSlice);
331  if (backwardSlice.size() <= 1) {
332  valid = false;
333  return;
334  }
335 
336  debugPrintBackwardSlice(backwardSlice);
337  // Remove all ops in the backward slice that are not used to index
338  // the padded tensor. In particular, keep `padOp`, `sliceOp`, and
339  // the loop and affine operations used for the index computation.
340  if (failed(dropNonIndexDependencies())) {
341  LLVM_DEBUG(DBGS() << "--Cannot dropNonIndexDependencies -> Skip\n");
342  valid = false;
343  return;
344  }
345  debugPrintBackwardSlice(backwardSlice);
346 
347  // Add only the loops part of the filtered `backwardSlice` to the
348  // packing loops. All other loops are not used to index the padded
349  // data and consequently access the same data in every loop
350  // iteration. Adding them to the packing loops would increase the
351  // cache footprint of the packed data by storing the same data
352  // multiple times.
353  for (scf::ForOp forOp : llvm::reverse(reverseEnclosingLoops))
354  if (backwardSlice.contains(forOp))
355  packingLoops.push_back(forOp);
356 
357  // TODO: for multiple loops we need to track the use to the innermost loop.
358  if (packingLoops.size() > 1 && padConsumingForOp) {
359  LLVM_DEBUG(DBGS() << "--Cannot hoist multiple loops through iter_args -> "
360  "Downgrade to 1 loop\n");
361  packingLoops.resize(1);
362  }
363 
364  // Note: at this point, packing loops may be empty but we would still like
365  // to hoist the padding if so specified.
366 
367  // The analysis is valid and hoisting can occur.
368  valid = true;
369 }
370 
371 LogicalResult HoistPaddingAnalysis::dropNonIndexDependencies() {
372  // Set of all values used for index computation.
373  SetVector<Value> indexEdges;
374 
375  // Add all index operands of `operation` to `indexEdges`. An index operand
376  // is an operand of type index.
377  auto addIndexOperandsToIndexEdges = [&](Operation *operation) {
378  for (Value operand : operation->getOperands())
379  if (operand.getType().isIndex())
380  indexEdges.insert(operand);
381  };
382 
383  // Check if any operation result is contained in `indexEdges`.
384  auto hasIndexResult = [&](Operation *operation) {
385  return llvm::any_of(operation->getResults(), [&](Value result) {
386  return indexEdges.contains(result);
387  });
388  };
389 
390  // Starting from `opToHoist` and `sliceOp` walk the use-def edges of index
391  // type in `backwardSlice`. Add the index operands of an operation to
392  // `indexEdges` and remove all operations from `backwardSlice` that are not
393  // part of the index computation.
394  //
395  // Example:
396  // ```
397  // %source = linalg.fill(%cst, %arg0)
398  // scf.for %i
399  // %unrelated = linalg.fill(%cst, %arg1) // not used to index %source!
400  // scf.for %j (%arg2 = %unrelated)
401  // scf.for %k // not used to index %source!
402  // %ubi = affine.min #map(%i)
403  // %ubj = affine.min #map(%j)
404  // %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
405  // %padded_slice = tensor.pad %slice
406  // ```
407  // After iterating `backwardSlice` we obtain:
408  // indexEdges = [%i, %j, %ubi, %ubj]
409  // backwardSlice = backwardSlice / [linalg.fill(%cst, %arg1), scf.for %k]
410  SetVector<Operation *> operationsToRemove;
411  for (Operation *op : llvm::reverse(backwardSlice)) {
412  // Add the index operands of `opToHoist` and `sliceOp` to start the
413  // exploration of the index computation.
414  if (op == opToHoist || op == sliceOp) {
415  addIndexOperandsToIndexEdges(op);
416  continue;
417  }
418  // Add the index operands of the loop if its induction variable is
419  // used for index computation.
420  if (auto forOp = dyn_cast<scf::ForOp>(op)) {
421  if (!hasIndexResult(op) && indexEdges.contains(forOp.getInductionVar())) {
422  addIndexOperandsToIndexEdges(op);
423  continue;
424  }
425  }
426  // Add the index operands of all other operations if at least one result
427  // is used for index computation.
428  if (hasIndexResult(op)) {
429  addIndexOperandsToIndexEdges(op);
430  // Check the operands of the remaining operations all have index type.
431  if (llvm::any_of(op->getOperandTypes(),
432  [](Type type) { return !type.isIndex(); })) {
433  LLVM_DEBUG(DBGS() << "Unsupported op with non index type operands: "
434  << op << " -> Skip\n");
435  return failure();
436  }
437  // Check the remaining operations do not have regions or memory effects.
438  auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op);
439  bool hasMemoryEffect = effectInterface && !effectInterface.hasNoEffect();
440  if (hasMemoryEffect || op->getNumRegions() != 0) {
441  LLVM_DEBUG(DBGS() << "Unsupported op with region or memory effect: "
442  << op << " -> Skip\n");
443  return failure();
444  }
445  continue;
446  }
447  // Remove all other operations not used by the index computation. An
448  // exception are constant operations that may be used by `opToHoist`.
449  if (!isa<arith::ConstantOp>(op))
450  operationsToRemove.insert(op);
451  }
452  backwardSlice.set_subtract(operationsToRemove);
453  return success();
454 }
455 
457 HoistPaddingAnalysis::getHoistedPackedTensorSizes(RewriterBase &rewriter,
458  Location loc) const {
459  SmallVector<Value> dynamicTensorSizes;
460 
461  // Upper bound the packing loop lengths to size the packed tensor. Taking
462  // upper bounds can make the sizes of the packed tensor independent of the
463  // enclosing loops. This independence is a prerequisite for reusing the same
464  // buffer for all enclosing loop iterations and hoisting its allocation out
465  // of the enclosing loops.
466  for (auto forOp : packingLoops) {
467  // Compute an upper bound `ubVal` for the upper bound of `forOp`.
468  FailureOr<OpFoldResult> loopUb = affine::reifyIndexValueBound(
469  rewriter, loc, presburger::BoundType::UB, forOp.getUpperBound(),
470  /*stopCondition=*/
471  [&](Value v, std::optional<int64_t> d, ValueBoundsConstraintSet &cstr) {
472  if (v == forOp.getUpperBound())
473  return false;
474  // Compute a bound that is independent of any affine op results.
475  Operation *op = v.getDefiningOp();
476  if (!op)
477  return true;
478  return !isa<affine::AffineMinOp, affine::AffineMaxOp,
479  affine::AffineApplyOp>(op);
480  },
481  /*closedUB=*/true);
482  assert(succeeded(loopUb) && "could not get upper bound");
483  Value ubVal = getValueOrCreateConstantIndexOp(rewriter, loc, *loopUb);
484 
485  // Compute the maximal packing loop length as (ub - lb).ceilDiv(step) and
486  // store the result to `dynamicTensorSizes`.
487  // TODO: instead of using the lower bound of `forOp` directly, implement a
488  // lower bound computation similar to the upper bound computation.
489  AffineExpr lb, ub, step;
490  bindDims(rewriter.getContext(), lb, ub);
491  bindSymbols(rewriter.getContext(), step);
492  Value res = rewriter.createOrFold<affine::AffineApplyOp>(
493  loc, (ub - lb).ceilDiv(step),
494  ValueRange{forOp.getLowerBound(), ubVal,
495  cast<scf::ForOp>(forOp).getStep()});
496  dynamicTensorSizes.push_back(res);
497  }
498 
499  return dynamicTensorSizes;
500 }
501 
502 static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) {
503  return outer.isDefinedOutsideOfLoop(v) || matchPattern(v, m_Constant());
504 }
505 
506 //===----------------------------------------------------------------------===//
507 // buildPackingLoopNest Implementation.
508 //===----------------------------------------------------------------------===//
509 
510 /// Return the current iteration number in the loop (iv - lb).ceilDiv(step).
511 /// The returned Value is guaranteed not to depend on any loop comprised in
512 /// [`outer`, `forOp`].
513 /// Return null if such a loop-independent quantity cannot be computed.
514 static Value buildLoopIterationCount(RewriterBase &rewriter, scf::ForOp outer,
515  scf::ForOp forOp) {
516  MLIRContext *ctx = forOp->getContext();
517  AffineExpr iv, lb, step;
518  bindDims(ctx, iv, lb);
519  bindSymbols(ctx, step);
520  if (!isDefinedOutsideOrConstant(outer, forOp.getLowerBound()) ||
521  !isDefinedOutsideOrConstant(outer, forOp.getStep()))
522  return Value();
523  Value ivVal = forOp.getInductionVar(), lbVal = forOp.getLowerBound(),
524  stepVal = forOp.getStep();
525  auto loc = forOp->getLoc();
526  return rewriter.createOrFold<affine::AffineApplyOp>(
527  loc, (iv - lb).ceilDiv(step), ValueRange{ivVal, lbVal, stepVal});
528 }
529 
530 // Build a packing loop nest by iteratively traversing the backward slice and
531 // clone the operations, iteratively stepping into the loops that we encounter.
532 // The implementation proceeds in a stack-like fashion:
533 // 1. Iteratively clone and step into the loops, pushing the
534 // `hoistedPackedTensor`
535 // deeper in the stack.
536 // 2. At the innermost loop level, create a GenericOp if `transposeVector` is
537 // non-empty.
538 // 3. At the innermost loop level, create a InsertSliceOp.
539 // 4. Iteratively pop and yield the result of the InsertSliceOp across the
540 // cloned loops.
541 static FailureOr<PackingResult> buildPackingLoopNestImpl(
542  RewriterBase &rewriter, IRMapping &bvm, tensor::PadOp opToHoist,
543  ArrayRef<int64_t> transposeVector, RankedTensorType transposedTensorType,
544  tensor::EmptyOp emptyOp, const HoistPaddingAnalysis &analysis) {
545  SmallVector<OpFoldResult> offsets, sizes, strides;
546  SmallVector<Value> clonedLoopIvs, leadingHoistedPackedTensorIndexings;
547 
548  scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
549 
550  Location loc = opToHoist->getLoc();
551  RankedTensorType paddedTensorType = opToHoist.getResultType();
552  int paddedRank = paddedTensorType.getRank();
553 
554  // Step 0. Populate bvm with opToHoist.getSource if relevant.
555  BlockArgument bbArg = dyn_cast<BlockArgument>(opToHoist.getSource());
556  while (bbArg) {
557  auto forOp = dyn_cast<scf::ForOp>(bbArg.getOwner()->getParentOp());
558  if (!forOp)
559  break;
560  if (forOp != outerLoop && !outerLoop->isAncestor(forOp))
561  break;
562  OpOperand &operand = *forOp.getTiedLoopInit(bbArg);
563  bvm.map(bbArg, operand.get());
564  bbArg = dyn_cast<BlockArgument>(operand.get());
565  }
566 
567  // Step 1. iteratively clone loops and push `hoistedPackedTensor`.
568  Value hoistedPackedTensor = emptyOp.getResult();
569  OpBuilder::InsertionGuard g(rewriter);
570  for (Operation *op : analysis.backwardSlice) {
571  // Specifically sit out in the extract_slice(hoistedPackedTensor) case: this
572  // is the piece we seek to replace.
573  if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op)) {
574  if (bvm.lookupOrDefault(sliceOp.getSource()) == hoistedPackedTensor) {
575  LLVM_DEBUG(DBGS() << "--Skip: " << sliceOp << "\n");
576  continue;
577  }
578  }
579 
580  // Clone all operations except loops which require special handling.
581  auto forOp = dyn_cast<scf::ForOp>(op);
582  if (!forOp) {
583  // We are at the right insertion point within the loop nest.
584  rewriter.clone(*op, bvm);
585  continue;
586  }
587 
588  // Create a packing loop that takes `hoistedPackedTensor` as iteration
589  // argument.
590  auto clonedForOp = rewriter.create<scf::ForOp>(
591  loc, bvm.lookupOrDefault(forOp.getLowerBound()),
592  bvm.lookupOrDefault(forOp.getUpperBound()),
593  bvm.lookupOrDefault(forOp.getStep()), hoistedPackedTensor);
594 
595  // Map the induction var, region args and results to the `clonedForOp`.
596  bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar());
597  bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs());
598  bvm.map(forOp.getResults(), clonedForOp.getResults());
599  assert(clonedForOp->getNumRegions() == 1);
600  clonedLoopIvs.push_back(clonedForOp.getInductionVar());
601 
602  // Do not insert guard here, we get deeper into the loop nest.
603  rewriter.setInsertionPointToStart(&clonedForOp->getRegion(0).front());
604  Value loopIndependentIterationCount =
605  buildLoopIterationCount(rewriter, outerLoop, clonedForOp);
606 
607  // Assert the loop-independent iteration count can be computed.
608  if (!loopIndependentIterationCount)
609  llvm_unreachable("loop independence prerequisite not met");
610  leadingHoistedPackedTensorIndexings.push_back(
611  loopIndependentIterationCount);
612  hoistedPackedTensor = clonedForOp.getRegionIterArgs().front();
613  }
614 
615  // Step 2. Construct offsets, sizes and strides for the innermost level of the
616  // packing loop.
617  int64_t nPackedLoops = clonedLoopIvs.size();
618  // offsets = [clonedLoopIvs, 0 .. 0].
619  offsets =
620  SmallVector<OpFoldResult>{leadingHoistedPackedTensorIndexings.begin(),
621  leadingHoistedPackedTensorIndexings.end()};
622  offsets.append(paddedRank, rewriter.getIndexAttr(0));
623  // sizes = [1 .. 1, transposedShape].
624  sizes = SmallVector<OpFoldResult>(nPackedLoops, rewriter.getIndexAttr(1));
625  for (int64_t sz : transposedTensorType.getShape()) {
626  // TODO: go grab dims when needed, atm tensor::PadOp yields a static tensor.
627  if (ShapedType::isDynamic(sz))
628  return failure();
629  sizes.push_back(rewriter.getIndexAttr(sz));
630  }
631  // strides = [1 .. 1].
632  strides = SmallVector<OpFoldResult>(nPackedLoops + paddedRank,
633  rewriter.getIndexAttr(1));
634 
635  // Step 3. Optionally transpose the padded tensor.
636  TransposeOp maybeTransposeOp;
637  Value paddedTensor = bvm.lookup(opToHoist.getResult());
638  if (!transposeVector.empty()) {
639  Value outputTensor = rewriter.create<tensor::ExtractSliceOp>(
640  loc, transposedTensorType, hoistedPackedTensor, offsets, sizes,
641  strides);
642  maybeTransposeOp = rewriter.create<linalg::TransposeOp>(
643  loc, paddedTensor, outputTensor, transposeVector);
644  paddedTensor = maybeTransposeOp.getResult()[0];
645  }
646 
647  // Innermost tensor.insert_slice and yields are optional / need loops.
648  if (nPackedLoops > 0) {
649  // Step 4. Create InsertSliceOp at the innermost loop level, inserting an
650  // optionally transposed padded slice into the packed tensor.
651  Value inserted = rewriter.create<tensor::InsertSliceOp>(
652  loc, paddedTensor, hoistedPackedTensor, offsets, sizes, strides);
653 
654  // Step 5. Iteratively pop the stack and propagate the yield.
655  Value valueToYield = inserted;
656  for (Value iv : llvm::reverse(clonedLoopIvs)) {
657  auto forOp = scf::getForInductionVarOwner(iv);
658  rewriter.setInsertionPointToEnd(&forOp.getRegion().front());
659  rewriter.create<scf::YieldOp>(loc, valueToYield);
660  valueToYield = forOp.getResult(0);
661  }
662  }
663 
664  return PackingResult{
665  offsets,
666  sizes,
667  strides,
668  clonedLoopIvs,
669  leadingHoistedPackedTensorIndexings,
670  maybeTransposeOp,
671  cast<tensor::PadOp>(bvm.lookup(opToHoist.getResult()).getDefiningOp())};
672 }
673 
674 /// Build the packing loop nest required to hoist `opToHoist` above
675 /// `outermostEnclosingForOp`.
676 /// The loop nest is built just before `outermostEnclosingForOp`.
677 static FailureOr<PackingResult> buildPackingLoopNestImpl(
678  RewriterBase &rewriter, IRMapping &bvm, tensor::PadOp opToHoist,
679  ArrayRef<int64_t> transposeVector, const HoistPaddingAnalysis &analysis) {
680  // Update actual number of loops, which may be smaller.
681  int nPackedLoops = analysis.packingLoops.size();
682  LLVM_DEBUG(DBGS() << "\n";
683  DBGS() << "Func:\n"
684  << *opToHoist->getParentOfType<func::FuncOp>() << "\n";
685  DBGS() << "Start hoisting above " << nPackedLoops << " loops\n");
686 
687  Location loc = opToHoist->getLoc();
688  RankedTensorType paddedTensorType = opToHoist.getResultType();
689 
690  // Compute the type of the transposed padded tensor.
691  FailureOr<RankedTensorType> transposedTensorType =
692  tensor::computeTransposedType(paddedTensorType, transposeVector);
693  if (failed(transposedTensorType)) {
694  LLVM_DEBUG(DBGS() << "--Could not compute transposed type -> Skip\n");
695  return failure();
696  }
697 
698  // Create the packed tensor<?x?x..? x transposedShape>.
699  SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamic);
700  // TODO: go grab dims when needed, atm tensor::PadOp yields a static tensor.
701  llvm::append_range(packedShape, transposedTensorType->getShape());
702  auto hoistedPackedTensorType = RankedTensorType::get(
703  packedShape, transposedTensorType->getElementType());
704 
705  // Set the insertion point right before the outer loop and start packing.
706  scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
707  OpBuilder::InsertionGuard g(rewriter);
708  rewriter.setInsertionPoint(outerLoop);
709  SmallVector<Value> dynamicTensorSizes =
710  analysis.getHoistedPackedTensorSizes(rewriter, loc);
711  auto emptyOp = rewriter.create<tensor::EmptyOp>(
712  loc, hoistedPackedTensorType.getShape(),
713  hoistedPackedTensorType.getElementType(), dynamicTensorSizes);
714 
715  return buildPackingLoopNestImpl(rewriter, bvm, opToHoist, transposeVector,
716  *transposedTensorType, emptyOp, analysis);
717 }
718 
719 /// Build the packing loop nest required to hoist `opToHoist` above
720 /// `outermostEnclosingForOp`.
721 /// The loop nest is built just before `outermostEnclosingForOp`.
723  RewriterBase &rewriter, tensor::PadOp opToHoist,
724  scf::ForOp outermostEnclosingForOp, ArrayRef<int64_t> transposeVector) {
725  HoistPaddingAnalysis analysis(opToHoist, outermostEnclosingForOp);
726  analysis.enableHoistPadding(rewriter);
727  analysis.finalizeHoistPaddingAnalysis();
728  if (!analysis.isValid()) {
729  LLVM_DEBUG(DBGS() << "--Analysis failed -> Skip\n");
730  return failure();
731  }
732  IRMapping bvm;
733  return buildPackingLoopNestImpl(rewriter, bvm, opToHoist, transposeVector,
734  analysis);
735 }
736 
737 //===----------------------------------------------------------------------===//
738 // hoistPaddingOnTensors Implementation.
739 //===----------------------------------------------------------------------===//
740 
741 /// Return true if we can walk back the use-def chain from `extractSliceOp` to
742 /// expectedSource going through DestinationStyleOpInterface inits only.
743 /// This is a poor man's analysis that is sufficient to check the extractSliceOp
744 /// the matches tensor.pad we want to hoist.
745 /// In the future, it will be easier to ensure this with a matching symmetric
746 /// tensor.unpad op.
747 static bool tracesBackToExpectedValue(tensor::ExtractSliceOp extractSliceOp,
748  Value expectedSource) {
749  LLVM_DEBUG(DBGS() << "Start tracesBackToExpectedValue on: " << extractSliceOp
750  << "\n");
751  LLVM_DEBUG(DBGS() << "--with extractSlice: " << extractSliceOp << "\n");
752  Value source = extractSliceOp.getSource();
753  LLVM_DEBUG(DBGS() << "--with starting source: " << source << "\n");
754  while (source && source != expectedSource) {
755  auto destOp =
756  dyn_cast_or_null<DestinationStyleOpInterface>(source.getDefiningOp());
757  if (!destOp)
758  break;
759  LLVM_DEBUG(DBGS() << "--step dest op: " << destOp << "\n");
760  source = destOp.getDpsInitOperand(cast<OpResult>(source).getResultNumber())
761  ->get();
762  }
763  LLVM_DEBUG(DBGS() << "--final source: " << source << "\n");
764  LLVM_DEBUG(DBGS() << "--expected source: " << expectedSource << "\n");
765  return source == expectedSource;
766 }
767 
768 /// If the original consumer of `outerSliceOp` was a `forOp` (i.e. through an
769 /// iter arg), propagate the `hoistedPackedTensor` value through the same iter
770 /// arg.
771 /// TODO: for multiple loops we need to track the use to the innermost loop.
772 ///
773 /// Match:
774 /// ```
775 /// %outerSliceOp = tensor.extract_slice ..
776 /// %f = scf.for ... iter_args(%arg0 = %outerSliceOp) {
777 /// %hoistedPackedTensor = tensor.pad %arg0
778 /// %1 = compute %hoistedPackedTensor
779 /// %2 = tensor.extract_slice %1
780 /// scf.yield %2
781 /// }
782 /// ```
783 ///
784 /// and rewrite as:
785 /// ```
786 /// %outerSliceOp = tensor.extract_slice ..
787 /// %hoistedPackedTensor = tensor.pad %outerSliceOp
788 /// %f = scf.for ... iter_args(%arg0 = %hoistedPackedTensor) {
789 /// %1 = compute %arg0
790 /// scf.yield %1
791 /// }
792 /// %2 = tensor.extract_slice %forOp
793 /// ```
794 ///
795 /// Return null when no rewrite happened.
796 static tensor::ExtractSliceOp
797 padThroughLoopIterArg(RewriterBase &rewriter, Value paddedValueBeforeHoisting,
798  Value hoistedPackedTensor,
799  tensor::ExtractSliceOp outerSliceOp, scf::ForOp forOp) {
800  LLVM_DEBUG(DBGS() << "Start padThroughLoopIterArg on: " << forOp << "\n");
801  LLVM_DEBUG(DBGS() << "--paddedValueBeforeHoisting: "
802  << paddedValueBeforeHoisting << "\n");
803  OpOperand *pUse = nullptr;
804  for (OpOperand &use : outerSliceOp->getUses()) {
805  if (use.getOwner() == forOp) {
806  assert(!pUse && "Multiple slice uses in the for loop");
807  pUse = &use;
808  }
809  }
810  assert(pUse && "No slice use in the for loop");
811  OpBuilder::InsertionGuard g(rewriter);
812  rewriter.setInsertionPointAfter(hoistedPackedTensor.getDefiningOp());
813 
814  unsigned iterArgNumber = forOp.getTiedLoopResult(pUse).getResultNumber();
815  auto yieldingExtractSliceOp = forOp.getYieldedValues()[iterArgNumber]
816  .getDefiningOp<tensor::ExtractSliceOp>();
817  if (!yieldingExtractSliceOp)
818  return tensor::ExtractSliceOp();
819 
820  // Poor man's analysis sufficient to ensure extractSlice matches tensor.pad.
821  // In the future, it will be easier to ensure this with a matching symmetric
822  // tensor.unpad op.
823  if (!tracesBackToExpectedValue(yieldingExtractSliceOp,
824  paddedValueBeforeHoisting))
825  return tensor::ExtractSliceOp();
826 
827  SmallVector<Value> initArgs = forOp.getInitArgs();
828  initArgs[iterArgNumber] = hoistedPackedTensor;
829  SmallVector<Value> yieldOperands = llvm::to_vector(forOp.getYieldedValues());
830  yieldOperands[iterArgNumber] = yieldingExtractSliceOp.getSource();
831 
832  int64_t numOriginalForOpResults = initArgs.size();
833  LLVM_DEBUG(DBGS() << "numOriginalForOpResults: " << numOriginalForOpResults
834  << "\n");
835  tensor::ExtractSliceOp extracted;
836  {
837  OpBuilder::InsertionGuard g(rewriter);
838  rewriter.setInsertionPointAfter(forOp);
839  extracted = rewriter.create<tensor::ExtractSliceOp>(
840  hoistedPackedTensor.getLoc(), hoistedPackedTensor,
841  outerSliceOp.getMixedOffsets(), outerSliceOp.getMixedSizes(),
842  outerSliceOp.getMixedStrides());
843  rewriter.replaceAllUsesWith(forOp.getResult(iterArgNumber), extracted);
844  }
845  scf::ForOp newForOp = cast<scf::ForOp>(*forOp.replaceWithAdditionalYields(
846  rewriter, initArgs, /*replaceInitOperandUsesInLoop=*/true,
847  [&](OpBuilder &b, Location loc, ArrayRef<BlockArgument> newBBArgs) {
848  return yieldOperands;
849  }));
850 
851  LLVM_DEBUG(DBGS() << "newForOp results: " << newForOp.getNumResults()
852  << "\n");
853  LLVM_DEBUG(DBGS() << "replace source of: " << extracted << "\n");
854  LLVM_DEBUG(DBGS() << "with result #"
855  << numOriginalForOpResults + iterArgNumber
856  << " of forOp, giving us: " << extracted << "\n");
857  rewriter.startOpModification(extracted);
858  extracted.getSourceMutable().assign(
859  newForOp.getResult(numOriginalForOpResults + iterArgNumber));
860  rewriter.finalizeOpModification(extracted);
861 
862  LLVM_DEBUG(DBGS() << "replace uses of: " << paddedValueBeforeHoisting
863  << "\n");
864  LLVM_DEBUG(DBGS() << "with region iter arg #"
865  << numOriginalForOpResults + iterArgNumber << "\n");
866  rewriter.replaceAllUsesWith(
867  paddedValueBeforeHoisting,
868  newForOp.getRegionIterArg(numOriginalForOpResults + iterArgNumber));
869 
870  return extracted;
871 }
872 
873 /// Produce a tensor extracted from the packingResult. This can be used as a
874 /// replacement for `opToHoist` in callers.
876  const IRMapping &bvm,
877  tensor::PadOp opToHoist,
878  RankedTensorType transposedTensorType,
879  const HoistPaddingAnalysis &analysis,
880  const PackingResult &packingResult) {
881  // The replacement occurs under a single insertion point within the original
882  // loop, just before opToHoist.
883  OpBuilder::InsertionGuard g(rewriter);
884  rewriter.setInsertionPoint(opToHoist);
885 
886  Location loc = opToHoist->getLoc();
887  RankedTensorType paddedTensorType = opToHoist.getResultType();
888  int paddedRank = paddedTensorType.getRank();
889 
890  int64_t nPackedLoops = packingResult.clonedLoopIvs.size();
891  LLVM_DEBUG(DBGS() << "nPackedLoops: " << nPackedLoops << " loops\n");
892 
893  scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
894  ArrayRef<scf::ForOp> packingLoops = analysis.packingLoops;
895 
896  Value hoistedPackedTensor;
897  SmallVector<Value> loopIterationCounts;
898  SmallVector<OpFoldResult> offsets(nPackedLoops + paddedRank,
899  rewriter.getIndexAttr(0));
900  if (nPackedLoops > 0) {
901  loopIterationCounts =
902  llvm::to_vector<4>(llvm::map_range(packingLoops, [&](Operation *loop) {
903  return buildLoopIterationCount(rewriter, outerLoop,
904  cast<scf::ForOp>(loop));
905  }));
906  // Assert all loop iteration counts can be computed.
907  if (llvm ::any_of(loopIterationCounts, [](Value v) { return !v; }))
908  llvm_unreachable("loop independence prerequisite not met");
909 
910  // offsets = [maybe_leading_ivs = originalLoopIvs, 0 .. 0].
911  std::copy(loopIterationCounts.begin(), loopIterationCounts.end(),
912  offsets.begin());
913  hoistedPackedTensor =
914  scf::getForInductionVarOwner(packingResult.clonedLoopIvs.front())
915  ->getResult(0);
916  } else {
917  // If no loops were created, this is just hoisting without packing.
918  hoistedPackedTensor = bvm.lookup(opToHoist.getResult());
919  }
920 
921  LLVM_DEBUG(DBGS() << "hoistedPackedTensor: " << hoistedPackedTensor << "\n");
922 
923  // If the consumer of `padOp` was a `forOp`, propagate through iter args.
924  scf::ForOp forOp = analysis.padConsumingForOp;
925  if (forOp) {
926  return padThroughLoopIterArg(rewriter, opToHoist, hoistedPackedTensor,
927  analysis.sliceOp, forOp);
928  }
929 
930  // offsets = [maybe_leading_ivs, 0 .. 0].
931  // sizes = [1 .. 1, transposedShape] (defined above).
932  // strides = [1 .. 1] (defined above)
933  return rewriter.create<tensor::ExtractSliceOp>(
934  loc, transposedTensorType, hoistedPackedTensor, offsets,
935  packingResult.sizes, packingResult.strides);
936 }
937 
939  RewriterBase &rewriter, tensor::PadOp opToHoist, int64_t numLoops,
940  ArrayRef<int64_t> transposeVector, tensor::PadOp &hoistedOp,
941  SmallVectorImpl<TransposeOp> &transposeOps) {
942  LLVM_DEBUG(DBGS() << "\n"; DBGS() << " Try to hoist " << *(opToHoist) << "\n";
943  DBGS() << " by " << numLoops << " loops\n");
944 
945  HoistPaddingAnalysis analysis(opToHoist, numLoops);
946  analysis.enableHoistPadding(rewriter);
947  analysis.finalizeHoistPaddingAnalysis();
948  if (!analysis.isValid()) {
949  LLVM_DEBUG(DBGS() << "--Analysis failed -> Skip\n");
950  return failure();
951  }
952 
953  /// Construct the packing loop nest.
954  IRMapping bvm;
955  FailureOr<PackingResult> packingResult = buildPackingLoopNestImpl(
956  rewriter, bvm, opToHoist, transposeVector, analysis);
957  if (failed(packingResult)) {
958  LLVM_DEBUG(DBGS() << "--buildPackingLoopNestImpl failed -> Skip\n");
959  return failure();
960  }
961 
962  if (!transposeVector.empty())
963  transposeOps.push_back(packingResult->maybeTransposeOp);
964 
965  FailureOr<RankedTensorType> transposedTensorType =
966  tensor::computeTransposedType(opToHoist.getResultType(), transposeVector);
967  assert(succeeded(transposedTensorType) && "unexpected failure in type");
968 
969  // Now the packed tensor is ready, replace the original padding op by a
970  // 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
971  Value newResult =
972  replaceByPackingResult(rewriter, bvm, opToHoist, *transposedTensorType,
973  analysis, *packingResult);
974 
975  Location loc = opToHoist->getLoc();
976  RankedTensorType paddedTensorType = opToHoist.getResultType();
977  if (!transposeVector.empty()) {
978  OpBuilder::InsertionGuard g(rewriter);
979  rewriter.setInsertionPointAfter(newResult.getDefiningOp());
980  // Transpose the packed tensor back to the original storage order.
981  Value emptyTensor = rewriter.create<tensor::EmptyOp>(
982  loc, paddedTensorType.getShape(), paddedTensorType.getElementType());
983  TransposeOp unTransposeOp = rewriter.create<linalg::TransposeOp>(
984  loc, newResult, emptyTensor, transposeVector);
985  newResult = unTransposeOp.getResult()[0];
986  transposeOps.push_back(unTransposeOp);
987  }
988 
989  LLVM_DEBUG(DBGS() << "newResult: " << newResult << "\n");
990  LLVM_DEBUG(
991  DBGS() << "After hoisting: "
992  << newResult.getDefiningOp()->getParentOfType<func::FuncOp>()
993  << "\n");
994 
995  // Make the newly cloned `opToHoist` available to the caller.
996  hoistedOp = packingResult->hoistedPadOp;
997 
998  LLVM_DEBUG(DBGS() << "--SUCCESS\n");
999  return newResult;
1000 }
1001 
1003  tensor::PadOp opToHoist, int64_t numLoops,
1004  ArrayRef<int64_t> transposeVector, tensor::PadOp &hoistedOp,
1005  SmallVectorImpl<TransposeOp> &transposeOps) {
1006  IRRewriter rewriter(opToHoist.getContext());
1007  return hoistPaddingOnTensors(rewriter, opToHoist, numLoops, transposeVector,
1008  hoistedOp, transposeOps);
1009 }
static void copy(Location loc, Value dst, Value src, Value size, OpBuilder &builder)
Copies the given number of bytes from src to dst pointers.
static tensor::ExtractSliceOp padThroughLoopIterArg(RewriterBase &rewriter, Value paddedValueBeforeHoisting, Value hoistedPackedTensor, tensor::ExtractSliceOp outerSliceOp, scf::ForOp forOp)
If the original consumer of outerSliceOp was a forOp (i.e.
static Value buildLoopIterationCount(RewriterBase &rewriter, scf::ForOp outer, scf::ForOp forOp)
Return the current iteration number in the loop (iv - lb).ceilDiv(step).
static void getEnclosingLoopsUntil(tensor::PadOp padOp, scf::ForOp untilLoop, SmallVector< scf::ForOp > &reverseEnclosingLoops)
Return at most nLevels of immediately enclosing scf::ForOp loops.
static bool debugPrintLoopInShortForm(Operation *op)
static bool tracesBackToExpectedValue(tensor::ExtractSliceOp extractSliceOp, Value expectedSource)
Return true if we can walk back the use-def chain from extractSliceOp to expectedSource going through...
static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v)
static FailureOr< PackingResult > buildPackingLoopNestImpl(RewriterBase &rewriter, IRMapping &bvm, tensor::PadOp opToHoist, ArrayRef< int64_t > transposeVector, RankedTensorType transposedTensorType, tensor::EmptyOp emptyOp, const HoistPaddingAnalysis &analysis)
static void computeBackwardSlice(tensor::PadOp padOp, scf::ForOp outermostEnclosingForOp, SetVector< Operation * > &backwardSlice)
static Value replaceByPackingResult(RewriterBase &rewriter, const IRMapping &bvm, tensor::PadOp opToHoist, RankedTensorType transposedTensorType, const HoistPaddingAnalysis &analysis, const PackingResult &packingResult)
Produce a tensor extracted from the packingResult.
#define DBGS()
static void debugPrintBackwardSlice(SetVector< Operation * > &backwardSlice)
static void getAtMostNEnclosingLoops(tensor::PadOp padOp, int nLevels, SmallVector< scf::ForOp > &reverseEnclosingLoops)
Return at most nLevels of immediately enclosing scf::ForOp loops.
Base type for affine expression.
Definition: AffineExpr.h:68
This class provides management for the lifetime of the state used when printing the IR.
Definition: AsmState.h:540
This class represents an argument of a Block.
Definition: Value.h:319
Block * getOwner() const
Returns the block that owns this argument.
Definition: Value.h:328
Operation * getParentOp()
Returns the closest surrounding operation that contains this block.
Definition: Block.cpp:33
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:148
MLIRContext * getContext() const
Definition: Builders.h:56
A class for computing basic dominance information.
Definition: Dominance.h:140
bool dominates(Operation *a, Operation *b) const
Return true if operation A dominates operation B, i.e.
Definition: Dominance.h:160
This is a utility class for mapping one set of IR entities to another.
Definition: IRMapping.h:26
auto lookupOrDefault(T from) const
Lookup a mapped value within the map.
Definition: IRMapping.h:65
auto lookup(T from) const
Lookup a mapped value within the map.
Definition: IRMapping.h:72
void map(Value from, Value to)
Inserts a new mapping for 'from' to 'to'.
Definition: IRMapping.h:30
IRValueT get() const
Return the current value being used by this operand.
Definition: UseDefLists.h:160
This class coordinates rewriting a piece of IR outside of a pattern rewrite, providing a way to keep ...
Definition: PatternMatch.h:772
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:357
This class helps build Operations.
Definition: Builders.h:216
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition: Builders.cpp:588
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:440
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Definition: Builders.h:407
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Definition: Builders.h:445
void createOrFold(SmallVectorImpl< Value > &results, Location location, Args &&...args)
Create an operation of specific op type at the current insertion point, and immediately try to fold i...
Definition: Builders.h:529
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:497
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:421
This class represents an operand of an operation.
Definition: Value.h:267
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Definition: Operation.h:407
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
Definition: Operation.h:234
OpTy getParentOfType()
Return the closest surrounding parent operation that is of type 'OpTy'.
Definition: Operation.h:238
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:400
void replaceAllUsesWith(Value from, Value to)
Find uses of from and replace them with to.
Definition: PatternMatch.h:644
virtual void finalizeOpModification(Operation *op)
This method is used to signal the end of an in-place modification of the given operation.
virtual void startOpModification(Operation *op)
This method is used to notify the rewriter that an in-place operation modification is about to happen...
Definition: PatternMatch.h:620
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
A helper class to be used with ValueBoundsOpInterface.
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Location getLoc() const
Return the location of this value.
Definition: Value.cpp:26
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
AffineForOp getForInductionVarOwner(Value val)
Returns the loop parent of an induction variable.
Definition: AffineOps.cpp:2565
FailureOr< OpFoldResult > reifyIndexValueBound(OpBuilder &b, Location loc, presburger::BoundType type, Value value, ValueBoundsConstraintSet::StopConditionFn stopCondition=nullptr, bool closedUB=false)
Reify a bound for the given index-typed value in terms of SSA values for which stopCondition is met.
void bindDims(MLIRContext *ctx)
Definition: AffineExpr.h:326
void bindSymbols(MLIRContext *ctx)
Definition: AffineExpr.h:335
FailureOr< PackingResult > buildPackingLoopNest(RewriterBase &rewriter, tensor::PadOp opToHoist, scf::ForOp outermostEnclosingForOp, ArrayRef< int64_t > transposeVector)
Build the packing loop nest required to hoist opToHoist above outermostEnclosingForOp.
FailureOr< Value > hoistPaddingOnTensors(RewriterBase &rewriter, tensor::PadOp opToHoist, int64_t numLoops, ArrayRef< int64_t > transposeVector, tensor::PadOp &hoistedOp, SmallVectorImpl< TransposeOp > &transposeOps)
Mechanically hoist padding operations on tensors by numLoops into a new, generally larger tensor.
FailureOr< RankedTensorType > computeTransposedType(RankedTensorType rankedTensorType, ArrayRef< int64_t > transposeVector)
Returns the transposed rankedTensorType if transposeVector is non-empty.
Definition: Utils.cpp:77
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition: Matchers.h:490
LoopLikeOpInterface hoistLoopInvariantSubsets(RewriterBase &rewriter, LoopLikeOpInterface loopLike)
Hoist loop-invariant tensor subsets (subset extraction and subset insertion ops) from loop-like ops.
void getBackwardSlice(Operation *op, SetVector< Operation * > *backwardSlice, const BackwardSliceOptions &options={})
Fills backwardSlice with the computed backward slice (i.e.
void getUsedValuesDefinedAbove(Region &region, Region &limit, SetVector< Value > &values)
Fill values with a list of values defined at the ancestors of the limit region and used within region...
Definition: RegionUtils.cpp:67
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
Definition: Matchers.h:369
bool inclusive
Include the top level op in the slice.
Definition: SliceAnalysis.h:33
TransitiveFilter filter
Definition: SliceAnalysis.h:30
Helper struct to hold the results of building a packing loop nest.
Definition: Transforms.h:549
SmallVector< OpFoldResult > strides
Definition: Transforms.h:550
SmallVector< Value > clonedLoopIvs
Definition: Transforms.h:551
SmallVector< OpFoldResult > sizes
Definition: Transforms.h:550