MLIR  20.0.0git
LinalgInterfaces.cpp
Go to the documentation of this file.
1 //===- LinalgInterfaces.cpp - Linalg interfaces implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 
18 #include "mlir/IR/AffineExpr.h"
20 #include "mlir/IR/AffineMap.h"
22 #include "mlir/IR/MLIRContext.h"
23 #include "mlir/IR/TypeUtilities.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetOperations.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <numeric>
32 #include <optional>
33 
34 using namespace mlir;
35 using namespace mlir::linalg;
36 
37 /// Include the definitions of the copy operation interface.
38 #include "mlir/Dialect/Linalg/IR/LinalgInterfaces.cpp.inc"
39 
40 //===----------------------------------------------------------------------===//
41 // Interface utility functions
42 //===----------------------------------------------------------------------===//
43 
45  linalg::LinalgOp linalgOp, ArrayRef<OpOperand *> droppedOperands) {
46  SmallVector<AffineMap> indexingMaps;
47  for (auto &opOperand : linalgOp->getOpOperands()) {
48  if (llvm::is_contained(droppedOperands, &opOperand))
49  continue;
50  indexingMaps.push_back(linalgOp.getMatchingIndexingMap(&opOperand));
51  }
52  if (indexingMaps.empty()) {
53  // If there are no indexing maps, the operand can only be dropped
54  // if the op has no loops.
55  return linalgOp.getNumLoops() == 0;
56  }
58  indexingMaps, linalgOp.getContext())) != AffineMap();
59 }
60 
61 //===----------------------------------------------------------------------===//
62 // CopyOpInterface implementation
63 //===----------------------------------------------------------------------===//
64 
65 bool linalg::isaCopyOpInterface(LinalgOp op) {
66  // Check all loops are parallel and linalgOp is single input and output.
67  if (!op.isAllParallelLoops() || !op.isSingleInputOutput())
68  return false;
69 
70  auto mapRange = op.getIndexingMapsArray();
71  if (mapRange.size() != 2 || !mapRange.front().isIdentity() ||
72  !mapRange.back().isIdentity()) {
73  return false;
74  }
75  // Region.
76  return llvm::hasSingleElement(op.getBlock()->getOperations());
77 }
78 
79 //===----------------------------------------------------------------------===//
80 // FillOpInterface implementation
81 //===----------------------------------------------------------------------===//
82 std::optional<Value> linalg::isaFillOpInterface(GenericOp op) {
83  // Structural.
84  if (!op.isAllParallelLoops() || !op.isSingleInputOutput() ||
85  !op.isSingleYieldOp())
86  return std::nullopt;
87 
88  // Input should be referenced and init should not.
89  if (!op.payloadUsesValueFromOperand(op.getDpsInputOperand(0)) ||
90  op.payloadUsesValueFromOperand(op.getDpsInitOperand(0)))
91  return std::nullopt;
92 
93  OpOperand *value = op.getDpsInputOperand(0);
94  if (!op.isScalar(value))
95  return std::nullopt;
96  return value->get();
97 }
98 
99 //===----------------------------------------------------------------------===//
100 // BroadcastOpInterface implementation
101 //===----------------------------------------------------------------------===//
102 std::optional<SmallVector<int64_t>>
104  // Structural.
105  if (!op.isAllParallelLoops() || !op.isSingleInputOutput() ||
106  !op.isSingleYieldOp())
107  return std::nullopt;
108 
109  auto srcTy = op.getDpsInputOperand(0)->get().getType();
110  auto dstTy = op.getDpsInitOperand(0)->get().getType();
111  if (!isa<MemRefType, RankedTensorType>(srcTy) ||
112  !isa<MemRefType, RankedTensorType>(dstTy))
113  return std::nullopt;
114 
115  // Check output is identity map. Broadcast could additionally be
116  // employing permutation of indices and that would be expressible
117  // in linalg.generic but is not expressible for named broadcast op.
118  auto dstMap = op.getIndexingMapsArray()[1];
119  if (!dstMap.isIdentity())
120  return std::nullopt;
121 
122  SmallVector<int64_t> position;
123  auto srcMap = op.getIndexingMapsArray()[0];
124 
125  if (srcMap.getResults().size() >= dstMap.getResults().size())
126  return std::nullopt;
127 
128  // Check input map is monotonically increasing DimIds.
129  for (unsigned i = 0; i < srcMap.getNumResults(); ++i) {
130  auto expr = llvm::dyn_cast<AffineDimExpr>(srcMap.getResults()[i]);
131  if (!expr)
132  return std::nullopt;
133  int64_t pos = expr.getPosition();
134  if (i > 0 && pos <= position[i - 1])
135  return std::nullopt;
136  position.push_back(expr.getPosition());
137  }
138 
139  SmallVector<int64_t> broadcastedDims;
140  auto numDims = srcMap.getNumDims();
141  // This is quadratic but number of items is generally small.
142  for (auto dim : llvm::seq<int64_t>(0, numDims)) {
143  if (!llvm::is_contained(position, dim))
144  broadcastedDims.push_back(dim);
145  }
146  return broadcastedDims;
147 }
148 
149 //===----------------------------------------------------------------------===//
150 // TranposeOpInterface implementation
151 //===----------------------------------------------------------------------===//
152 std::optional<SmallVector<int64_t>>
154  // To specialize as a transpose op, the genericOp must be
155  // all parallel loops, single input, single output, and its body
156  // should be just a yield op, yielding input as output as is (no compute).
157  if (!op.isAllParallelLoops() || !op.isSingleInputOutput() ||
158  !op.isSingleYieldOp())
159  return std::nullopt;
160 
161  auto mapRange = op.getIndexingMapsArray();
162  if (mapRange.size() != 2)
163  return std::nullopt;
164 
165  auto mapOfInput = mapRange.front();
166  auto mapOfResult = mapRange.back();
167 
168  // linalg.transpose permutes the dimensions of input using this
169  // rule: dim(result, i) = dim(input, permutation[i])
170  if (!mapOfResult.isIdentity() || !mapOfInput.isPermutation())
171  return std::nullopt;
172 
173  SmallVector<int64_t> permutation(mapOfInput.getNumDims());
174  for (unsigned i = 0; i < mapOfInput.getNumDims(); ++i) {
175  auto expr = llvm::cast<AffineDimExpr>(mapOfInput.getResults()[i]);
176  permutation[expr.getPosition()] = i;
177  }
178  return permutation;
179 }
180 
181 //===----------------------------------------------------------------------===//
182 // Elementwise Single Unary/Binary-OpInterface implementation
183 //===----------------------------------------------------------------------===//
184 static bool isaElemwiseSingleUnaryOrBinaryOpInterface(linalg::GenericOp op,
185  unsigned arity) {
186  // Check all loops are parallel.
187  if (!op.isAllParallelLoops() || op.getNumLoops() < 1)
188  return false;
189 
190  // Check there are arity-inputs, 1-output and all are identity-maps.
191  if (op.getNumDpsInputs() != arity || op.getNumDpsInits() != 1 ||
192  !llvm::all_of(op.getIndexingMapsArray(),
193  [](AffineMap map) { return map.isIdentity(); }))
194  return false;
195 
196  // Init should not be referenced for elementwise operations.
197  if (op.payloadUsesValueFromOperand(op.getDpsInitOperand(0)))
198  return false;
199 
200  // A linalg.generic could be series of elementwise ops e.g. exp(neg(x)) such
201  // as resulting from producer-consumer fusion. Here, we restrict to two ops in
202  // the body, where the first is the elementwise single op and the second a
203  // yield.
204  Block *body = op.getBody();
205  if (body->getOperations().size() != 2)
206  return false;
207 
208  Operation *oper = &body->front();
209  if (oper->getNumOperands() != arity || oper->getNumResults() != 1)
210  return false;
211 
212  auto yieldOp = dyn_cast<linalg::YieldOp>(body->back());
213  if (!yieldOp || yieldOp.getNumOperands() != 1 ||
214  yieldOp->getOperand(0).getDefiningOp() != oper)
215  return false;
216  return true;
217 }
218 
219 bool linalg::isaElemwiseSingleUnaryOpInterface(linalg::GenericOp op) {
220  // All basic elemwise checks.
222  return false;
223 
224  // Check input is actully used.
225  if (!op.payloadUsesValueFromOperand(op.getDpsInputOperand(0)))
226  return false;
227  return true;
228 }
229 
230 bool linalg::isaElemwiseSingleBinaryOpInterface(linalg::GenericOp op) {
232  return false;
233 
234  // Check both inputs are used (elementwise).
235  OpOperand *inputOpOperand0 = op.getDpsInputOperand(0);
236  OpOperand *inputOpOperand1 = op.getDpsInputOperand(1);
237  if (!op.payloadUsesValueFromOperand(inputOpOperand0) ||
238  !op.payloadUsesValueFromOperand(inputOpOperand1))
239  return false;
240  return true;
241 }
242 
243 //===----------------------------------------------------------------------===//
244 // ContractionOpInterface implementation
245 //===----------------------------------------------------------------------===//
246 
247 /// If the value is defined by a chain of unary side effect-free, go up the
248 /// use-def chain until the first value that isn't defined by such an op.
249 // TODO: relax to multi-operands with constants, which are technically unary ops
250 // as needed (e.g. add5).
252  Operation *op = value.getDefiningOp();
253  while (op && op->getNumOperands() == 1) {
254  auto iface = dyn_cast<MemoryEffectOpInterface>(op);
255  if (!iface || !iface.hasNoEffect())
256  break;
257  value = op->getOperand(0);
258  op = value.getDefiningOp();
259  }
260  return value;
261 }
262 
264  Block &block, function_ref<bool(Operation *, Operation *)> isaPair,
265  llvm::raw_ostream &errs) {
266  if (block.empty() || !block.back().mightHaveTrait<OpTrait::IsTerminator>()) {
267  errs << "no terminator in the block";
268  return false;
269  }
270 
271  if (block.getNumArguments() != 3) {
272  errs << "expected block with 3 arguments";
273  return false;
274  }
275 
276  Operation *terminator = block.getTerminator();
277  if (terminator->getNumOperands() != 1) {
278  errs << "expected terminator with 1 operand";
279  return false;
280  }
281 
282  Value yielded = getSourceSkipUnary(terminator->getOperand(0));
283  Operation *reductionOp = yielded.getDefiningOp();
284  if (reductionOp->getNumResults() != 1 || reductionOp->getNumOperands() != 2) {
285  errs << "expected reduction op to be binary";
286  return false;
287  }
288 
289  Value reductionLHS = getSourceSkipUnary(reductionOp->getOperand(0));
290  Value reductionRHS = getSourceSkipUnary(reductionOp->getOperand(1));
291 
292  if (reductionLHS != block.getArgument(2) &&
293  reductionRHS != block.getArgument(2)) {
294  errs << "expected reduction to take block argument #2 as one of the "
295  "operands (modulo unary casts)";
296  return false;
297  }
298 
299  Value contributed = getSourceSkipUnary(
300  isa<BlockArgument>(reductionLHS) ? reductionRHS : reductionLHS);
301  Operation *elementwiseOp = contributed.getDefiningOp();
302  if (!elementwiseOp || elementwiseOp->getNumResults() != 1 ||
303  elementwiseOp->getNumOperands() != 2) {
304  errs << "expected elementwise op to be binary";
305  return false;
306  }
307 
308  if (!isaPair(elementwiseOp, reductionOp)) {
309  errs << "expected reduction/elementwise op kind not satisfied";
310  return false;
311  }
312 
313  Value elementwiseLHS = getSourceSkipUnary(elementwiseOp->getOperand(0));
314  Value elementwiseRHS = getSourceSkipUnary(elementwiseOp->getOperand(1));
315  if ((elementwiseLHS == block.getArgument(0) &&
316  elementwiseRHS == block.getArgument(1)) ||
317  (elementwiseLHS == block.getArgument(1) &&
318  elementwiseRHS == block.getArgument(0))) {
319  return true;
320  }
321 
322  errs << "expected elementwise op to apply to block arguments (modulo unary "
323  "casts)";
324  return false;
325 }
326 
327 /// Returns true if the two operations are of the kinds specified by a pair of
328 /// consecutive template arguments.
329 template <typename AddOpTy, typename MulOpTy, typename... Args>
330 static bool isPairTemplateImpl(Operation *add, Operation *mul) {
331  static_assert(sizeof...(Args) % 2 == 0,
332  "expected an even number of template arguments");
333  if (isa<AddOpTy>(add) && isa<MulOpTy>(mul))
334  return true;
335 
336  if constexpr (sizeof...(Args) > 0)
337  return isPairTemplateImpl<Args...>(add, mul);
338  else
339  return false;
340 }
341 
342 /// Returns true if the block is a body of a contraction with the kinds of
343 /// operations given pairwise by template arguments.
344 template <typename... Args>
345 static bool isContractionBody(Block &block) {
346  return linalg::detail::isContractionBody(block, &isPairTemplateImpl<Args...>);
347 }
348 
349 /// Given an `indexingMap` and its corresponding `iterators`, returns
350 /// the positions of the iterators of type `iter` that are indexed by
351 /// the `indexingMap` as a permutation. This is useful to infer various
352 /// subcomputations on a `LinalgOp`. This is performed by looking up
353 /// each result in the `indexingMap` and determining whether:
354 /// - It is a single AffineDimExpr.
355 /// - It is the only result involving this AffineDimExpr.
356 static llvm::SmallDenseSet<int64_t>
359  utils::IteratorType iter) {
360  assert(iterators.size() == indexingMap.getNumDims());
361  llvm::SmallDenseSet<int64_t> res;
362  for (AffineExpr e : indexingMap.getResults()) {
363  if (auto d = dyn_cast<AffineDimExpr>(e)) {
364  if (iterators[d.getPosition()] == iter &&
365  llvm::count_if(indexingMap.getResults(), [d](AffineExpr e) {
366  return e.isFunctionOfDim(d.getPosition());
367  }) == 1)
368  res.insert(d.getPosition());
369  }
370  }
371  return res;
372 }
373 
374 namespace {
375 auto par = utils::IteratorType::parallel;
376 auto red = utils::IteratorType::reduction;
377 } // namespace
378 
379 /// Infer the iterator types from the init affine map. This looks at which dims
380 /// are present in the map results, and returns an iterator types array with
381 /// parallel types for dims that are present, and reduction types for dims that
382 /// are not present.
383 static FailureOr<SmallVector<utils::IteratorType>>
385  if (!map.isProjectedPermutation())
386  return failure();
387  SmallVector<utils::IteratorType> iterators(map.getNumDims(), red);
388  for (auto expr : map.getResults())
389  if (auto dim = dyn_cast<AffineDimExpr>(expr))
390  iterators[dim.getPosition()] = par;
391  return iterators;
392 }
393 
394 /// Find 2 parallel (m and n) and 1 reduction (k) dimension candidates that form
395 /// a matmul subcomputation within `linalgOp`. These dimensions are such that:
396 /// 1. The m dimension is involved in an outer-product along LHS
397 /// (i.e. it is a permutation on RES and LHS and does not appear in RHS).
398 /// 2. The n dimension is involved in an outer-product along RHS
399 /// (i.e. it is a permutation on RES and RHS and does not appear in LHS).
400 /// 3. The k dimension appears as a permutation on LHS and RHS.
401 /// 4. m, n and k appear only once in any given indexing.
402 /// 5. Optional batch dimensions that appear in all operands are captured.
403 /// This allows e.g. detecting that some contraction is embedded within
404 /// `linalgOp` with some orthogonal heuristic.
405 static FailureOr<ContractionDimensions>
407  ArrayRef<utils::IteratorType> iterators) {
408  llvm::SmallDenseSet<int64_t> a =
409  findPermutationsIndexingOperand(indexingMaps[0], iterators, par);
410  llvm::SmallDenseSet<int64_t> b =
411  findPermutationsIndexingOperand(indexingMaps[1], iterators, par);
412  llvm::SmallDenseSet<int64_t> c =
413  findPermutationsIndexingOperand(indexingMaps[2], iterators, par);
414 
415  // A & C - B are the iterators involved in an outer-product along A (the LHS).
416  llvm::SmallDenseSet<int64_t> ac = a;
417  llvm::set_intersect(ac, c);
418  llvm::set_subtract(ac, b);
419  // B & C - A are the iterators involved in an outer-product along B (the RHS).
420  llvm::SmallDenseSet<int64_t> bc = b;
421  llvm::set_intersect(bc, c);
422  llvm::set_subtract(bc, a);
423  // A & B & C are the "batch" dimensions.
424  llvm::SmallDenseSet<int64_t> batches = a;
425  llvm::set_intersect(batches, b);
426  llvm::set_intersect(batches, c);
427 
428  // A & B red are the reduction dimensions.
429  llvm::SmallDenseSet<int64_t> ra =
430  findPermutationsIndexingOperand(indexingMaps[0], iterators, red);
431  llvm::SmallDenseSet<int64_t> rb =
432  findPermutationsIndexingOperand(indexingMaps[1], iterators, red);
433  llvm::set_intersect(ra, rb);
434 
435  // Return each set in sorted order.
436  ContractionDimensions dimensions{
437  SmallVector<unsigned, 2>(batches.begin(), batches.end()),
438  SmallVector<unsigned, 2>(ac.begin(), ac.end()),
439  SmallVector<unsigned, 2>(bc.begin(), bc.end()),
440  SmallVector<unsigned, 2>(ra.begin(), ra.end())};
441  llvm::sort(dimensions.batch.begin(), dimensions.batch.end());
442  llvm::sort(dimensions.m.begin(), dimensions.m.end());
443  llvm::sort(dimensions.n.begin(), dimensions.n.end());
444  llvm::sort(dimensions.k.begin(), dimensions.k.end());
445  return dimensions;
446 }
447 
448 FailureOr<ContractionDimensions>
450  if (linalgOp.getNumDpsInits() != 1 || linalgOp.getNumDpsInputs() != 2)
451  return failure();
452  return inferContractionDimsImpl(linalgOp.getIndexingMapsArray(),
453  linalgOp.getIteratorTypesArray());
454 }
455 
456 FailureOr<ContractionDimensions>
458  if (indexingMaps.size() != 3)
459  return failure();
460  auto iterators = inferIteratorsFromOutMap(indexingMaps[2]);
461  if (failed(iterators))
462  return failure();
463  return inferContractionDimsImpl(indexingMaps, iterators.value());
464 }
465 
466 namespace mlir::linalg::detail {
468  Success = 0,
469  NotLinalgOp,
471  NoReduction,
473  NotAddMul
474 };
475 } // namespace mlir::linalg::detail
476 
480  auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
481  if (!linalgOp)
482  return MatchContractionResult::NotLinalgOp;
483  if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1)
484  return MatchContractionResult::WrongNumOperands;
485  auto mapRange = linalgOp.getIndexingMapsArray();
486  if (linalgOp.getNumReductionLoops() == 0)
487  return MatchContractionResult::NoReduction;
488  if (llvm::any_of(mapRange,
489  [](AffineMap m) { return !m.isProjectedPermutation(); }))
490  return MatchContractionResult::NotProjectedPermutations;
491  // TODO: more fields than add/mul.
492  // clang-format off
493  if (!::isContractionBody<
494  arith::MulFOp, arith::AddFOp,
495  arith::MulIOp, arith::AddIOp,
496  complex::MulOp, complex::AddOp,
497  arith::AndIOp, arith::OrIOp>(
498  *linalgOp.getBlock())) {
499  return MatchContractionResult::NotAddMul;
500  }
501  // clang-format on
502 
503  if (dimensions) {
504  FailureOr<ContractionDimensions> res = inferContractionDims(linalgOp);
505  assert(succeeded(res) && "unexpected failure to infer contraction dims");
506  *dimensions = *res;
507  }
508  return MatchContractionResult::Success;
509 }
510 
511 StringRef
513  switch (res) {
514  case MatchContractionResult::NotLinalgOp:
515  return "expected a LinalgOp";
516  case MatchContractionResult::WrongNumOperands:
517  return "expected op with 2 inputs and 1 output";
518  case MatchContractionResult::NoReduction:
519  return "expected at least 1 reduction";
520  case MatchContractionResult::NotProjectedPermutations:
521  return "expected indexing maps to be projected permutations";
522  case MatchContractionResult::NotAddMul:
523  return "expected add/mul op in the body";
524  case MatchContractionResult::Success:
525  return "";
526  }
527  llvm_unreachable("unhandled MatchContractionResult case");
528 }
529 
531  if (!linalgOp)
532  return false;
533  Operation *op = linalgOp.getOperation();
534  return isa<ContractionOpInterface>(op) ||
537 }
538 
539 /// Verify that a LinalgOp `op` is a contraction.
540 /// A Linalg contraction is defined in general terms:
541 /// 1. Has 2 input and 1 output shapes.
542 /// 2. Has at least one reduction dimension.
543 /// 3. Has only projected permutation indexing maps.
544 /// 4. its body computes `u5(u1(c) + u2(u3(a) * u4(b)))` on some field
545 /// (AddOpType, MulOpType), where u1, u2, u3, u4 and u5 represent scalar unary
546 /// operations that may change the type (e.g. for mixed-precision).
547 /// As a consequence, when vectorization of such an op occurs, the only special
548 /// behavior is that the (unique) MulOpType is vectorized into a
549 /// `vector.contract`. All other ops are handled in a generic fashion.
550 /// In the future, we may wish to allow more input arguments and elementwise and
551 /// constant operations that do not involve the reduction dimension(s).
553  auto res = isContractionInterfaceImpl(op);
554  if (res != MatchContractionResult::Success)
555  return op->emitError(getMatchContractionMessage(res));
556  return success();
557 }
558 
559 //===----------------------------------------------------------------------===//
560 // ConvolutionOpInterface implementation
561 //===----------------------------------------------------------------------===//
562 
563 /// Of the given two expressions returns one that is of type T (`lhs` gets
564 /// preference over `rhs`)
565 template <typename T>
567  return isa<T>(lhs) ? cast<T>(lhs) : (isa<T>(rhs) ? cast<T>(rhs) : nullptr);
568 }
569 
570 namespace {
571 /// Walk the indexing expressions for input of a convolution operation to verify
572 /// its of the right form, either
573 /// - AffineDimExpr
574 /// - AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?
575 /// (`+` AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?)*
576 ///
577 /// classifies the AffineDimExpr as convolved dimensions or unconvolved
578 /// dimensions and verifies each dimension occurs only once.
579 struct ConvAccessExprWalker
580  : public AffineExprVisitor<ConvAccessExprWalker, LogicalResult> {
581  // Stores dimensions used in expressions of the above form.
582  llvm::SmallDenseSet<int64_t> convolvedDims;
583  // Stores the dual mapping between LHS and RHS of convolution exprs.
584  llvm::SmallDenseMap<int64_t, int64_t> convolvedDimMapping;
585  // Stores single use dimensions used by an AffineDimExpr.
586  llvm::SmallDenseSet<int64_t> unConvolvedDims;
587  // Stores a mapping from convolved dims to their coefficient.
588  llvm::SmallDenseMap<int64_t, AffineExpr> strideAndDilationMapping;
589 
590  // Removes dims with multiple uses in the source input map from dimension
591  // sets tracked by this walker.
592  void clearMultiUseDims(AffineMap map) {
593  for (int dimPos = 0, e = map.getNumDims(); dimPos < e; ++dimPos) {
594  if (llvm::count_if(map.getResults(), [dimPos](AffineExpr e) {
595  return e.isFunctionOfDim(dimPos);
596  }) > 1) {
597  convolvedDims.erase(dimPos);
598  unConvolvedDims.erase(dimPos);
599  // If a duplicate dim is marked as convolved, the pair of the duplicate
600  // dim must be removed from the map as well.
601  auto it = convolvedDimMapping.find(dimPos);
602  if (it != convolvedDimMapping.end()) {
603  int64_t pairedDim = it->second;
604  convolvedDims.erase(pairedDim);
605  unConvolvedDims.erase(pairedDim);
606  strideAndDilationMapping.erase(pairedDim);
607  convolvedDimMapping.erase(dimPos);
608  convolvedDimMapping.erase(pairedDim);
609  }
610  }
611  }
612  }
613 
614  LogicalResult visitDimExpr(AffineDimExpr dimExpr) {
615  unsigned position = dimExpr.getPosition();
616  if (unConvolvedDims.count(position) || convolvedDims.count(position)) {
617  return failure();
618  }
619  unConvolvedDims.insert(position);
620  return success();
621  }
622 
623  LogicalResult visitSymbolExpr(AffineSymbolExpr expr) { return failure(); }
624 
625  LogicalResult visitConstantExpr(AffineConstantExpr expr) { return failure(); }
626 
627  LogicalResult visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryExpr) {
628  // In pre-order visit, top level op has to be an add op.
629  if (binaryExpr.getKind() != AffineExprKind::Add)
630  return failure();
631  auto lhsDimPos = getDimExprOrMulExprDimPos(binaryExpr.getLHS());
632  auto rhsDimPos = getDimExprOrMulExprDimPos(binaryExpr.getRHS());
633  if (failed(lhsDimPos) || failed(rhsDimPos))
634  return failure();
635  convolvedDimMapping[*lhsDimPos] = *rhsDimPos;
636  convolvedDimMapping[*rhsDimPos] = *lhsDimPos;
637  return success();
638  }
639 
640  FailureOr<int64_t> getDimExprOrMulExprDimPos(AffineExpr expr) {
641  if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
642  int64_t dim = dimExpr.getPosition();
643  if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
644  return failure();
645  // Stride/dilation for this dim is implicitly 1.
646  strideAndDilationMapping[dim] =
648  convolvedDims.insert(dim);
649  return dim;
650  }
651  if (auto symbolMulExpr = dyn_cast<AffineBinaryOpExpr>(expr)) {
652  if (symbolMulExpr.getKind() != AffineExprKind::Mul)
653  return failure();
654  auto lhsExpr = symbolMulExpr.getLHS();
655  auto rhsExpr = symbolMulExpr.getRHS();
656  // Check for symbol expression.
657  AffineExpr mulExpr =
658  getAffineExprOfType<AffineSymbolExpr>(lhsExpr, rhsExpr);
659  // If there was no symbol expr, check for constant expression.
660  if (!mulExpr) {
661  mulExpr = getAffineExprOfType<AffineConstantExpr>(lhsExpr, rhsExpr);
662  }
663  auto dimExpr = getAffineExprOfType<AffineDimExpr>(lhsExpr, rhsExpr);
664  if (!mulExpr || !dimExpr)
665  return failure();
666  int64_t dim = dimExpr.getPosition();
667  if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
668  return failure();
669  strideAndDilationMapping[dim] = mulExpr;
670  convolvedDims.insert(dim);
671  return dim;
672  }
673  return failure();
674  }
675 };
676 } // namespace
677 
678 static llvm::SmallDenseSet<int64_t> getPreservedDims(AffineMap map) {
679  assert(map.isProjectedPermutation() &&
680  "expected map to have projected permutations");
681  llvm::SmallDenseSet<int64_t> preservedDims;
682  for (auto expr : map.getResults())
683  preservedDims.insert(cast<AffineDimExpr>(expr).getPosition());
684  return preservedDims;
685 }
686 
690  for (auto e : exprs) {
691  auto constantExpr = dyn_cast<AffineConstantExpr>(e);
692  assert(constantExpr && "Found non-constant stride/dilation");
693  vals.push_back(constantExpr.getValue());
694  }
695  return vals;
696 }
697 
698 /// Classifies dimensions in the `linalgOp` used by a convolution
699 /// subcomputation, as captured by `inputExprWalker`. If
700 /// `allowEmptyConvolvedDims` is not set this this will fail if there is not
701 /// at least convolved dimension pair (output image + filter loop). Convolution
702 /// dimensions are specified in sorted order, and strides match the order of
703 /// the filter loop dimensions, while the dilations match the order of the
704 /// output image dimensions.
705 static FailureOr<ConvolutionDimensions>
706 inferConvolutionDimsImpl(LinalgOp linalgOp,
707  ConvAccessExprWalker &inputExprWalker,
708  bool allowEmptyConvolvedDims) {
709  auto filterMap =
710  linalgOp.getMatchingIndexingMap(linalgOp.getDpsInputOperand(1));
711  auto outputMap =
712  linalgOp.getMatchingIndexingMap(linalgOp.getDpsInitOperand(0));
713  llvm::SmallDenseSet<int64_t> filterDims = findPermutationsIndexingOperand(
714  filterMap, linalgOp.getIteratorTypesArray(), par);
715  llvm::SmallDenseSet<int64_t> outputDims = findPermutationsIndexingOperand(
716  outputMap, linalgOp.getIteratorTypesArray(), par);
717 
718  // unConvolvedDims & outputDims - filterDims are the batch iterators.
719  llvm::SmallDenseSet<int64_t> batch = inputExprWalker.unConvolvedDims;
720  llvm::set_intersect(batch, outputDims);
721  llvm::set_subtract(batch, filterDims);
722 
723  // convolvedDims & outputDims are the output image iterators.
724  llvm::SmallDenseSet<int64_t> oi = inputExprWalker.convolvedDims;
725  llvm::set_intersect(oi, outputDims);
726 
727  // filterDims & outputDims - unConvolvedDims are the output channel iterators.
728  llvm::SmallDenseSet<int64_t> oc = filterDims;
729  llvm::set_intersect(oc, outputDims);
730  llvm::set_subtract(oc, inputExprWalker.unConvolvedDims);
731 
732  // filterDims & outputDims & unConvolvedDims are the depth iterators.
733  llvm::SmallDenseSet<int64_t> depth = filterDims;
734  llvm::set_intersect(depth, outputDims);
735  llvm::set_intersect(depth, inputExprWalker.unConvolvedDims);
736 
737  llvm::SmallDenseSet<int64_t> filterReducedDims =
739  linalgOp.getIteratorTypesArray(), red);
740 
741  // convolvedDims & filterReducedDims are the filter loop iterators.
742  llvm::SmallDenseSet<int64_t> fl = inputExprWalker.convolvedDims;
743  llvm::set_intersect(fl, filterReducedDims);
744 
745  // unConvolvedDims & filterReducedDims are the input channel iterators.
746  llvm::SmallDenseSet<int64_t> ic = inputExprWalker.unConvolvedDims;
747  llvm::set_intersect(ic, filterReducedDims);
748 
749  if (oi.empty() && !allowEmptyConvolvedDims)
750  return failure();
751 
752  // Return each set in sorted order.
753  ConvolutionDimensions dimensions{
754  SmallVector<unsigned, 2>(batch.begin(), batch.end()),
755  SmallVector<unsigned, 2>(oi.begin(), oi.end()),
756  SmallVector<unsigned, 2>(oc.begin(), oc.end()),
757  SmallVector<unsigned, 2>(fl.begin(), fl.end()),
758  SmallVector<unsigned, 2>(ic.begin(), ic.end()),
759  SmallVector<unsigned, 2>(depth.begin(), depth.end()),
760  /*strides=*/SmallVector<int64_t, 2>{},
761  /*dilations=*/SmallVector<int64_t, 2>{}};
762  llvm::sort(dimensions.batch.begin(), dimensions.batch.end());
763  llvm::sort(dimensions.outputImage.begin(), dimensions.outputImage.end());
764  llvm::sort(dimensions.outputChannel.begin(), dimensions.outputChannel.end());
765  llvm::sort(dimensions.filterLoop.begin(), dimensions.filterLoop.end());
766  llvm::sort(dimensions.inputChannel.begin(), dimensions.inputChannel.end());
767  llvm::sort(dimensions.depth.begin(), dimensions.depth.end());
768 
769  // Use the op carried strides/dilations attribute if present.
770  auto nativeStrides = linalgOp->getAttrOfType<DenseIntElementsAttr>("strides");
771  if (!nativeStrides) {
772  SmallVector<AffineExpr, 2> strideExprs;
773  for (unsigned oiDim : dimensions.outputImage)
774  strideExprs.push_back(inputExprWalker.strideAndDilationMapping[oiDim]);
775  dimensions.strides = getConstantsFromExprList(strideExprs);
776  } else {
777  dimensions.strides = llvm::to_vector<2>(nativeStrides.getValues<int64_t>());
778  }
779  auto nativeDilations =
780  linalgOp->getAttrOfType<DenseIntElementsAttr>("dilations");
781  if (!nativeDilations) {
782  SmallVector<AffineExpr, 2> dilationExprs;
783  for (unsigned flDim : dimensions.filterLoop)
784  dilationExprs.push_back(inputExprWalker.strideAndDilationMapping[flDim]);
785  dimensions.dilations = getConstantsFromExprList(dilationExprs);
786  } else {
787  dimensions.dilations =
788  llvm::to_vector<2>(nativeDilations.getValues<int64_t>());
789  }
790  return dimensions;
791 }
792 
793 /// Find at least 1 parallel (output_image) and reduction (filter_loop)
794 /// dimension candidates that form a convolution subcomputation within
795 /// `linalgOp`. The LHS is assumed to be the convolution input while the
796 /// RHS is assumed as the filter.
797 /// These dimensions are such that:
798 /// 1. Optional batch dimensions that appear in the input and filter.
799 /// 2. The output_image dimension is involved in a cross-correlation along LHS
800 /// (i.e. it is a permutation on RES and LHS and has an associated
801 /// filter_loop in RHS).
802 /// 3. Optional output_channel dimension is involved in an outer-product along
803 /// RHS (i.e. it is a permutation on RES and RHS and does not appear in
804 /// LHS).
805 /// 4. Optional input_channel dimension appears as a permutation on LHS and
806 /// RHS.
807 /// 5. The filter_loop dimension appears as a permutation on the RHS and
808 /// represents the shape of the kernel cross-correlated along a
809 /// corresponding output_image dim.
810 /// 6. The input_channel dimension appears as a permutation on LHS and RHS.
811 /// 7. All dimensions appear only once in any given indexing map.
812 /// This allows e.g. detecting that some convolution is embedded within
813 /// `linalgOp` with some orthogonal heuristic.
814 /// When multiple dimension occurrences exist that match any classification
815 /// indices are returned in sorted order.
816 /// Returns a failure if `output_image` (and implicitly `filter_loop`) is empty.
817 FailureOr<ConvolutionDimensions>
819  if (linalgOp.getNumDpsInits() != 1 || linalgOp.getNumDpsInputs() != 2)
820  return failure();
821 
822  auto indexingMaps = linalgOp.getIndexingMapsArray();
823 
824  // Check the input indexing map has the right form.
825  ConvAccessExprWalker inputExprWalker;
826  for (AffineExpr expr : indexingMaps[0].getResults())
827  (void)inputExprWalker.visit(expr);
828  inputExprWalker.clearMultiUseDims(indexingMaps[0]);
829 
830  return inferConvolutionDimsImpl(linalgOp, inputExprWalker,
831  /*allowEmptyConvolvedDims=*/false);
832 }
833 
834 namespace mlir::linalg::detail {
836  Success = 0,
837  NotLinalgOp,
845 };
846 } // namespace mlir::linalg::detail
847 
850  Operation *op, ConvolutionDimensions *dimensions,
851  bool allowEmptyConvolvedDims) {
852  auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
853  if (!linalgOp)
854  return MatchConvolutionResult::NotLinalgOp;
855  if (linalgOp.getNumDpsInputs() < 2 || linalgOp.getNumDpsInits() != 1)
856  return MatchConvolutionResult::WrongNumOperands;
857 
858  auto indexingMaps = linalgOp.getIndexingMapsArray();
859 
860  // Check the input indexing map has the right form.
861  ConvAccessExprWalker inputExprWalker;
862  if (llvm::any_of(indexingMaps[0].getResults(),
863  [&inputExprWalker](AffineExpr expr) {
864  return failed(inputExprWalker.visit(expr));
865  })) {
866  return MatchConvolutionResult::WrongInputIndexingMap;
867  }
868 
869  // Filter and output maps must be projected permutation.
870  if (!indexingMaps[1].isProjectedPermutation() ||
871  !indexingMaps.back().isProjectedPermutation())
872  return MatchConvolutionResult::NotProjectedPermutations;
873 
874  auto iteratorTypes = linalgOp.getIteratorTypesArray();
875 
876  llvm::SmallDenseSet<int64_t> outputDims =
877  getPreservedDims(indexingMaps.back());
878  llvm::SmallDenseSet<int64_t> filterDims = getPreservedDims(indexingMaps[1]);
879  // Make sure all loops are characterized as one of:
880  // - Batch loop : present in output, as non-convolved in input, not present in
881  // filter.
882  // - Output image dimension : present in output, convolved dims in input, not
883  // present in filter.
884  // - Output channel dimension : present in output, not present in input,
885  // present in filter.
886  // - Filter loop dimension : present in filter, convolved in input, not
887  // present in output.
888  // - Input channel dimension : unconvolved in input, not present in output,
889  // present in filter.
890  // - Depth multiplier : unconvolved in input, present in output, present in
891  // filter.
892  llvm::SmallDenseSet<int64_t> allLoopDims;
893  for (auto outputExpr : indexingMaps.back().getResults()) {
894  int64_t outputDim = cast<AffineDimExpr>(outputExpr).getPosition();
895  if (inputExprWalker.unConvolvedDims.count(outputDim) &&
896  !filterDims.count(outputDim)) {
897  // Batch dimension.
898  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
899  return MatchConvolutionResult::OutputDimsNotParallel;
900  allLoopDims.insert(outputDim);
901  continue;
902  }
903  if (inputExprWalker.convolvedDims.count(outputDim) &&
904  !filterDims.count(outputDim)) {
905  // Output image Loop dimension.
906  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
907  return MatchConvolutionResult::OutputDimsNotParallel;
908  allLoopDims.insert(outputDim);
909  continue;
910  }
911  if (!inputExprWalker.convolvedDims.count(outputDim) &&
912  !inputExprWalker.unConvolvedDims.count(outputDim) &&
913  filterDims.count(outputDim)) {
914  // Output channel dimension.
915  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
916  return MatchConvolutionResult::OutputDimsNotParallel;
917  allLoopDims.insert(outputDim);
918  continue;
919  }
920  if (inputExprWalker.unConvolvedDims.count(outputDim) &&
921  filterDims.count(outputDim)) {
922  // Depth multiplier.
923  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
924  return MatchConvolutionResult::OutputDimsNotParallel;
925  allLoopDims.insert(outputDim);
926  continue;
927  }
928  return MatchConvolutionResult::NonConvolutionLoop;
929  }
930  for (auto filterExpr : indexingMaps[1].getResults()) {
931  int64_t filterDim = cast<AffineDimExpr>(filterExpr).getPosition();
932  if (outputDims.count(filterDim) &&
933  !inputExprWalker.unConvolvedDims.count(filterDim) &&
934  !inputExprWalker.convolvedDims.count(filterDim)) {
935  // Output channel dimension. This is already seen, continue;
936  continue;
937  }
938  if (inputExprWalker.convolvedDims.count(filterDim) &&
939  !outputDims.count(filterDim)) {
940  // Filter loop dimension.
941  if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
942  return MatchConvolutionResult::NonOutputDimNotReduction;
943  if (allLoopDims.count(filterDim))
944  return MatchConvolutionResult::NonConvolutionLoop;
945  allLoopDims.insert(filterDim);
946  continue;
947  }
948  if (inputExprWalker.unConvolvedDims.count(filterDim) &&
949  !outputDims.count(filterDim)) {
950  // Input channel dimension.
951  if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
952  return MatchConvolutionResult::NonOutputDimNotReduction;
953  if (allLoopDims.count(filterDim))
954  return MatchConvolutionResult::NonConvolutionLoop;
955  allLoopDims.insert(filterDim);
956  continue;
957  }
958  if (inputExprWalker.unConvolvedDims.count(filterDim) &&
959  outputDims.count(filterDim)) {
960  // Depthwise loop. Already seen.
961  continue;
962  }
963  return MatchConvolutionResult::NonConvolutionLoop;
964  }
965  // All loops must be covered now.
966  if (allLoopDims.size() != linalgOp.getNumLoops())
967  return MatchConvolutionResult::NonConvolutionLoop;
968 
969  if (!allowEmptyConvolvedDims && inputExprWalker.convolvedDims.empty())
970  return MatchConvolutionResult::EmptyConvolvedDims;
971 
972  if (dimensions) {
973  FailureOr<ConvolutionDimensions> res = inferConvolutionDimsImpl(
974  linalgOp, inputExprWalker, allowEmptyConvolvedDims);
975  assert(succeeded(res) && "unexpected failure to infer convolution dims");
976  *dimensions = *res;
977  }
978 
979  return MatchConvolutionResult::Success;
980 }
981 
982 StringRef
984  switch (res) {
985  case MatchConvolutionResult::NotLinalgOp:
986  return "expected a LinalgOp";
987  case MatchConvolutionResult::WrongNumOperands:
988  return "expected op with 2 inputs and 1 output";
989  case MatchConvolutionResult::WrongInputIndexingMap:
990  return "unexpected input index map for convolutions";
991  case MatchConvolutionResult::NotProjectedPermutations:
992  return "expected output/filter indexing maps to be projected permutations";
993  case MatchConvolutionResult::NonConvolutionLoop:
994  return "unexpected loop dimension for convolution op";
995  case MatchConvolutionResult::OutputDimsNotParallel:
996  return "expected all iterators used to access outputs to be parallel";
997  case MatchConvolutionResult::NonOutputDimNotReduction:
998  return "expected all iterators not used to access outputs to be reduction";
999  case MatchConvolutionResult::EmptyConvolvedDims:
1000  return "expected convolved dim to be non-empty";
1001  case MatchConvolutionResult::Success:
1002  return "";
1003  }
1004  llvm_unreachable("unhandled MatchConvolutionResult case");
1005 }
1006 
1008  bool allowEmptyConvolvedDims) {
1010  linalgOp.getOperation(), nullptr, allowEmptyConvolvedDims) ==
1012 }
1013 
1016  if (res != MatchConvolutionResult::Success)
1017  return op->emitError(getMatchConvolutionMessage(res));
1018  return success();
1019 }
1020 
1021 //===----------------------------------------------------------------------===//
1022 // FillOpInterface implementation
1023 //===----------------------------------------------------------------------===//
1024 
1025 enum class MatchFillResult {
1026  Success = 0,
1027  NotLinalgOp,
1028  WrongNumOperands,
1030 };
1031 
1033  auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
1034  if (!linalgOp)
1036  if (linalgOp.getNumDpsInputs() != 1 || linalgOp.getNumDpsInits() != 1)
1038 
1039  OpOperand *value = linalgOp.getDpsInputOperand(0);
1040  if (!linalgOp.isScalar(value))
1042 
1043  return MatchFillResult::Success;
1044 }
1045 
1047  auto res = isFillInterfaceImpl(op);
1048  if (res == MatchFillResult::NotLinalgOp)
1049  return op->emitError("expected a LinalgOp");
1051  return op->emitError("expected op with 1 input and 1 output");
1053  return op->emitError("expected op with scalar input");
1054 
1055  return success();
1056 }
1057 
1058 //===----------------------------------------------------------------------===//
1059 // StructuredOpInterface implementation
1060 //===----------------------------------------------------------------------===//
1061 
1062 SmallVector<OpFoldResult> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
1063  Location loc) {
1065  for (OpOperand &opOperand : getOperation()->getOpOperands()) {
1066  for (int64_t i = 0, e = getRank(&opOperand); i < e; ++i)
1067  res.push_back(createFoldedDimOp(b, loc, opOperand.get(), i));
1068  }
1069  return res;
1070 }
1071 
1072 SmallVector<int64_t, 4> LinalgOp::createFlatListOfOperandStaticDims() {
1074  assert(!hasDynamicShape() && "expected operands to have static shapes");
1075  for (OpOperand &opOperand : getOperation()->getOpOperands())
1076  llvm::append_range(res, getShape(&opOperand));
1077  return res;
1078 }
1079 
1080 SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
1081  AffineMap map = getLoopsToShapesMap();
1082  unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
1083  auto viewSizes = createFlatListOfOperandDims(b, loc);
1084  SmallVector<Range, 4> res(numDims);
1085  for (unsigned idx = 0; idx < numRes; ++idx) {
1086  auto result = map.getResult(idx);
1087  if (auto d = dyn_cast<AffineDimExpr>(result)) {
1088  if (res[d.getPosition()].offset)
1089  continue;
1090  res[d.getPosition()] =
1091  Range{b.getIndexAttr(0), viewSizes[idx], b.getIndexAttr(1)};
1092  }
1093  }
1094  return res;
1095 }
1096 
1097 SmallVector<int64_t, 4> LinalgOp::computeStaticLoopSizes() {
1098  AffineMap map = getLoopsToShapesMap();
1099  unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
1100  SmallVector<int64_t, 4> allShapeSizes = createFlatListOfOperandStaticDims();
1101  SmallVector<int64_t, 4> res(numDims, 0);
1102  for (unsigned idx = 0; idx < numRes; ++idx) {
1103  auto result = map.getResult(idx);
1104  if (auto d = dyn_cast<AffineDimExpr>(result))
1105  res[d.getPosition()] = allShapeSizes[idx];
1106  }
1107  return res;
1108 }
1109 
1110 /// Visitor to check if any of the given set of positions from AffineDimExprs
1111 /// are used within an AffineExpr.
1113  : public AffineExprVisitor<HasAffineDimExprVisitor, bool> {
1114  HasAffineDimExprVisitor(llvm::SmallBitVector positions)
1115  : positions(std::move(positions)) {}
1116 
1118  return visit(binaryOpExpr.getLHS()) || visit(binaryOpExpr.getRHS());
1119  }
1120 
1121  bool visitDimExpr(AffineDimExpr dimExpr) {
1122  return positions.test(dimExpr.getPosition());
1123  }
1124 
1125  bool visitConstantExpr(AffineConstantExpr constExpr) { return false; }
1126 
1127  bool visitSymbolExpr(AffineSymbolExpr symbolExpr) { return false; }
1128 
1129 private:
1130  llvm::SmallBitVector positions;
1131 };
1132 
1133 static std::pair<int64_t, int64_t>
1135  int64_t inputRankSum = 0;
1136  int64_t outputRankSum = 0;
1137  for (OpOperand *input : op.getDpsInputOperands())
1138  inputRankSum += op.getRank(input);
1139  for (OpOperand &output : op.getDpsInitsMutable())
1140  outputRankSum += op.getRank(&output);
1141  return {inputRankSum, inputRankSum + outputRankSum};
1142 }
1143 
1144 LogicalResult
1146  ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1147  // An example that helps understand the logic below.
1148  // Consider the following expression O(i+j, j) += A(i,k) * B(k, j)
1149  // We want to express the shape of dim 0 of O in terms of shape of the inputs.
1150  // This is achieved as follows.
1151  // loopsToShapesMap = (d0, d1, d2) -> (d0, d2, d2, d1, d0 + d1, d1)
1152  // subMapOfResultShapes = (d0, d1, d2) -> (d0 + d1, d1)
1153  // shapesToLoopsMap = (d0, d2, d2, d3, d4, d5) -> (d0, d3, d2)
1154  // resultShapesFromInputShapes = subMapOfResultDim.compose(shapesToLoopMap)
1155  // = (d0, d1, d2, d3, d4, d5) -> (d0 + d1, d1)
1156  AffineMap loopsToShapesMap = getLoopsToShapesMap();
1157 
1158  // Find the position in the above map that represents the shape of the
1159  // result:dim being inferred.
1160  auto resultShapesSubMapPos = getResultsPositionInLoopsToShapeMap(*this);
1161 
1162  /// From loopsToShapesMap extract the submap that represents the shape of the
1163  /// (resultIdx, dim) needed.
1164  AffineMap loopToResultsShapeMap = loopsToShapesMap.getSliceMap(
1165  resultShapesSubMapPos.first,
1166  resultShapesSubMapPos.second - resultShapesSubMapPos.first);
1167  AffineMap resultShapesFromInputShapesMap =
1168  loopToResultsShapeMap.compose(getShapesToLoopsMap());
1169 
1170  // Check that the result dim map does not contain the positions corresponding
1171  // to the outputs.
1172  llvm::SmallBitVector outputDims(resultShapesFromInputShapesMap.getNumDims());
1173  outputDims.set(resultShapesSubMapPos.first, resultShapesSubMapPos.second);
1174  HasAffineDimExprVisitor checkDimExpr(std::move(outputDims));
1175  Location loc = getOperation()->getLoc();
1176  IRRewriter rewriter(b);
1177  SmallVector<OpFoldResult> allResultDimValues =
1179  rewriter, loc, resultShapesFromInputShapesMap,
1180  createFlatListOfOperandDims(b, loc));
1181  int64_t pos = 0;
1182  ArrayRef<AffineExpr> shapeExprs = resultShapesFromInputShapesMap.getResults();
1183  for (OpOperand &opOperand : getDpsInitsMutable()) {
1185  for (int64_t dim : llvm::seq<int64_t>(0, getRank(&opOperand))) {
1186  auto shapedType = llvm::cast<ShapedType>(opOperand.get().getType());
1187  if (!shapedType.isDynamicDim(dim)) {
1188  // Static dim: Return IntegerAttr.
1189  shapes.push_back(b.getIndexAttr(shapedType.getDimSize(dim)));
1190  } else {
1191  // Dynamic dim: Return Value.
1192  OpFoldResult ofr = checkDimExpr.visit(shapeExprs[pos])
1193  ? createOrFoldDimOp(b, loc, opOperand.get(), dim)
1194  : allResultDimValues[pos];
1195  shapes.push_back(getValueOrCreateConstantIndexOp(b, loc, ofr));
1196  }
1197  pos++;
1198  }
1199  reifiedReturnShapes.emplace_back(std::move(shapes));
1200  }
1201  return success();
1202 }
1203 
1204 /// Return the index in the indexingMaps vector that corresponds to this
1205 /// `opOperand`.
1206 int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
1207  auto operandNumber = opOperand->getOperandNumber();
1208  auto dpsIface = cast<DestinationStyleOpInterface>(*this->getOperation());
1209  if (!dpsIface.isDpsInput(opOperand))
1210  return operandNumber;
1211  unsigned start = dpsIface.getDpsInits().getBeginOperandIndex();
1212  assert(!dpsIface.isDpsInit(opOperand));
1213  // Account for potential inputs that are not DPS and may not appear in
1214  // `indexingMaps`.
1215  return cast<DestinationStyleOpInterface>(*this->getOperation())
1216  .getNumDpsInputs() +
1217  operandNumber - start;
1218 }
1219 
1221  LinalgOp linalgOp = cast<LinalgOp>(op);
1222  // Mixed tensor/buffer operands are not allowed.
1223  if (!linalgOp.hasPureTensorSemantics() &&
1224  !linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
1225  return op->emitOpError("expected to have pure tensor or buffer semantics");
1226 
1227  // Before checking indexing maps, we need to make sure the attributes
1228  // referenced by it are valid.
1229  if (linalgOp.hasDynamicIndexingMaps())
1230  if (failed(linalgOp.verifyIndexingMapRequiredAttributes()))
1231  return failure();
1232 
1233  // All input/output operands must be indexed.
1234  if (static_cast<int64_t>(linalgOp.getIndexingMapsArray().size()) !=
1235  linalgOp->getNumOperands())
1236  return op->emitOpError("expected the number of indexing_map (")
1237  << linalgOp.getIndexingMapsArray().size()
1238  << ") to be equal to the number of input/output operands ("
1239  << linalgOp->getNumOperands() << ")";
1240 
1241  // Set this flag if this op has user defined maps. This is required to guard
1242  // the below error condition which assume default indexing maps.
1243  for (OpOperand &opOperand : linalgOp->getOpOperands()) {
1244  AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
1245 
1246  // Symbols disallowed.
1247  if (indexingMap.getNumSymbols() != 0)
1248  return op->emitOpError("unexpected symbols in indexing_map #")
1249  << opOperand.getOperandNumber();
1250 
1251  // Domain must be consistent.
1252  unsigned numLoops = linalgOp.getNumLoops();
1253  if (indexingMap.getNumDims() != numLoops)
1254  return op->emitOpError("expected indexing_map #")
1255  << opOperand.getOperandNumber() << " to have " << numLoops
1256  << " dim(s) to match the number of loops";
1257 
1258  int64_t rank = linalgOp.getRank(&opOperand);
1259 
1260  if (indexingMap.getNumResults() != rank)
1261  return op->emitOpError("expected operand rank (")
1262  << rank << ") to match the result rank of indexing_map #"
1263  << opOperand.getOperandNumber() << " ("
1264  << indexingMap.getNumResults() << ")";
1265  }
1266  SmallVector<unsigned> redDims;
1267  linalgOp.getReductionDims(redDims);
1268 
1269  if (!linalgOp.getShapesToLoopsMap())
1270  return op->emitOpError("expected the shape-to-loops map to be non-null");
1271 
1272  // Check if given shapes match to inferred shapes.
1273  SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
1274  SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
1275  // Verify only static cases since we can't get exact dimension sizes and
1276  // loop ranges for dynamic cases in this stage.
1277  if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
1278  for (int64_t &range : endLoopRangeValues)
1279  range -= 1;
1280  for (OpOperand &opOperand : linalgOp->getOpOperands()) {
1281  AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
1282  SmallVector<int64_t, 4> startIndices =
1283  indexingMap.compose(startLoopRangeValues);
1284  SmallVector<int64_t, 4> endIndices =
1285  indexingMap.compose(endLoopRangeValues);
1286  ArrayRef<int64_t> shape = linalgOp.getShape(&opOperand);
1287  for (auto dim : llvm::seq<int64_t>(0, shape.size())) {
1288  // Ignore dynamic dimension or the case that the dimension size is 0
1289  if (ShapedType::isDynamic(shape[dim]) || shape[dim] == 0)
1290  continue;
1291 
1292  // The first index or last index should be the maximum or the minimum in
1293  // the inferred index ranges since the range is increasing or
1294  // decreasing. The size of dimensions of input/output operands and the
1295  // maximum value + 1 in the inferred range should be the same. But, for
1296  // now we check if the inferred ranges are in boundary of input/output
1297  // operands' size or not in case that Affine Expressions are complicated
1298  // such as d0 * 3
1299  // + d1 since it is not easy to handle the issues.
1300  // Found the case that this solution can't check, for example, (d0, d1)
1301  // -> (d1 - d0)
1302  int64_t inferredDimSize =
1303  std::max(startIndices[dim], endIndices[dim]) + 1;
1304  if (std::min(startIndices[dim], endIndices[dim]) < 0) {
1305  std::string mapStr;
1306  {
1307  llvm::raw_string_ostream os(mapStr);
1308  os << indexingMap;
1309  }
1310  return op->emitOpError(
1311  "unexpected result less than 0 at expression #")
1312  << dim << " in " << mapStr;
1313  }
1314  if (dyn_cast<AffineDimExpr>(indexingMap.getResult(dim))) {
1315  if (inferredDimSize != shape[dim]) {
1316  return op->emitOpError("inferred input/output operand #")
1317  << opOperand.getOperandNumber() << " has shape's dimension #"
1318  << dim << " to be " << inferredDimSize << ", but found "
1319  << shape[dim];
1320  }
1321  } else {
1322  if (inferredDimSize > shape[dim]) {
1323  return op->emitOpError("inferred input/output operand #")
1324  << opOperand.getOperandNumber() << " has shape's dimension #"
1325  << dim << " to be greater than or equal to "
1326  << inferredDimSize << ", but found " << shape[dim];
1327  }
1328  }
1329  }
1330  }
1331  }
1332 
1333  // Check the region has exactly one block.
1334  if (linalgOp->getNumRegions() != 1 ||
1335  !llvm::hasSingleElement(linalgOp->getRegion(0)))
1336  return op->emitOpError("expects to have 1 region with 1 block");
1337 
1338  // Simplifying assumption: bbargs match 1-1 with shape operands elemental
1339  // types.
1340  // TODO: once ranked shape types are plugged in, we may want to drop the
1341  // corresponding bbargs, that can never be read from. This will be subject to
1342  // consistency discussions (i.e. what to do with output tensors whose bbarg is
1343  // not used).
1344  Block &block = linalgOp->getRegion(0).front();
1345 
1346  if (linalgOp.getOpOperandsMatchingBBargs().size() != block.getNumArguments())
1347  return op->emitOpError("expected as many non-induction variable region "
1348  "arguments as the number of input/output operands");
1349 
1350  for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) {
1351  Type elementType = opOperand->get().getType();
1352  if (isa<MemRefType, RankedTensorType>(elementType))
1353  elementType = getElementTypeOrSelf(opOperand->get().getType());
1354  Type argType = block.getArgument(opOperand->getOperandNumber()).getType();
1355  if (elementType != argType)
1356  return op->emitOpError("expected type of bb argument #")
1357  << opOperand->getOperandNumber() << " (" << argType << ")"
1358  << " to match element or self type of the corresponding operand ("
1359  << elementType << ")";
1360  }
1361 
1362  return success();
1363 }
static void visit(Operation *op, DenseSet< Operation * > &visited)
Visits all the pdl.operand(s), pdl.result(s), and pdl.operation(s) connected to the given operation.
Definition: PDL.cpp:63
static FailureOr< ConvolutionDimensions > inferConvolutionDimsImpl(LinalgOp linalgOp, ConvAccessExprWalker &inputExprWalker, bool allowEmptyConvolvedDims)
Classifies dimensions in the linalgOp used by a convolution subcomputation, as captured by inputExprW...
static Value getSourceSkipUnary(Value value)
If the value is defined by a chain of unary side effect-free, go up the use-def chain until the first...
static T getAffineExprOfType(AffineExpr lhs, AffineExpr rhs)
Of the given two expressions returns one that is of type T (lhs gets preference over rhs)
static bool isPairTemplateImpl(Operation *add, Operation *mul)
Returns true if the two operations are of the kinds specified by a pair of consecutive template argum...
static SmallVector< int64_t, 2 > getConstantsFromExprList(const SmallVector< AffineExpr, 2 > &exprs)
static MatchFillResult isFillInterfaceImpl(Operation *op)
static FailureOr< ContractionDimensions > inferContractionDimsImpl(ArrayRef< AffineMap > indexingMaps, ArrayRef< utils::IteratorType > iterators)
Find 2 parallel (m and n) and 1 reduction (k) dimension candidates that form a matmul subcomputation ...
static bool isContractionBody(Block &block)
Returns true if the block is a body of a contraction with the kinds of operations given pairwise by t...
static llvm::SmallDenseSet< int64_t > getPreservedDims(AffineMap map)
static bool isaElemwiseSingleUnaryOrBinaryOpInterface(linalg::GenericOp op, unsigned arity)
MatchFillResult
static llvm::SmallDenseSet< int64_t > findPermutationsIndexingOperand(AffineMap indexingMap, ArrayRef< utils::IteratorType > iterators, utils::IteratorType iter)
Given an indexingMap and its corresponding iterators, returns the positions of the iterators of type ...
static FailureOr< SmallVector< utils::IteratorType > > inferIteratorsFromOutMap(AffineMap map)
Infer the iterator types from the init affine map.
static std::pair< int64_t, int64_t > getResultsPositionInLoopsToShapeMap(LinalgOp &op)
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
Definition: Traits.cpp:118
Affine binary operation expression.
Definition: AffineExpr.h:227
AffineExpr getLHS() const
Definition: AffineExpr.cpp:340
AffineExpr getRHS() const
Definition: AffineExpr.cpp:343
An integer constant appearing in affine expression.
Definition: AffineExpr.h:252
A dimensional identifier appearing in an affine expression.
Definition: AffineExpr.h:236
unsigned getPosition() const
Definition: AffineExpr.cpp:348
See documentation for AffineExprVisitorBase.
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExprKind getKind() const
Return the classification for this type.
Definition: AffineExpr.cpp:35
MLIRContext * getContext() const
Definition: AffineExpr.cpp:33
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
AffineMap getSliceMap(unsigned start, unsigned length) const
Returns the map consisting of length expressions starting from start.
Definition: AffineMap.cpp:662
bool isProjectedPermutation(bool allowZeroInResults=false) const
Returns true if the AffineMap represents a subset (i.e.
Definition: AffineMap.cpp:618
unsigned getNumSymbols() const
Definition: AffineMap.cpp:398
unsigned getNumDims() const
Definition: AffineMap.cpp:394
ArrayRef< AffineExpr > getResults() const
Definition: AffineMap.cpp:407
unsigned getNumResults() const
Definition: AffineMap.cpp:402
AffineExpr getResult(unsigned idx) const
Definition: AffineMap.cpp:411
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
Definition: AffineMap.cpp:556
A symbolic identifier appearing in an affine expression.
Definition: AffineExpr.h:244
Block represents an ordered list of Operations.
Definition: Block.h:33
bool empty()
Definition: Block.h:148
BlockArgument getArgument(unsigned i)
Definition: Block.h:129
unsigned getNumArguments()
Definition: Block.h:128
Operation & back()
Definition: Block.h:152
Operation * getTerminator()
Get the terminator operation of this block.
Definition: Block.cpp:246
OpListType & getOperations()
Definition: Block.h:137
Operation & front()
Definition: Block.h:153
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:148
An attribute that represents a reference to a dense integer vector or tensor object.
IRValueT get() const
Return the current value being used by this operand.
Definition: UseDefLists.h:160
This class coordinates rewriting a piece of IR outside of a pattern rewrite, providing a way to keep ...
Definition: PatternMatch.h:772
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
This class helps build Operations.
Definition: Builders.h:216
This class represents a single result from folding an operation.
Definition: OpDefinition.h:268
This class represents an operand of an operation.
Definition: Value.h:267
unsigned getOperandNumber()
Return which operand this is in the OpOperand list of the Operation.
Definition: Value.cpp:216
This class provides the API for ops that are known to be terminators.
Definition: OpDefinition.h:764
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
Value getOperand(unsigned idx)
Definition: Operation.h:345
bool mightHaveTrait()
Returns true if the operation might have the provided trait.
Definition: Operation.h:753
unsigned getNumOperands()
Definition: Operation.h:341
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
Definition: Operation.cpp:671
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:399
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
SmallVector< OpFoldResult > makeComposedFoldedMultiResultAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Variant of makeComposedFoldedAffineApply suitable for multi-result maps.
Definition: AffineOps.cpp:1241
MatchConvolutionResult isConvolutionInterfaceImpl(Operation *op, ConvolutionDimensions *dimensions=nullptr, bool allowEmptyConvolvedDims=false)
Checks whether op conforms to ConvolutionOpInterface and populates dimensions with indexes of the dif...
bool isContractionBody(Block &block, function_ref< bool(Operation *, Operation *)> isaPair, llvm::raw_ostream &errs=mlir::thread_safe_nulls())
Returns true if the block contains a contraction of the following form:
StringRef getMatchConvolutionMessage(MatchConvolutionResult res)
Returns the error message corresponding to the convolution checking return code.
bool canOpOperandsBeDroppedImpl(linalg::LinalgOp linalgOp, ArrayRef< OpOperand * > droppedOperands)
Implementation of the method that check if given operands can be dropped, i.e.
MatchContractionResult isContractionInterfaceImpl(Operation *op, ContractionDimensions *dimensions=nullptr)
Checks whether op conforms to ContractionOpInterface and populates dimensions with indexes of the dif...
LogicalResult verifyContractionInterface(Operation *op)
Verify that op conforms to ContractionOpInterface.
LogicalResult verifyFillInterface(Operation *op)
Verify that op conforms to the FillOpInterface.
StringRef getMatchContractionMessage(MatchContractionResult res)
Returns the error message corresponding to the contraction checking return code.
LogicalResult verifyStructuredOpInterface(Operation *op)
Verify that op conforms to the invariants of StructuredOpInterface.
LogicalResult verifyConvolutionInterface(Operation *op)
Verify that op conforms to the ConvolutionOpInterface.
std::optional< SmallVector< int64_t > > isaTransposeOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a linalg.transpose.
bool isaElemwiseSingleUnaryOpInterface(GenericOp genericOp)
Checks whether a given genericOp is semantically equivalent to a single linalgelementwise unary op.
bool isaCopyOpInterface(LinalgOp linalgOp)
Checks whether linalgOp is semantically equivalent to a linalg.copyOp.
FailureOr< ConvolutionDimensions > inferConvolutionDims(LinalgOp linalgOp)
Find at least 1 parallel (output_image) and reduction (filter_loop) dimension candidates that form a ...
OpFoldResult createFoldedDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
Definition: LinalgOps.cpp:105
bool isaConvolutionOpInterface(LinalgOp linalgOp, bool allowEmptyConvolvedDims=false)
Checks whether linalgOp conforms to ConvolutionOpInterface.
std::optional< SmallVector< int64_t > > isaBroadcastOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a linalg.broadcast.
FailureOr< ContractionDimensions > inferContractionDims(LinalgOp linalgOp)
Find at least 2 parallel (m and n) and 1 reduction (k) dimension candidates that form a matmul subcom...
Value createOrFoldDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
Definition: LinalgOps.cpp:96
bool isaContractionOpInterface(LinalgOp linalgOp)
Checks whether linalgOp conforms to ContractionOpInterface.
std::optional< Value > isaFillOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a linalg.fill.
bool isaElemwiseSingleBinaryOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a single linalg elementwise binary op e....
Include the generated interface declarations.
AffineMap concatAffineMaps(ArrayRef< AffineMap > maps, MLIRContext *context)
Concatenates a list of maps into a single AffineMap, stepping over potentially empty maps.
Definition: AffineMap.cpp:836
LogicalResult reifyResultShapes(OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes)
Reify the shape of the result of an operation (typically in terms of the shape of its operands).
AffineMap inversePermutation(AffineMap map)
Returns a map of codomain to domain dimensions such that the first codomain dimension for a particula...
Definition: AffineMap.cpp:791
@ Mul
RHS of mul is always a constant or a symbolic expression.
Type getElementTypeOrSelf(Type type)
Return the element type or return the type itself.
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
Definition: AffineExpr.cpp:641
Visitor to check if any of the given set of positions from AffineDimExprs are used within an AffineEx...
HasAffineDimExprVisitor(llvm::SmallBitVector positions)
bool visitDimExpr(AffineDimExpr dimExpr)
bool visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryOpExpr)
bool visitSymbolExpr(AffineSymbolExpr symbolExpr)
bool visitConstantExpr(AffineConstantExpr constExpr)
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
Positions of a Linalg op loops that correspond to different kinds of a contraction dimension.
Positions of a Linalg op loops that correspond to different kinds of a convolution dimension.