MLIR  22.0.0git
LinalgInterfaces.cpp
Go to the documentation of this file.
1 //===- LinalgInterfaces.cpp - Linalg interfaces implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 
16 #include "mlir/IR/AffineExpr.h"
18 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/MLIRContext.h"
21 #include "mlir/IR/TypeUtilities.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetOperations.h"
24 #include "llvm/ADT/SmallBitVector.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <optional>
29 
30 using namespace mlir;
31 using namespace mlir::linalg;
32 
33 /// Include the definitions of the copy operation interface.
34 #include "mlir/Dialect/Linalg/IR/LinalgInterfaces.cpp.inc"
35 
36 //===----------------------------------------------------------------------===//
37 // Interface utility functions
38 //===----------------------------------------------------------------------===//
39 
41  linalg::LinalgOp linalgOp, ArrayRef<OpOperand *> droppedOperands) {
42  SmallVector<AffineMap> indexingMaps;
43  for (auto &opOperand : linalgOp->getOpOperands()) {
44  if (llvm::is_contained(droppedOperands, &opOperand))
45  continue;
46  indexingMaps.push_back(linalgOp.getMatchingIndexingMap(&opOperand));
47  }
48  if (indexingMaps.empty()) {
49  // If there are no indexing maps, the operand can only be dropped
50  // if the op has no loops.
51  return linalgOp.getNumLoops() == 0;
52  }
54  indexingMaps, linalgOp.getContext())) != AffineMap();
55 }
56 
57 //===----------------------------------------------------------------------===//
58 // CopyOpInterface implementation
59 //===----------------------------------------------------------------------===//
60 
61 bool linalg::isaCopyOpInterface(LinalgOp op) {
62  // Check all loops are parallel and linalgOp is single input and output.
63  if (!op.isAllParallelLoops() || !op.isSingleInputOutput())
64  return false;
65 
66  auto mapRange = op.getIndexingMapsArray();
67  if (mapRange.size() != 2 || !mapRange.front().isIdentity() ||
68  !mapRange.back().isIdentity()) {
69  return false;
70  }
71  // Check yield first block argument.
72  Block *body = op.getBlock();
73  if (body->getOperations().size() != 1)
74  return false;
75  auto yieldOp = dyn_cast<linalg::YieldOp>(body->back());
76  if (!yieldOp || yieldOp.getNumOperands() != 1)
77  return false;
78  return yieldOp->getOperand(0) == body->getArgument(0);
79 }
80 
81 //===----------------------------------------------------------------------===//
82 // FillOpInterface implementation
83 //===----------------------------------------------------------------------===//
84 /// Detects if a linalg.generic operation represents a fill with an inlined
85 /// constant. If so, returns the constant value. Otherwise, returns
86 /// std::nullopt.
87 static std::optional<Value> isaInlinedFillOp(GenericOp op) {
88  if (!op.isAllParallelLoops() || op.getNumDpsInits() != 1 ||
89  op.getNumDpsInputs() != 0)
90  return std::nullopt;
91 
92  // Init should not be referenced.
93  if (op.payloadUsesValueFromOperand(op.getDpsInitOperand(0)))
94  return std::nullopt;
95 
96  Block *body = op.getBody();
97  if (body->getOperations().size() != 1)
98  return std::nullopt;
99 
100  auto yieldOp = dyn_cast<linalg::YieldOp>(body->back());
101  if (!yieldOp || yieldOp.getNumOperands() != 1)
102  return std::nullopt;
103 
104  Value yieldOperand = yieldOp->getOperand(0);
105  if (!yieldOperand.getDefiningOp<arith::ConstantOp>() &&
106  !yieldOperand.getDefiningOp<complex::ConstantOp>())
107  return std::nullopt;
108 
109  return yieldOperand;
110 }
111 
112 /// Detects if a linalg.generic operation represents an external scalar input.
113 /// If so, returns the constant value. Otherwise, returns std::nullopt.
114 static std::optional<Value> isaExternalFillOp(GenericOp op) {
115  // Structural.
116  if (!op.isAllParallelLoops() || !op.isSingleInputOutput() ||
117  !op.isSingleYieldOp())
118  return std::nullopt;
119 
120  // Input should be referenced and init should not.
121  if (!op.payloadUsesValueFromOperand(op.getDpsInputOperand(0)) ||
122  op.payloadUsesValueFromOperand(op.getDpsInitOperand(0)))
123  return std::nullopt;
124 
125  OpOperand *value = op.getDpsInputOperand(0);
126  if (!op.isScalar(value))
127  return std::nullopt;
128  return value->get();
129 }
130 
131 std::optional<Value> linalg::isaFillOpInterface(GenericOp op) {
132  if (auto fillVal = isaInlinedFillOp(op))
133  return fillVal;
134  return isaExternalFillOp(op);
135 }
136 
137 //===----------------------------------------------------------------------===//
138 // BroadcastOpInterface implementation
139 //===----------------------------------------------------------------------===//
140 std::optional<SmallVector<int64_t>>
142  // Structural.
143  if (!op.isAllParallelLoops() || !op.isSingleInputOutput() ||
144  !op.isSingleYieldOp())
145  return std::nullopt;
146 
147  auto srcTy = op.getDpsInputOperand(0)->get().getType();
148  auto dstTy = op.getDpsInitOperand(0)->get().getType();
149  if (!isa<MemRefType, RankedTensorType>(srcTy) ||
150  !isa<MemRefType, RankedTensorType>(dstTy))
151  return std::nullopt;
152 
153  // Check output is identity map. Broadcast could additionally be
154  // employing permutation of indices and that would be expressible
155  // in linalg.generic but is not expressible for named broadcast op.
156  auto dstMap = op.getIndexingMapsArray()[1];
157  if (!dstMap.isIdentity())
158  return std::nullopt;
159 
160  SmallVector<int64_t> position;
161  auto srcMap = op.getIndexingMapsArray()[0];
162 
163  if (srcMap.getResults().size() >= dstMap.getResults().size())
164  return std::nullopt;
165 
166  // Check input map is monotonically increasing DimIds.
167  for (unsigned i = 0; i < srcMap.getNumResults(); ++i) {
168  auto expr = llvm::dyn_cast<AffineDimExpr>(srcMap.getResults()[i]);
169  if (!expr)
170  return std::nullopt;
171  int64_t pos = expr.getPosition();
172  if (i > 0 && pos <= position[i - 1])
173  return std::nullopt;
174  position.push_back(expr.getPosition());
175  }
176 
177  SmallVector<int64_t> broadcastedDims;
178  auto numDims = srcMap.getNumDims();
179  // This is quadratic but number of items is generally small.
180  for (auto dim : llvm::seq<int64_t>(0, numDims)) {
181  if (!llvm::is_contained(position, dim))
182  broadcastedDims.push_back(dim);
183  }
184  return broadcastedDims;
185 }
186 
187 //===----------------------------------------------------------------------===//
188 // TransposeOpInterface implementation
189 //===----------------------------------------------------------------------===//
190 std::optional<SmallVector<int64_t>>
192  // To specialize as a transpose op, the genericOp must be
193  // all parallel loops, single input, single output, and its body
194  // should be just a yield op, yielding input as output as is (no compute).
195  if (!op.isAllParallelLoops() || !op.isSingleInputOutput() ||
196  !op.isSingleYieldOp())
197  return std::nullopt;
198 
199  auto mapRange = op.getIndexingMapsArray();
200  if (mapRange.size() != 2)
201  return std::nullopt;
202 
203  auto mapOfInput = mapRange.front();
204  auto mapOfResult = mapRange.back();
205 
206  // linalg.transpose permutes the dimensions of input using this
207  // rule: dim(result, i) = dim(input, permutation[i])
208  if (!mapOfResult.isIdentity() || !mapOfInput.isPermutation())
209  return std::nullopt;
210 
211  SmallVector<int64_t> permutation(mapOfInput.getNumDims());
212  for (unsigned i = 0; i < mapOfInput.getNumDims(); ++i) {
213  auto expr = llvm::cast<AffineDimExpr>(mapOfInput.getResults()[i]);
214  permutation[expr.getPosition()] = i;
215  }
216  return permutation;
217 }
218 
219 //===----------------------------------------------------------------------===//
220 // Elementwise Single Unary/Binary-OpInterface implementation
221 //===----------------------------------------------------------------------===//
222 static bool isaElemwiseSingleUnaryOrBinaryOpInterface(linalg::GenericOp op,
223  unsigned arity) {
224  // Check all loops are parallel.
225  if (!op.isAllParallelLoops() || op.getNumLoops() < 1)
226  return false;
227 
228  // Check there are arity-inputs, 1-output and all are identity-maps.
229  if (op.getNumDpsInputs() != arity || op.getNumDpsInits() != 1 ||
230  !llvm::all_of(op.getIndexingMapsArray(),
231  [](AffineMap map) { return map.isIdentity(); }))
232  return false;
233 
234  // Init should not be referenced for elementwise operations.
235  if (op.payloadUsesValueFromOperand(op.getDpsInitOperand(0)))
236  return false;
237 
238  // A linalg.generic could be series of elementwise ops e.g. exp(neg(x)) such
239  // as resulting from producer-consumer fusion. Here, we restrict to two ops in
240  // the body, where the first is the elementwise single op and the second a
241  // yield.
242  Block *body = op.getBody();
243  if (body->getOperations().size() != 2)
244  return false;
245 
246  Operation *oper = &body->front();
247  if (oper->getNumOperands() != arity || oper->getNumResults() != 1)
248  return false;
249 
250  auto yieldOp = dyn_cast<linalg::YieldOp>(body->back());
251  return !(!yieldOp || yieldOp.getNumOperands() != 1 ||
252  yieldOp->getOperand(0).getDefiningOp() != oper);
253 }
254 
255 bool linalg::isaElemwiseSingleUnaryOpInterface(linalg::GenericOp op) {
256  // All basic elemwise checks.
258  return false;
259 
260  // Check input is actully used.
261  if (!op.payloadUsesValueFromOperand(op.getDpsInputOperand(0)))
262  return false;
263  return true;
264 }
265 
266 bool linalg::isaElemwiseSingleBinaryOpInterface(linalg::GenericOp op) {
268  return false;
269 
270  // Check both inputs are used (elementwise).
271  OpOperand *inputOpOperand0 = op.getDpsInputOperand(0);
272  OpOperand *inputOpOperand1 = op.getDpsInputOperand(1);
273  return !(!op.payloadUsesValueFromOperand(inputOpOperand0) ||
274  !op.payloadUsesValueFromOperand(inputOpOperand1));
275 }
276 
277 //===----------------------------------------------------------------------===//
278 // ContractionOpInterface implementation
279 //===----------------------------------------------------------------------===//
280 
281 /// If the value is defined by a chain of unary side effect-free, go up the
282 /// use-def chain until the first value that isn't defined by such an op.
283 // TODO: relax to multi-operands with constants, which are technically unary ops
284 // as needed (e.g. add5).
286  Operation *op = value.getDefiningOp();
287  while (op && op->getNumOperands() == 1) {
288  auto iface = dyn_cast<MemoryEffectOpInterface>(op);
289  if (!iface || !iface.hasNoEffect())
290  break;
291  value = op->getOperand(0);
292  op = value.getDefiningOp();
293  }
294  return value;
295 }
296 
298  Block &block, function_ref<bool(Operation *, Operation *)> isaPair,
299  llvm::raw_ostream &errs) {
300  if (block.empty() || !block.back().mightHaveTrait<OpTrait::IsTerminator>()) {
301  errs << "no terminator in the block";
302  return false;
303  }
304 
305  if (block.getNumArguments() != 3) {
306  errs << "expected block with 3 arguments";
307  return false;
308  }
309 
310  Operation *terminator = block.getTerminator();
311  if (terminator->getNumOperands() != 1) {
312  errs << "expected terminator with 1 operand";
313  return false;
314  }
315 
316  Value yielded = getSourceSkipUnary(terminator->getOperand(0));
317  Operation *reductionOp = yielded.getDefiningOp();
318  if (!reductionOp || reductionOp->getNumResults() != 1 ||
319  reductionOp->getNumOperands() != 2) {
320  errs << "expected reduction op to be binary";
321  return false;
322  }
323 
324  Value reductionLHS = getSourceSkipUnary(reductionOp->getOperand(0));
325  Value reductionRHS = getSourceSkipUnary(reductionOp->getOperand(1));
326 
327  if (reductionLHS != block.getArgument(2) &&
328  reductionRHS != block.getArgument(2)) {
329  errs << "expected reduction to take block argument #2 as one of the "
330  "operands (modulo unary casts)";
331  return false;
332  }
333 
334  Value contributed = getSourceSkipUnary(
335  isa<BlockArgument>(reductionLHS) ? reductionRHS : reductionLHS);
336  Operation *elementwiseOp = contributed.getDefiningOp();
337  if (!elementwiseOp || elementwiseOp->getNumResults() != 1 ||
338  elementwiseOp->getNumOperands() != 2) {
339  errs << "expected elementwise op to be binary";
340  return false;
341  }
342 
343  if (!isaPair(elementwiseOp, reductionOp)) {
344  errs << "expected reduction/elementwise op kind not satisfied";
345  return false;
346  }
347 
348  Value elementwiseLHS = getSourceSkipUnary(elementwiseOp->getOperand(0));
349  Value elementwiseRHS = getSourceSkipUnary(elementwiseOp->getOperand(1));
350  if ((elementwiseLHS == block.getArgument(0) &&
351  elementwiseRHS == block.getArgument(1)) ||
352  (elementwiseLHS == block.getArgument(1) &&
353  elementwiseRHS == block.getArgument(0))) {
354  return true;
355  }
356 
357  errs << "expected elementwise op to apply to block arguments (modulo unary "
358  "casts)";
359  return false;
360 }
361 
362 /// Returns true if the two operations are of the kinds specified by a pair of
363 /// consecutive template arguments.
364 template <typename AddOpTy, typename MulOpTy, typename... Args>
366  static_assert(sizeof...(Args) % 2 == 0,
367  "expected an even number of template arguments");
368  if (isa<AddOpTy>(add) && isa<MulOpTy>(mul))
369  return true;
370 
371  if constexpr (sizeof...(Args) > 0)
372  return isPairTemplateImpl<Args...>(add, mul);
373  else
374  return false;
375 }
376 
377 /// Returns true if the block is a body of a contraction with the kinds of
378 /// operations given pairwise by template arguments.
379 template <typename... Args>
380 static bool isContractionBody(Block &block) {
381  return linalg::detail::isContractionBody(block, &isPairTemplateImpl<Args...>);
382 }
383 
384 /// Given an `indexingMap` and its corresponding `iterators`, returns
385 /// the positions of the iterators of type `iter` that are indexed by
386 /// the `indexingMap` as a permutation. This is useful to infer various
387 /// subcomputations on a `LinalgOp`. This is performed by looking up
388 /// each result in the `indexingMap` and determining whether:
389 /// - It is a single AffineDimExpr.
390 /// - It is the only result involving this AffineDimExpr.
391 static llvm::SmallDenseSet<int64_t>
394  utils::IteratorType iter) {
395  assert(iterators.size() == indexingMap.getNumDims());
396  llvm::SmallDenseSet<int64_t> res;
397  for (AffineExpr e : indexingMap.getResults()) {
398  if (auto d = dyn_cast<AffineDimExpr>(e)) {
399  if (iterators[d.getPosition()] == iter &&
400  llvm::count_if(indexingMap.getResults(), [d](AffineExpr e) {
401  return e.isFunctionOfDim(d.getPosition());
402  }) == 1)
403  res.insert(d.getPosition());
404  }
405  }
406  return res;
407 }
408 
409 namespace {
410 auto par = utils::IteratorType::parallel;
411 auto red = utils::IteratorType::reduction;
412 } // namespace
413 
414 /// Infer the iterator types from the init affine map. This looks at which dims
415 /// are present in the map results, and returns an iterator types array with
416 /// parallel types for dims that are present, and reduction types for dims that
417 /// are not present.
418 static FailureOr<SmallVector<utils::IteratorType>>
420  if (!map.isProjectedPermutation())
421  return failure();
422  SmallVector<utils::IteratorType> iterators(map.getNumDims(), red);
423  for (auto expr : map.getResults())
424  if (auto dim = dyn_cast<AffineDimExpr>(expr))
425  iterators[dim.getPosition()] = par;
426  return iterators;
427 }
428 
429 /// Find 2 parallel (m and n) and 1 reduction (k) dimension candidates that form
430 /// a matmul subcomputation within `linalgOp`. These dimensions are such that:
431 /// 1. The m dimension is involved in an outer-product along LHS
432 /// (i.e. it is a permutation on RES and LHS and does not appear in RHS).
433 /// 2. The n dimension is involved in an outer-product along RHS
434 /// (i.e. it is a permutation on RES and RHS and does not appear in LHS).
435 /// 3. The k dimension appears as a permutation on LHS and RHS.
436 /// 4. m, n and k appear only once in any given indexing.
437 /// 5. Optional batch dimensions that appear in all operands are captured.
438 /// This allows e.g. detecting that some contraction is embedded within
439 /// `linalgOp` with some orthogonal heuristic.
440 static FailureOr<ContractionDimensions>
442  ArrayRef<utils::IteratorType> iterators) {
443  llvm::SmallDenseSet<int64_t> a =
444  findPermutationsIndexingOperand(indexingMaps[0], iterators, par);
445  llvm::SmallDenseSet<int64_t> b =
446  findPermutationsIndexingOperand(indexingMaps[1], iterators, par);
447  llvm::SmallDenseSet<int64_t> c =
448  findPermutationsIndexingOperand(indexingMaps[2], iterators, par);
449 
450  // A & C - B are the iterators involved in an outer-product along A (the LHS).
451  llvm::SmallDenseSet<int64_t> ac = a;
452  llvm::set_intersect(ac, c);
453  llvm::set_subtract(ac, b);
454  // B & C - A are the iterators involved in an outer-product along B (the RHS).
455  llvm::SmallDenseSet<int64_t> bc = b;
456  llvm::set_intersect(bc, c);
457  llvm::set_subtract(bc, a);
458  // A & B & C are the "batch" dimensions.
459  llvm::SmallDenseSet<int64_t> batches = a;
460  llvm::set_intersect(batches, b);
461  llvm::set_intersect(batches, c);
462 
463  // A & B red are the reduction dimensions.
464  llvm::SmallDenseSet<int64_t> ra =
465  findPermutationsIndexingOperand(indexingMaps[0], iterators, red);
466  llvm::SmallDenseSet<int64_t> rb =
467  findPermutationsIndexingOperand(indexingMaps[1], iterators, red);
468  llvm::set_intersect(ra, rb);
469 
470  // Return each set in sorted order.
471  ContractionDimensions dimensions{
472  SmallVector<unsigned, 2>(batches.begin(), batches.end()),
473  SmallVector<unsigned, 2>(ac.begin(), ac.end()),
474  SmallVector<unsigned, 2>(bc.begin(), bc.end()),
475  SmallVector<unsigned, 2>(ra.begin(), ra.end())};
476  llvm::sort(dimensions.batch);
477  llvm::sort(dimensions.m);
478  llvm::sort(dimensions.n);
479  llvm::sort(dimensions.k);
480  return dimensions;
481 }
482 
483 FailureOr<ContractionDimensions>
485  if (linalgOp.getNumDpsInits() != 1 || linalgOp.getNumDpsInputs() != 2)
486  return failure();
487  return inferContractionDimsImpl(linalgOp.getIndexingMapsArray(),
488  linalgOp.getIteratorTypesArray());
489 }
490 
491 FailureOr<ContractionDimensions>
493  if (indexingMaps.size() != 3)
494  return failure();
495  auto iterators = inferIteratorsFromOutMap(indexingMaps[2]);
496  if (failed(iterators))
497  return failure();
498  return inferContractionDimsImpl(indexingMaps, iterators.value());
499 }
500 
501 namespace mlir::linalg::detail {
503  Success = 0,
504  NotLinalgOp,
506  NoReduction,
508  NotAddMul
509 };
510 } // namespace mlir::linalg::detail
511 
515  auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
516  if (!linalgOp)
517  return MatchContractionResult::NotLinalgOp;
518  if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1)
519  return MatchContractionResult::WrongNumOperands;
520  auto mapRange = linalgOp.getIndexingMapsArray();
521  if (linalgOp.getNumReductionLoops() == 0)
522  return MatchContractionResult::NoReduction;
523  if (llvm::any_of(mapRange,
524  [](AffineMap m) { return !m.isProjectedPermutation(); }))
525  return MatchContractionResult::NotProjectedPermutations;
526  // TODO: more fields than add/mul.
527  // clang-format off
528  if (!::isContractionBody<
529  arith::MulFOp, arith::AddFOp,
530  arith::MulIOp, arith::AddIOp,
531  complex::MulOp, complex::AddOp,
532  arith::AndIOp, arith::OrIOp>(
533  *linalgOp.getBlock())) {
534  return MatchContractionResult::NotAddMul;
535  }
536  // clang-format on
537 
538  if (dimensions) {
539  FailureOr<ContractionDimensions> res = inferContractionDims(linalgOp);
540  assert(succeeded(res) && "unexpected failure to infer contraction dims");
541  *dimensions = *res;
542  }
543  return MatchContractionResult::Success;
544 }
545 
546 StringRef
548  switch (res) {
549  case MatchContractionResult::NotLinalgOp:
550  return "expected a LinalgOp";
551  case MatchContractionResult::WrongNumOperands:
552  return "expected op with 2 inputs and 1 output";
553  case MatchContractionResult::NoReduction:
554  return "expected at least 1 reduction";
555  case MatchContractionResult::NotProjectedPermutations:
556  return "expected indexing maps to be projected permutations";
557  case MatchContractionResult::NotAddMul:
558  return "expected add/mul op in the body";
559  case MatchContractionResult::Success:
560  return "";
561  }
562  llvm_unreachable("unhandled MatchContractionResult case");
563 }
564 
566  if (!linalgOp)
567  return false;
568  Operation *op = linalgOp.getOperation();
569  return isa<ContractionOpInterface>(op) ||
572 }
573 
574 /// Verify that a LinalgOp `op` is a contraction.
575 /// A Linalg contraction is defined in general terms:
576 /// 1. Has 2 input and 1 output shapes.
577 /// 2. Has at least one reduction dimension.
578 /// 3. Has only projected permutation indexing maps.
579 /// 4. its body computes `u5(u1(c) + u2(u3(a) * u4(b)))` on some field
580 /// (AddOpType, MulOpType), where u1, u2, u3, u4 and u5 represent scalar unary
581 /// operations that may change the type (e.g. for mixed-precision).
582 /// As a consequence, when vectorization of such an op occurs, the only special
583 /// behavior is that the (unique) MulOpType is vectorized into a
584 /// `vector.contract`. All other ops are handled in a generic fashion.
585 /// In the future, we may wish to allow more input arguments and elementwise and
586 /// constant operations that do not involve the reduction dimension(s).
588  auto res = isContractionInterfaceImpl(op);
589  if (res != MatchContractionResult::Success)
590  return op->emitError(getMatchContractionMessage(res));
591  return success();
592 }
593 
594 //===----------------------------------------------------------------------===//
595 // ConvolutionOpInterface implementation
596 //===----------------------------------------------------------------------===//
597 
598 /// Of the given two expressions returns one that is of type T (`lhs` gets
599 /// preference over `rhs`)
600 template <typename T>
602  return isa<T>(lhs) ? cast<T>(lhs) : (isa<T>(rhs) ? cast<T>(rhs) : nullptr);
603 }
604 
605 namespace {
606 /// Walk the indexing expressions for input of a convolution operation to verify
607 /// its of the right form, either
608 /// - AffineDimExpr
609 /// - AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?
610 /// (`+` AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?)*
611 ///
612 /// classifies the AffineDimExpr as convolved dimensions or unconvolved
613 /// dimensions and verifies each dimension occurs only once.
614 struct ConvAccessExprWalker
615  : public AffineExprVisitor<ConvAccessExprWalker, LogicalResult> {
616  // Stores dimensions used in expressions of the above form.
617  llvm::SmallDenseSet<int64_t> convolvedDims;
618  // Stores the dual mapping between LHS and RHS of convolution exprs.
619  llvm::SmallDenseMap<int64_t, int64_t> convolvedDimMapping;
620  // Stores single use dimensions used by an AffineDimExpr.
621  llvm::SmallDenseSet<int64_t> unConvolvedDims;
622  // Stores a mapping from convolved dims to their coefficient.
623  llvm::SmallDenseMap<int64_t, AffineExpr> strideAndDilationMapping;
624 
625  // Removes dims with multiple uses in the source input map from dimension
626  // sets tracked by this walker.
627  void clearMultiUseDims(AffineMap map) {
628  for (int dimPos = 0, e = map.getNumDims(); dimPos < e; ++dimPos) {
629  if (llvm::count_if(map.getResults(), [dimPos](AffineExpr e) {
630  return e.isFunctionOfDim(dimPos);
631  }) > 1) {
632  convolvedDims.erase(dimPos);
633  unConvolvedDims.erase(dimPos);
634  // If a duplicate dim is marked as convolved, the pair of the duplicate
635  // dim must be removed from the map as well.
636  auto it = convolvedDimMapping.find(dimPos);
637  if (it != convolvedDimMapping.end()) {
638  int64_t pairedDim = it->second;
639  convolvedDims.erase(pairedDim);
640  unConvolvedDims.erase(pairedDim);
641  strideAndDilationMapping.erase(pairedDim);
642  convolvedDimMapping.erase(dimPos);
643  convolvedDimMapping.erase(pairedDim);
644  }
645  }
646  }
647  }
648 
649  LogicalResult visitDimExpr(AffineDimExpr dimExpr) {
650  unsigned position = dimExpr.getPosition();
651  if (unConvolvedDims.count(position) || convolvedDims.count(position)) {
652  return failure();
653  }
654  unConvolvedDims.insert(position);
655  return success();
656  }
657 
658  LogicalResult visitSymbolExpr(AffineSymbolExpr expr) { return failure(); }
659 
660  LogicalResult visitConstantExpr(AffineConstantExpr expr) { return failure(); }
661 
662  LogicalResult visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryExpr) {
663  // In pre-order visit, top level op has to be an add op.
664  if (binaryExpr.getKind() != AffineExprKind::Add)
665  return failure();
666  auto lhsDimPos = getDimExprOrMulExprDimPos(binaryExpr.getLHS());
667  auto rhsDimPos = getDimExprOrMulExprDimPos(binaryExpr.getRHS());
668  if (failed(lhsDimPos) || failed(rhsDimPos))
669  return failure();
670  convolvedDimMapping[*lhsDimPos] = *rhsDimPos;
671  convolvedDimMapping[*rhsDimPos] = *lhsDimPos;
672  return success();
673  }
674 
675  FailureOr<int64_t> getDimExprOrMulExprDimPos(AffineExpr expr) {
676  if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
677  int64_t dim = dimExpr.getPosition();
678  if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
679  return failure();
680  // Stride/dilation for this dim is implicitly 1.
681  strideAndDilationMapping[dim] =
683  convolvedDims.insert(dim);
684  return dim;
685  }
686  if (auto symbolMulExpr = dyn_cast<AffineBinaryOpExpr>(expr)) {
687  if (symbolMulExpr.getKind() != AffineExprKind::Mul)
688  return failure();
689  auto lhsExpr = symbolMulExpr.getLHS();
690  auto rhsExpr = symbolMulExpr.getRHS();
691  // Check for symbol expression.
692  AffineExpr mulExpr =
693  getAffineExprOfType<AffineSymbolExpr>(lhsExpr, rhsExpr);
694  // If there was no symbol expr, check for constant expression.
695  if (!mulExpr) {
696  mulExpr = getAffineExprOfType<AffineConstantExpr>(lhsExpr, rhsExpr);
697  }
698  auto dimExpr = getAffineExprOfType<AffineDimExpr>(lhsExpr, rhsExpr);
699  if (!mulExpr || !dimExpr)
700  return failure();
701  int64_t dim = dimExpr.getPosition();
702  if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
703  return failure();
704  strideAndDilationMapping[dim] = mulExpr;
705  convolvedDims.insert(dim);
706  return dim;
707  }
708  return failure();
709  }
710 };
711 } // namespace
712 
713 static llvm::SmallDenseSet<int64_t> getPreservedDims(AffineMap map) {
714  assert(map.isProjectedPermutation() &&
715  "expected map to have projected permutations");
716  llvm::SmallDenseSet<int64_t> preservedDims;
717  for (auto expr : map.getResults())
718  preservedDims.insert(cast<AffineDimExpr>(expr).getPosition());
719  return preservedDims;
720 }
721 
725  for (auto e : exprs) {
726  auto constantExpr = dyn_cast<AffineConstantExpr>(e);
727  assert(constantExpr && "Found non-constant stride/dilation");
728  vals.push_back(constantExpr.getValue());
729  }
730  return vals;
731 }
732 
733 /// Classifies dimensions in the `linalgOp` used by a convolution
734 /// subcomputation, as captured by `inputExprWalker`. If
735 /// `allowEmptyConvolvedDims` is not set this this will fail if there is not
736 /// at least convolved dimension pair (output image + filter loop). Convolution
737 /// dimensions are specified in sorted order, and strides match the order of
738 /// the filter loop dimensions, while the dilations match the order of the
739 /// output image dimensions.
740 static FailureOr<ConvolutionDimensions>
741 inferConvolutionDimsImpl(LinalgOp linalgOp,
742  ConvAccessExprWalker &inputExprWalker,
743  bool allowEmptyConvolvedDims) {
744  auto filterMap =
745  linalgOp.getMatchingIndexingMap(linalgOp.getDpsInputOperand(1));
746  auto outputMap =
747  linalgOp.getMatchingIndexingMap(linalgOp.getDpsInitOperand(0));
748  llvm::SmallDenseSet<int64_t> filterDims = findPermutationsIndexingOperand(
749  filterMap, linalgOp.getIteratorTypesArray(), par);
750  llvm::SmallDenseSet<int64_t> outputDims = findPermutationsIndexingOperand(
751  outputMap, linalgOp.getIteratorTypesArray(), par);
752 
753  // unConvolvedDims & outputDims - filterDims are the batch iterators.
754  llvm::SmallDenseSet<int64_t> batch = inputExprWalker.unConvolvedDims;
755  llvm::set_intersect(batch, outputDims);
756  llvm::set_subtract(batch, filterDims);
757 
758  // convolvedDims & outputDims are the output image iterators.
759  llvm::SmallDenseSet<int64_t> oi = inputExprWalker.convolvedDims;
760  llvm::set_intersect(oi, outputDims);
761 
762  // filterDims & outputDims - unConvolvedDims are the output channel iterators.
763  llvm::SmallDenseSet<int64_t> oc = filterDims;
764  llvm::set_intersect(oc, outputDims);
765  llvm::set_subtract(oc, inputExprWalker.unConvolvedDims);
766 
767  // filterDims & outputDims & unConvolvedDims are the depth iterators.
768  llvm::SmallDenseSet<int64_t> depth = filterDims;
769  llvm::set_intersect(depth, outputDims);
770  llvm::set_intersect(depth, inputExprWalker.unConvolvedDims);
771 
772  llvm::SmallDenseSet<int64_t> filterReducedDims =
774  linalgOp.getIteratorTypesArray(), red);
775 
776  // convolvedDims & filterReducedDims are the filter loop iterators.
777  llvm::SmallDenseSet<int64_t> fl = inputExprWalker.convolvedDims;
778  llvm::set_intersect(fl, filterReducedDims);
779 
780  // unConvolvedDims & filterReducedDims are the input channel iterators.
781  llvm::SmallDenseSet<int64_t> ic = inputExprWalker.unConvolvedDims;
782  llvm::set_intersect(ic, filterReducedDims);
783 
784  if (oi.empty() && !allowEmptyConvolvedDims)
785  return failure();
786 
787  // Return each set in sorted order.
788  ConvolutionDimensions dimensions{
789  SmallVector<unsigned, 2>(batch.begin(), batch.end()),
790  SmallVector<unsigned, 2>(oi.begin(), oi.end()),
791  SmallVector<unsigned, 2>(oc.begin(), oc.end()),
792  SmallVector<unsigned, 2>(fl.begin(), fl.end()),
793  SmallVector<unsigned, 2>(ic.begin(), ic.end()),
794  SmallVector<unsigned, 2>(depth.begin(), depth.end()),
795  /*strides=*/SmallVector<int64_t, 2>{},
796  /*dilations=*/SmallVector<int64_t, 2>{}};
797  llvm::sort(dimensions.batch);
798  llvm::sort(dimensions.outputImage);
799  llvm::sort(dimensions.outputChannel);
800  llvm::sort(dimensions.filterLoop);
801  llvm::sort(dimensions.inputChannel);
802  llvm::sort(dimensions.depth);
803 
804  // Use the op carried strides/dilations attribute if present.
805  auto nativeStrides = linalgOp->getAttrOfType<DenseIntElementsAttr>("strides");
806  if (!nativeStrides) {
807  SmallVector<AffineExpr, 2> strideExprs;
808  for (unsigned oiDim : dimensions.outputImage)
809  strideExprs.push_back(inputExprWalker.strideAndDilationMapping[oiDim]);
810  dimensions.strides = getConstantsFromExprList(strideExprs);
811  } else {
812  dimensions.strides = llvm::to_vector<2>(nativeStrides.getValues<int64_t>());
813  }
814  auto nativeDilations =
815  linalgOp->getAttrOfType<DenseIntElementsAttr>("dilations");
816  if (!nativeDilations) {
817  SmallVector<AffineExpr, 2> dilationExprs;
818  for (unsigned flDim : dimensions.filterLoop)
819  dilationExprs.push_back(inputExprWalker.strideAndDilationMapping[flDim]);
820  dimensions.dilations = getConstantsFromExprList(dilationExprs);
821  } else {
822  dimensions.dilations =
823  llvm::to_vector<2>(nativeDilations.getValues<int64_t>());
824  }
825  return dimensions;
826 }
827 
828 /// Find at least 1 parallel (output_image) and reduction (filter_loop)
829 /// dimension candidates that form a convolution subcomputation within
830 /// `linalgOp`. The LHS is assumed to be the convolution input while the
831 /// RHS is assumed as the filter.
832 /// These dimensions are such that:
833 /// 1. Optional batch dimensions that appear in the input and filter.
834 /// 2. The output_image dimension is involved in a cross-correlation along LHS
835 /// (i.e. it is a permutation on RES and LHS and has an associated
836 /// filter_loop in RHS).
837 /// 3. Optional output_channel dimension is involved in an outer-product along
838 /// RHS (i.e. it is a permutation on RES and RHS and does not appear in
839 /// LHS).
840 /// 4. Optional input_channel dimension appears as a permutation on LHS and
841 /// RHS.
842 /// 5. The filter_loop dimension appears as a permutation on the RHS and
843 /// represents the shape of the kernel cross-correlated along a
844 /// corresponding output_image dim.
845 /// 6. The input_channel dimension appears as a permutation on LHS and RHS.
846 /// 7. All dimensions appear only once in any given indexing map.
847 /// This allows e.g. detecting that some convolution is embedded within
848 /// `linalgOp` with some orthogonal heuristic.
849 /// When multiple dimension occurrences exist that match any classification
850 /// indices are returned in sorted order.
851 /// Returns a failure if `output_image` (and implicitly `filter_loop`) is empty.
852 FailureOr<ConvolutionDimensions>
854  if (linalgOp.getNumDpsInits() != 1 || linalgOp.getNumDpsInputs() != 2)
855  return failure();
856 
857  auto indexingMaps = linalgOp.getIndexingMapsArray();
858 
859  // Check the input indexing map has the right form.
860  ConvAccessExprWalker inputExprWalker;
861  for (AffineExpr expr : indexingMaps[0].getResults())
862  (void)inputExprWalker.visit(expr);
863  inputExprWalker.clearMultiUseDims(indexingMaps[0]);
864 
865  return inferConvolutionDimsImpl(linalgOp, inputExprWalker,
866  /*allowEmptyConvolvedDims=*/false);
867 }
868 
869 namespace mlir::linalg::detail {
871  Success = 0,
872  NotLinalgOp,
880 };
881 } // namespace mlir::linalg::detail
882 
885  Operation *op, ConvolutionDimensions *dimensions,
886  bool allowEmptyConvolvedDims) {
887  auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
888  if (!linalgOp)
889  return MatchConvolutionResult::NotLinalgOp;
890  if (linalgOp.getNumDpsInputs() < 2 || linalgOp.getNumDpsInits() != 1)
891  return MatchConvolutionResult::WrongNumOperands;
892 
893  auto indexingMaps = linalgOp.getIndexingMapsArray();
894 
895  // Check the input indexing map has the right form.
896  ConvAccessExprWalker inputExprWalker;
897  if (llvm::any_of(indexingMaps[0].getResults(),
898  [&inputExprWalker](AffineExpr expr) {
899  return failed(inputExprWalker.visit(expr));
900  })) {
901  return MatchConvolutionResult::WrongInputIndexingMap;
902  }
903 
904  // Filter and output maps must be projected permutation.
905  if (!indexingMaps[1].isProjectedPermutation() ||
906  !indexingMaps.back().isProjectedPermutation())
907  return MatchConvolutionResult::NotProjectedPermutations;
908 
909  auto iteratorTypes = linalgOp.getIteratorTypesArray();
910 
911  llvm::SmallDenseSet<int64_t> outputDims =
912  getPreservedDims(indexingMaps.back());
913  llvm::SmallDenseSet<int64_t> filterDims = getPreservedDims(indexingMaps[1]);
914  // Make sure all loops are characterized as one of:
915  // - Batch loop : present in output, as non-convolved in input, not present in
916  // filter.
917  // - Output image dimension : present in output, convolved dims in input, not
918  // present in filter.
919  // - Output channel dimension : present in output, not present in input,
920  // present in filter.
921  // - Filter loop dimension : present in filter, convolved in input, not
922  // present in output.
923  // - Input channel dimension : unconvolved in input, not present in output,
924  // present in filter.
925  // - Depth multiplier : unconvolved in input, present in output, present in
926  // filter.
927  llvm::SmallDenseSet<int64_t> allLoopDims;
928  for (auto outputExpr : indexingMaps.back().getResults()) {
929  int64_t outputDim = cast<AffineDimExpr>(outputExpr).getPosition();
930  if (inputExprWalker.unConvolvedDims.count(outputDim) &&
931  !filterDims.count(outputDim)) {
932  // Batch dimension.
933  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
934  return MatchConvolutionResult::OutputDimsNotParallel;
935  allLoopDims.insert(outputDim);
936  continue;
937  }
938  if (inputExprWalker.convolvedDims.count(outputDim) &&
939  !filterDims.count(outputDim)) {
940  // Output image Loop dimension.
941  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
942  return MatchConvolutionResult::OutputDimsNotParallel;
943  allLoopDims.insert(outputDim);
944  continue;
945  }
946  if (!inputExprWalker.convolvedDims.count(outputDim) &&
947  !inputExprWalker.unConvolvedDims.count(outputDim) &&
948  filterDims.count(outputDim)) {
949  // Output channel dimension.
950  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
951  return MatchConvolutionResult::OutputDimsNotParallel;
952  allLoopDims.insert(outputDim);
953  continue;
954  }
955  if (inputExprWalker.unConvolvedDims.count(outputDim) &&
956  filterDims.count(outputDim)) {
957  // Depth multiplier.
958  if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
959  return MatchConvolutionResult::OutputDimsNotParallel;
960  allLoopDims.insert(outputDim);
961  continue;
962  }
963  return MatchConvolutionResult::NonConvolutionLoop;
964  }
965  for (auto filterExpr : indexingMaps[1].getResults()) {
966  int64_t filterDim = cast<AffineDimExpr>(filterExpr).getPosition();
967  if (outputDims.count(filterDim) &&
968  !inputExprWalker.unConvolvedDims.count(filterDim) &&
969  !inputExprWalker.convolvedDims.count(filterDim)) {
970  // Output channel dimension. This is already seen, continue;
971  continue;
972  }
973  if (inputExprWalker.convolvedDims.count(filterDim) &&
974  !outputDims.count(filterDim)) {
975  // Filter loop dimension.
976  if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
977  return MatchConvolutionResult::NonOutputDimNotReduction;
978  if (allLoopDims.count(filterDim))
979  return MatchConvolutionResult::NonConvolutionLoop;
980  allLoopDims.insert(filterDim);
981  continue;
982  }
983  if (inputExprWalker.unConvolvedDims.count(filterDim) &&
984  !outputDims.count(filterDim)) {
985  // Input channel dimension.
986  if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
987  return MatchConvolutionResult::NonOutputDimNotReduction;
988  if (allLoopDims.count(filterDim))
989  return MatchConvolutionResult::NonConvolutionLoop;
990  allLoopDims.insert(filterDim);
991  continue;
992  }
993  if (inputExprWalker.unConvolvedDims.count(filterDim) &&
994  outputDims.count(filterDim)) {
995  // Depthwise loop. Already seen.
996  continue;
997  }
998  return MatchConvolutionResult::NonConvolutionLoop;
999  }
1000  // All loops must be covered now.
1001  if (allLoopDims.size() != linalgOp.getNumLoops())
1002  return MatchConvolutionResult::NonConvolutionLoop;
1003 
1004  if (!allowEmptyConvolvedDims && inputExprWalker.convolvedDims.empty())
1005  return MatchConvolutionResult::EmptyConvolvedDims;
1006 
1007  if (dimensions) {
1008  FailureOr<ConvolutionDimensions> res = inferConvolutionDimsImpl(
1009  linalgOp, inputExprWalker, allowEmptyConvolvedDims);
1010  assert(succeeded(res) && "unexpected failure to infer convolution dims");
1011  *dimensions = *res;
1012  }
1013 
1014  return MatchConvolutionResult::Success;
1015 }
1016 
1017 StringRef
1019  switch (res) {
1020  case MatchConvolutionResult::NotLinalgOp:
1021  return "expected a LinalgOp";
1022  case MatchConvolutionResult::WrongNumOperands:
1023  return "expected op with 2 inputs and 1 output";
1024  case MatchConvolutionResult::WrongInputIndexingMap:
1025  return "unexpected input index map for convolutions";
1026  case MatchConvolutionResult::NotProjectedPermutations:
1027  return "expected output/filter indexing maps to be projected permutations";
1028  case MatchConvolutionResult::NonConvolutionLoop:
1029  return "unexpected loop dimension for convolution op";
1030  case MatchConvolutionResult::OutputDimsNotParallel:
1031  return "expected all iterators used to access outputs to be parallel";
1032  case MatchConvolutionResult::NonOutputDimNotReduction:
1033  return "expected all iterators not used to access outputs to be reduction";
1034  case MatchConvolutionResult::EmptyConvolvedDims:
1035  return "expected convolved dim to be non-empty";
1036  case MatchConvolutionResult::Success:
1037  return "";
1038  }
1039  llvm_unreachable("unhandled MatchConvolutionResult case");
1040 }
1041 
1043  bool allowEmptyConvolvedDims) {
1045  linalgOp.getOperation(), nullptr, allowEmptyConvolvedDims) ==
1047 }
1048 
1051  if (res != MatchConvolutionResult::Success)
1052  return op->emitError(getMatchConvolutionMessage(res));
1053  return success();
1054 }
1055 
1056 //===----------------------------------------------------------------------===//
1057 // FillOpInterface implementation
1058 //===----------------------------------------------------------------------===//
1059 
1060 enum class MatchFillResult {
1061  Success = 0,
1062  NotLinalgOp,
1063  WrongNumOperands,
1065 };
1066 
1068  auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
1069  if (!linalgOp)
1071  if (linalgOp.getNumDpsInputs() != 1 || linalgOp.getNumDpsInits() != 1)
1073 
1074  OpOperand *value = linalgOp.getDpsInputOperand(0);
1075  if (!linalgOp.isScalar(value))
1077 
1078  return MatchFillResult::Success;
1079 }
1080 
1082  auto res = isFillInterfaceImpl(op);
1083  if (res == MatchFillResult::NotLinalgOp)
1084  return op->emitError("expected a LinalgOp");
1086  return op->emitError("expected op with 1 input and 1 output");
1088  return op->emitError("expected op with scalar input");
1089 
1090  return success();
1091 }
1092 
1093 //===----------------------------------------------------------------------===//
1094 // StructuredOpInterface implementation
1095 //===----------------------------------------------------------------------===//
1096 
1097 SmallVector<OpFoldResult> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
1098  Location loc) {
1100  for (OpOperand &opOperand : getOperation()->getOpOperands()) {
1101  for (int64_t i = 0, e = getRank(&opOperand); i < e; ++i)
1102  res.push_back(createFoldedDimOp(b, loc, opOperand.get(), i));
1103  }
1104  return res;
1105 }
1106 
1107 SmallVector<int64_t, 4> LinalgOp::createFlatListOfOperandStaticDims() {
1109  assert(!hasDynamicShape() && "expected operands to have static shapes");
1110  for (OpOperand &opOperand : getOperation()->getOpOperands())
1111  llvm::append_range(res, getShape(&opOperand));
1112  return res;
1113 }
1114 
1115 SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
1116  AffineMap map = getLoopsToShapesMap();
1117  unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
1118  auto viewSizes = createFlatListOfOperandDims(b, loc);
1119  SmallVector<Range, 4> res(numDims);
1120  for (unsigned idx = 0; idx < numRes; ++idx) {
1121  auto result = map.getResult(idx);
1122  if (auto d = dyn_cast<AffineDimExpr>(result)) {
1123  if (res[d.getPosition()].offset)
1124  continue;
1125  res[d.getPosition()] =
1126  Range{b.getIndexAttr(0), viewSizes[idx], b.getIndexAttr(1)};
1127  }
1128  }
1129  return res;
1130 }
1131 
1132 /// Visitor to check if any of the given set of positions from AffineDimExprs
1133 /// are used within an AffineExpr.
1135  : public AffineExprVisitor<HasAffineDimExprVisitor, bool> {
1136  HasAffineDimExprVisitor(llvm::SmallBitVector positions)
1137  : positions(std::move(positions)) {}
1138 
1140  return visit(binaryOpExpr.getLHS()) || visit(binaryOpExpr.getRHS());
1141  }
1142 
1143  bool visitDimExpr(AffineDimExpr dimExpr) {
1144  return positions.test(dimExpr.getPosition());
1145  }
1146 
1147  bool visitConstantExpr(AffineConstantExpr constExpr) { return false; }
1148 
1149  bool visitSymbolExpr(AffineSymbolExpr symbolExpr) { return false; }
1150 
1151 private:
1152  llvm::SmallBitVector positions;
1153 };
1154 
1155 static std::pair<int64_t, int64_t>
1157  int64_t inputRankSum = 0;
1158  int64_t outputRankSum = 0;
1159  for (OpOperand *input : op.getDpsInputOperands())
1160  inputRankSum += op.getRank(input);
1161  for (OpOperand &output : op.getDpsInitsMutable())
1162  outputRankSum += op.getRank(&output);
1163  return {inputRankSum, inputRankSum + outputRankSum};
1164 }
1165 
1166 LogicalResult
1168  ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1169  // An example that helps understand the logic below.
1170  // Consider the following expression O(i+j, j) += A(i,k) * B(k, j)
1171  // We want to express the shape of dim 0 of O in terms of shape of the inputs.
1172  // This is achieved as follows.
1173  // loopsToShapesMap = (d0, d1, d2) -> (d0, d2, d2, d1, d0 + d1, d1)
1174  // subMapOfResultShapes = (d0, d1, d2) -> (d0 + d1, d1)
1175  // shapesToLoopsMap = (d0, d2, d2, d3, d4, d5) -> (d0, d3, d2)
1176  // resultShapesFromInputShapes = subMapOfResultDim.compose(shapesToLoopMap)
1177  // = (d0, d1, d2, d3, d4, d5) -> (d0 + d1, d1)
1178  AffineMap loopsToShapesMap = getLoopsToShapesMap();
1179 
1180  // Find the position in the above map that represents the shape of the
1181  // result:dim being inferred.
1182  auto resultShapesSubMapPos = getResultsPositionInLoopsToShapeMap(*this);
1183 
1184  /// From loopsToShapesMap extract the submap that represents the shape of the
1185  /// (resultIdx, dim) needed.
1186  AffineMap loopToResultsShapeMap = loopsToShapesMap.getSliceMap(
1187  resultShapesSubMapPos.first,
1188  resultShapesSubMapPos.second - resultShapesSubMapPos.first);
1189  AffineMap resultShapesFromInputShapesMap =
1190  loopToResultsShapeMap.compose(getShapesToLoopsMap());
1191 
1192  // Check that the result dim map does not contain the positions corresponding
1193  // to the outputs.
1194  llvm::SmallBitVector outputDims(resultShapesFromInputShapesMap.getNumDims());
1195  outputDims.set(resultShapesSubMapPos.first, resultShapesSubMapPos.second);
1196  HasAffineDimExprVisitor checkDimExpr(std::move(outputDims));
1197  Location loc = getOperation()->getLoc();
1198  IRRewriter rewriter(b);
1199  SmallVector<OpFoldResult> allResultDimValues =
1201  rewriter, loc, resultShapesFromInputShapesMap,
1202  createFlatListOfOperandDims(b, loc));
1203  int64_t pos = 0;
1204  ArrayRef<AffineExpr> shapeExprs = resultShapesFromInputShapesMap.getResults();
1205  for (OpOperand &opOperand : getDpsInitsMutable()) {
1207  for (int64_t dim : llvm::seq<int64_t>(0, getRank(&opOperand))) {
1208  auto shapedType = llvm::cast<ShapedType>(opOperand.get().getType());
1209  if (!shapedType.isDynamicDim(dim)) {
1210  // Static dim: Return IntegerAttr.
1211  shapes.push_back(b.getIndexAttr(shapedType.getDimSize(dim)));
1212  } else {
1213  // Dynamic dim: Return Value.
1214  OpFoldResult ofr = checkDimExpr.visit(shapeExprs[pos])
1215  ? createOrFoldDimOp(b, loc, opOperand.get(), dim)
1216  : allResultDimValues[pos];
1217  shapes.push_back(getValueOrCreateConstantIndexOp(b, loc, ofr));
1218  }
1219  pos++;
1220  }
1221  reifiedReturnShapes.emplace_back(std::move(shapes));
1222  }
1223  return success();
1224 }
1225 
1226 /// Return the index in the indexingMaps vector that corresponds to this
1227 /// `opOperand`.
1228 int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
1229  auto operandNumber = opOperand->getOperandNumber();
1230  auto dpsIface = cast<DestinationStyleOpInterface>(*this->getOperation());
1231  if (!dpsIface.isDpsInput(opOperand))
1232  return operandNumber;
1233  unsigned start = dpsIface.getDpsInits().getBeginOperandIndex();
1234  assert(!dpsIface.isDpsInit(opOperand));
1235  // Account for potential inputs that are not DPS and may not appear in
1236  // `indexingMaps`.
1237  return cast<DestinationStyleOpInterface>(*this->getOperation())
1238  .getNumDpsInputs() +
1239  operandNumber - start;
1240 }
1241 
1243  LinalgOp linalgOp = cast<LinalgOp>(op);
1244  // Mixed tensor/buffer operands are not allowed.
1245  if (!linalgOp.hasPureTensorSemantics() &&
1246  !linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
1247  return op->emitOpError("expected to have pure tensor or buffer semantics");
1248 
1249  // Before checking indexing maps, we need to make sure the attributes
1250  // referenced by it are valid.
1251  if (linalgOp.hasDynamicIndexingMaps())
1252  if (failed(linalgOp.verifyIndexingMapRequiredAttributes()))
1253  return failure();
1254 
1255  // Delayed calling of IndexingMapOpInterface::verifyImpl.
1256  if (failed(cast<IndexingMapOpInterface>(op).verifyImpl()))
1257  return failure();
1258 
1259  // Set this flag if this op has user defined maps. This is required to guard
1260  // the below error condition which assume default indexing maps.
1261  for (OpOperand &opOperand : linalgOp->getOpOperands()) {
1262  AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
1263  // Domain must be consistent.
1264  unsigned numLoops = linalgOp.getNumLoops();
1265  if (indexingMap.getNumDims() != numLoops)
1266  return op->emitOpError("expected indexing_map #")
1267  << opOperand.getOperandNumber() << " to have " << numLoops
1268  << " dim(s) to match the number of loops";
1269  }
1270  SmallVector<unsigned> redDims;
1271  linalgOp.getReductionDims(redDims);
1272 
1273  if (!linalgOp.getShapesToLoopsMap())
1274  return op->emitOpError("expected the shape-to-loops map to be non-null");
1275 
1276  // Check the region has exactly one block.
1277  if (linalgOp->getNumRegions() != 1 || !linalgOp->getRegion(0).hasOneBlock())
1278  return op->emitOpError("expects to have 1 region with 1 block");
1279 
1280  // Simplifying assumption: bbargs match 1-1 with shape operands elemental
1281  // types.
1282  // TODO: once ranked shape types are plugged in, we may want to drop the
1283  // corresponding bbargs, that can never be read from. This will be subject to
1284  // consistency discussions (i.e. what to do with output tensors whose bbarg is
1285  // not used).
1286  Block &block = linalgOp->getRegion(0).front();
1287 
1288  if (linalgOp.getOpOperandsMatchingBBargs().size() != block.getNumArguments())
1289  return op->emitOpError("expected as many non-induction variable region "
1290  "arguments as the number of input/output operands");
1291 
1292  for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) {
1293  Type elementType = opOperand->get().getType();
1294  if (isa<MemRefType, RankedTensorType>(elementType))
1295  elementType = getElementTypeOrSelf(opOperand->get().getType());
1296  Type argType = block.getArgument(opOperand->getOperandNumber()).getType();
1297  if (elementType != argType)
1298  return op->emitOpError("expected type of bb argument #")
1299  << opOperand->getOperandNumber() << " (" << argType << ")"
1300  << " to match element or self type of the corresponding operand ("
1301  << elementType << ")";
1302  }
1303 
1304  return success();
1305 }
static void visit(Operation *op, DenseSet< Operation * > &visited)
Visits all the pdl.operand(s), pdl.result(s), and pdl.operation(s) connected to the given operation.
Definition: PDL.cpp:62
static FailureOr< ConvolutionDimensions > inferConvolutionDimsImpl(LinalgOp linalgOp, ConvAccessExprWalker &inputExprWalker, bool allowEmptyConvolvedDims)
Classifies dimensions in the linalgOp used by a convolution subcomputation, as captured by inputExprW...
static std::optional< Value > isaExternalFillOp(GenericOp op)
Detects if a linalg.generic operation represents an external scalar input.
static Value getSourceSkipUnary(Value value)
If the value is defined by a chain of unary side effect-free, go up the use-def chain until the first...
static T getAffineExprOfType(AffineExpr lhs, AffineExpr rhs)
Of the given two expressions returns one that is of type T (lhs gets preference over rhs)
static bool isPairTemplateImpl(Operation *add, Operation *mul)
Returns true if the two operations are of the kinds specified by a pair of consecutive template argum...
static SmallVector< int64_t, 2 > getConstantsFromExprList(const SmallVector< AffineExpr, 2 > &exprs)
static MatchFillResult isFillInterfaceImpl(Operation *op)
static FailureOr< ContractionDimensions > inferContractionDimsImpl(ArrayRef< AffineMap > indexingMaps, ArrayRef< utils::IteratorType > iterators)
Find 2 parallel (m and n) and 1 reduction (k) dimension candidates that form a matmul subcomputation ...
static bool isContractionBody(Block &block)
Returns true if the block is a body of a contraction with the kinds of operations given pairwise by t...
static std::optional< Value > isaInlinedFillOp(GenericOp op)
Detects if a linalg.generic operation represents a fill with an inlined constant.
static llvm::SmallDenseSet< int64_t > getPreservedDims(AffineMap map)
static bool isaElemwiseSingleUnaryOrBinaryOpInterface(linalg::GenericOp op, unsigned arity)
MatchFillResult
static llvm::SmallDenseSet< int64_t > findPermutationsIndexingOperand(AffineMap indexingMap, ArrayRef< utils::IteratorType > iterators, utils::IteratorType iter)
Given an indexingMap and its corresponding iterators, returns the positions of the iterators of type ...
static FailureOr< SmallVector< utils::IteratorType > > inferIteratorsFromOutMap(AffineMap map)
Infer the iterator types from the init affine map.
static std::pair< int64_t, int64_t > getResultsPositionInLoopsToShapeMap(LinalgOp &op)
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
Definition: Traits.cpp:117
#define mul(a, b)
#define add(a, b)
Affine binary operation expression.
Definition: AffineExpr.h:214
AffineExpr getLHS() const
Definition: AffineExpr.cpp:338
AffineExpr getRHS() const
Definition: AffineExpr.cpp:341
An integer constant appearing in affine expression.
Definition: AffineExpr.h:239
A dimensional identifier appearing in an affine expression.
Definition: AffineExpr.h:223
unsigned getPosition() const
Definition: AffineExpr.cpp:346
See documentation for AffineExprVisitorBase.
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExprKind getKind() const
Return the classification for this type.
Definition: AffineExpr.cpp:33
MLIRContext * getContext() const
Definition: AffineExpr.cpp:31
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
AffineMap getSliceMap(unsigned start, unsigned length) const
Returns the map consisting of length expressions starting from start.
Definition: AffineMap.cpp:655
bool isProjectedPermutation(bool allowZeroInResults=false) const
Returns true if the AffineMap represents a subset (i.e.
Definition: AffineMap.cpp:611
unsigned getNumDims() const
Definition: AffineMap.cpp:390
ArrayRef< AffineExpr > getResults() const
Definition: AffineMap.cpp:403
unsigned getNumResults() const
Definition: AffineMap.cpp:398
AffineExpr getResult(unsigned idx) const
Definition: AffineMap.cpp:407
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
Definition: AffineMap.cpp:552
A symbolic identifier appearing in an affine expression.
Definition: AffineExpr.h:231
Block represents an ordered list of Operations.
Definition: Block.h:33
bool empty()
Definition: Block.h:148
BlockArgument getArgument(unsigned i)
Definition: Block.h:129
unsigned getNumArguments()
Definition: Block.h:128
Operation & back()
Definition: Block.h:152
Operation * getTerminator()
Get the terminator operation of this block.
Definition: Block.cpp:244
OpListType & getOperations()
Definition: Block.h:137
Operation & front()
Definition: Block.h:153
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:108
An attribute that represents a reference to a dense integer vector or tensor object.
IRValueT get() const
Return the current value being used by this operand.
Definition: UseDefLists.h:160
This class coordinates rewriting a piece of IR outside of a pattern rewrite, providing a way to keep ...
Definition: PatternMatch.h:774
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:76
This class helps build Operations.
Definition: Builders.h:207
This class represents a single result from folding an operation.
Definition: OpDefinition.h:272
This class represents an operand of an operation.
Definition: Value.h:257
unsigned getOperandNumber()
Return which operand this is in the OpOperand list of the Operation.
Definition: Value.cpp:226
This class provides the API for ops that are known to be terminators.
Definition: OpDefinition.h:773
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
Value getOperand(unsigned idx)
Definition: Operation.h:350
bool mightHaveTrait()
Returns true if the operation might have the provided trait.
Definition: Operation.h:757
unsigned getNumOperands()
Definition: Operation.h:346
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
Definition: Operation.cpp:671
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:404
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:105
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:18
SmallVector< OpFoldResult > makeComposedFoldedMultiResultAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Variant of makeComposedFoldedAffineApply suitable for multi-result maps.
Definition: AffineOps.cpp:1514
MatchConvolutionResult isConvolutionInterfaceImpl(Operation *op, ConvolutionDimensions *dimensions=nullptr, bool allowEmptyConvolvedDims=false)
Checks whether op conforms to ConvolutionOpInterface and populates dimensions with indexes of the dif...
bool isContractionBody(Block &block, function_ref< bool(Operation *, Operation *)> isaPair, llvm::raw_ostream &errs=mlir::thread_safe_nulls())
Returns true if the block contains a contraction of the following form:
StringRef getMatchConvolutionMessage(MatchConvolutionResult res)
Returns the error message corresponding to the convolution checking return code.
bool canOpOperandsBeDroppedImpl(linalg::LinalgOp linalgOp, ArrayRef< OpOperand * > droppedOperands)
Implementation of the method that check if given operands can be dropped, i.e.
MatchContractionResult isContractionInterfaceImpl(Operation *op, ContractionDimensions *dimensions=nullptr)
Checks whether op conforms to ContractionOpInterface and populates dimensions with indexes of the dif...
LogicalResult verifyContractionInterface(Operation *op)
Verify that op conforms to ContractionOpInterface.
LogicalResult verifyFillInterface(Operation *op)
Verify that op conforms to the FillOpInterface.
StringRef getMatchContractionMessage(MatchContractionResult res)
Returns the error message corresponding to the contraction checking return code.
LogicalResult verifyStructuredOpInterface(Operation *op)
Verify that op conforms to the invariants of StructuredOpInterface.
LogicalResult verifyConvolutionInterface(Operation *op)
Verify that op conforms to the ConvolutionOpInterface.
std::optional< SmallVector< int64_t > > isaTransposeOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a linalg.transpose.
bool isaElemwiseSingleUnaryOpInterface(GenericOp genericOp)
Checks whether a given genericOp is semantically equivalent to a single linalgelementwise unary op.
bool isaCopyOpInterface(LinalgOp linalgOp)
Checks whether linalgOp is semantically equivalent to a linalg.copyOp.
FailureOr< ConvolutionDimensions > inferConvolutionDims(LinalgOp linalgOp)
Find at least 1 parallel (output_image) and reduction (filter_loop) dimension candidates that form a ...
OpFoldResult createFoldedDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
Definition: LinalgOps.cpp:104
bool isaConvolutionOpInterface(LinalgOp linalgOp, bool allowEmptyConvolvedDims=false)
Checks whether linalgOp conforms to ConvolutionOpInterface.
std::optional< SmallVector< int64_t > > isaBroadcastOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a linalg.broadcast.
FailureOr< ContractionDimensions > inferContractionDims(LinalgOp linalgOp)
Find at least 2 parallel (m and n) and 1 reduction (k) dimension candidates that form a matmul subcom...
Value createOrFoldDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
Definition: LinalgOps.cpp:95
bool isaContractionOpInterface(LinalgOp linalgOp)
Checks whether linalgOp conforms to ContractionOpInterface.
std::optional< Value > isaFillOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a linalg.fill.
bool isaElemwiseSingleBinaryOpInterface(GenericOp genericOp)
Checks whether genericOp is semantically equivalent to a single linalg elementwise binary op e....
detail::InFlightRemark failed(Location loc, RemarkOpts opts)
Report an optimization remark that failed.
Definition: Remarks.h:561
Include the generated interface declarations.
AffineMap concatAffineMaps(ArrayRef< AffineMap > maps, MLIRContext *context)
Concatenates a list of maps into a single AffineMap, stepping over potentially empty maps.
Definition: AffineMap.cpp:829
LogicalResult reifyResultShapes(OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes)
Reify the shape of the result of an operation (typically in terms of the shape of its operands).
AffineMap inversePermutation(AffineMap map)
Returns a map of codomain to domain dimensions such that the first codomain dimension for a particula...
Definition: AffineMap.cpp:784
@ Mul
RHS of mul is always a constant or a symbolic expression.
Type getElementTypeOrSelf(Type type)
Return the element type or return the type itself.
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:111
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
Definition: AffineExpr.cpp:643
Visitor to check if any of the given set of positions from AffineDimExprs are used within an AffineEx...
HasAffineDimExprVisitor(llvm::SmallBitVector positions)
bool visitDimExpr(AffineDimExpr dimExpr)
bool visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryOpExpr)
bool visitSymbolExpr(AffineSymbolExpr symbolExpr)
bool visitConstantExpr(AffineConstantExpr constExpr)
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
Positions of a Linalg op loops that correspond to different kinds of a contraction dimension.
Positions of a Linalg op loops that correspond to different kinds of a convolution dimension.