23#include "llvm/ADT/SmallBitVector.h"
24#include "llvm/ADT/SmallVectorExtras.h"
25#include "llvm/Support/Debug.h"
27#define DEBUG_TYPE "linalg-fusion"
60 bool fromSubViewOpOnly =
false) {
63 for (
OpOperand &opOperand : op->getOpOperands()) {
70 if (fromSubViewOpOnly &&
71 !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
72 opOperand.get().getDefiningOp()))
75 AffineMap map = op.getMatchingIndexingMap(&opOperand);
76 LLVM_DEBUG(llvm::dbgs() <<
"getShapeDefiningLoopRange I/O idx: "
77 << opOperand.getOperandNumber() <<
"\n");
78 LLVM_DEBUG(llvm::dbgs()
79 <<
"getShapeDefiningLoopRange map: " << map <<
"\n");
80 for (
const auto &en : llvm::enumerate(map.
getResults())) {
81 auto dimExpr = dyn_cast<AffineDimExpr>(en.value());
84 if (loopDepth == cast<AffineDimExpr>(en.value()).getPosition()) {
85 LLVM_DEBUG(llvm::dbgs() <<
"getShapeDefiningLoopRange loopDepth: "
86 << loopDepth <<
"\n");
87 LLVM_DEBUG(llvm::dbgs() <<
"getShapeDefiningLoopRange shape: "
88 << opOperand.get() <<
"\n");
90 static_cast<unsigned>(en.index())};
94 llvm_unreachable(
"Expect to be able to extract a shape defining loop range");
98 return producer->getOperands();
110 for (
unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
114 sizeBounds.push_back(dim);
115 auto it = fusedLoopsAndRanges.find(i);
116 if (it != fusedLoopsAndRanges.end()) {
117 ivs.push_back(it->second.offset);
118 tileSizes.push_back(it->second.size);
119 loopRanges.push_back(it->second);
120 LLVM_DEBUG(llvm::dbgs() <<
"tiled loop#" << i <<
" with LoopRange "
121 << loopRanges.back() <<
"\n");
123 tileSizes.push_back(
b.getIndexAttr(0));
124 loopRanges.push_back(
Range{
b.getIndexAttr(0), dim,
b.getIndexAttr(1)});
125 LLVM_DEBUG(llvm::dbgs() <<
"full loop#" << i <<
" with LoopRange "
126 << loopRanges.back() <<
"\n");
131 clonedShapes.reserve(producer->getNumOperands());
141 resultTypes.reserve(producer->getNumResults());
144 for (
int64_t i = 0, e = producer->getNumResults(); i < e; ++i) {
145 resultTypes.push_back(clonedShapes[firstInitOperandIdx + i].
getType());
149 LinalgOp clonedOp =
clone(
b, producer, resultTypes, clonedShapes);
153 loopRanges, [&](
Range range) {
return range.
offset; });
162 Value shapedOperand,
unsigned dim) {
164 if (
auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
165 return subViewOp.getOrCreateRanges(
b, loc)[dim];
166 if (
auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
167 return sliceOp.getOrCreateRanges(
b, loc)[dim];
168 llvm_unreachable(
"SubviewOp or ExtractSliceOp expected");
176 LLVM_DEBUG(llvm::dbgs() <<
"Producer map: " << producerMap <<
"\n");
178 Value shapedOperand = consumerOpOperand.
get();
179 for (
const auto &en : llvm::enumerate(producerMap.
getResults())) {
180 unsigned posInProducerLoop = cast<AffineDimExpr>(en.value()).getPosition();
184 return fuse(
b, producerOp, fusedLoopsAndRanges);
194 if (!isa<RankedTensorType>(
tensor.getType()))
198 LLVM_DEBUG(llvm::dbgs() <<
"\ngetProducerOfTensor: " <<
tensor);
199 if (
auto linalgOp =
tensor.getDefiningOp<LinalgOp>()) {
200 opResult = cast<OpResult>(
tensor);
203 if (
auto sliceOp =
tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
204 tensor = sliceOp.getSource();
207 if (
auto blockArg = dyn_cast<BlockArgument>(
tensor)) {
208 if (
auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
209 tensor = forOp.getInitArgs()[blockArg.getArgNumber()];
219 Value inputTensor = consumerOpOperand.
get();
222 if (!producerOpResult) {
223 LLVM_DEBUG(llvm::dbgs() <<
"\nUnable to find producer");
232 auto producerOp = dyn_cast<LinalgOp>(producerOpResult.
getOwner());
236 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.
getOwner());
240 Value inputTensor = consumerOpOperand.
get();
243 auto sliceOp = inputTensor.
getDefiningOp<tensor::ExtractSliceOp>();
245 LLVM_DEBUG(llvm::dbgs()
246 <<
"\nNot fusable, not an extract_slice op: " << inputTensor);
257 b.setInsertionPoint(consumerOp);
258 LLVM_DEBUG(llvm::dbgs() <<
"Fuse into consumer: " << *consumerOp <<
"\n");
261 LinalgOp fusedProducer =
262 fuse(
b, producerOp, producerOp.getMatchingIndexingMap(opOperand),
270 if (cast<ShapedType>(consumerType).getRank() !=
271 cast<ShapedType>(def.
getType()).getRank()) {
272 llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims();
280 if (consumerType != def.
getType())
281 def = tensor::CastOp::create(
b, fusedProducer.getLoc(), consumerType, def);
282 consumerOpOperand.
set(def);
static LinalgOp fuse(OpBuilder &b, LinalgOp producer, const DenseMap< unsigned, Range > &fusedLoopsAndRanges)
Fuses the producer by cloning the producer.
static void getProducerOfTensor(Value tensor, OpResult &opResult)
Walk back use-def chain through scf::For yields.
static SmallVector< Value > getTiledOperands(LinalgOp producer)
static ShapeDimension getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, bool fromSubViewOpOnly=false)
static Range getRangeFromOperandShape(OpBuilder &b, Location loc, Value shapedOperand, unsigned dim)
Get the loop range for a dimension dim based on the shapedOperand.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
ArrayRef< AffineExpr > getResults() const
IRValueT get() const
Return the current value being used by this operand.
void set(IRValueT newValue)
Set the current value being used by this operand.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
This class provides a mutable adaptor for a range of operands.
OperandRange getAsOperandRange() const
Explicit conversion to an OperandRange.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
This class represents a single result from folding an operation.
This class represents an operand of an operation.
This is a value defined by a result of an operation.
Operation * getOwner() const
Returns the operation that owns this result.
unsigned getResultNumber() const
Returns the number of this result.
unsigned getBeginOperandIndex() const
Return the operand index of the first element of this range.
Operation is the basic unit of execution within MLIR.
Location getLoc()
The source location the operation was defined or derived from.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Block * getParentBlock()
Return the Block in which this Value is defined.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Operation * getOwner() const
Return the owner of this operand.
FailureOr< FusionInfo > fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand)
This implements the fusion part of the "tileAndFuse on tensors" transformation and thus requires the ...
SmallVector< Value > makeTiledShapes(OpBuilder &builder, Location loc, LinalgOp linalgOp, ValueRange valuesToTile, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds, bool omitPartialTileCheck)
Creates extract_slice/subview ops for all valuesToTile of the given linalgOp with builder,...
OpFoldResult createFoldedDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
void offsetIndices(OpBuilder &b, LinalgOp linalgOp, ArrayRef< OpFoldResult > offests)
Add the specified offsets to any linalg.index ops contained in the given linalgOp.
CollapseShapeOp dropGivenUnitDims(OpBuilder &b, Location loc, Value src, const llvm::SmallBitVector &dropDims)
Create tensor.collapse_shape to drop unit dimensions in dropDims in tensor src.
Include the generated interface declarations.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
Operation * clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands)
llvm::DenseMap< KeyT, ValueT, KeyInfoT, BucketT > DenseMap
Implements a simple high-level fusion pass on linalg structured operations.
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
A struct containing the Linalg producer before and after fusion.