MLIR  21.0.0git
Dominance.cpp
Go to the documentation of this file.
1 //===- Dominance.cpp - Dominator analysis for CFGs ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of dominance related classes and instantiations of extern
10 // templates.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/IR/Dominance.h"
15 #include "mlir/IR/Operation.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/Support/GenericDomTreeConstruction.h"
19 
20 using namespace mlir;
21 using namespace mlir::detail;
22 
23 template class llvm::DominatorTreeBase<Block, /*IsPostDom=*/false>;
24 template class llvm::DominatorTreeBase<Block, /*IsPostDom=*/true>;
25 template class llvm::DomTreeNodeBase<Block>;
26 
27 //===----------------------------------------------------------------------===//
28 // DominanceInfoBase
29 //===----------------------------------------------------------------------===//
30 
31 template <bool IsPostDom>
33  for (auto entry : dominanceInfos)
34  delete entry.second.getPointer();
35 }
36 
37 template <bool IsPostDom>
39  for (auto entry : dominanceInfos)
40  delete entry.second.getPointer();
41  dominanceInfos.clear();
42 }
43 
44 template <bool IsPostDom>
46  auto it = dominanceInfos.find(region);
47  if (it != dominanceInfos.end()) {
48  delete it->second.getPointer();
49  dominanceInfos.erase(it);
50  }
51 }
52 
53 /// Return the dom tree and "hasSSADominance" bit for the given region. The
54 /// DomTree will be null for single-block regions. This lazily constructs the
55 /// DomTree on demand when needsDomTree=true.
56 template <bool IsPostDom>
58  bool needsDomTree) const
59  -> llvm::PointerIntPair<DomTree *, 1, bool> {
60  // Check to see if we already have this information.
61  auto itAndInserted = dominanceInfos.insert({region, {nullptr, true}});
62  auto &entry = itAndInserted.first->second;
63 
64  // This method builds on knowledge that multi-block regions always have
65  // SSADominance. Graph regions are only allowed to be single-block regions,
66  // but of course single-block regions may also have SSA dominance.
67  if (!itAndInserted.second) {
68  // We do have it, so we know the 'hasSSADominance' bit is correct, but we
69  // may not have constructed a DominatorTree yet. If we need it, build it.
70  if (needsDomTree && !entry.getPointer() && !region->hasOneBlock()) {
71  auto *domTree = new DomTree();
72  domTree->recalculate(*region);
73  entry.setPointer(domTree);
74  }
75  return entry;
76  }
77 
78  // Nope, lazily construct it. Create a DomTree if this is a multi-block
79  // region.
80  if (!region->hasOneBlock()) {
81  auto *domTree = new DomTree();
82  domTree->recalculate(*region);
83  entry.setPointer(domTree);
84  // Multiblock regions always have SSA dominance, leave `second` set to true.
85  return entry;
86  }
87 
88  // Single block regions have a more complicated predicate.
89  if (Operation *parentOp = region->getParentOp()) {
90  if (!parentOp->isRegistered()) { // We don't know about unregistered ops.
91  entry.setInt(false);
92  } else if (auto regionKindItf = dyn_cast<RegionKindInterface>(parentOp)) {
93  // Registered ops can opt-out of SSA dominance with
94  // RegionKindInterface.
95  entry.setInt(regionKindItf.hasSSADominance(region->getRegionNumber()));
96  }
97  }
98 
99  return entry;
100 }
101 
102 /// Return the ancestor block enclosing the specified block. This returns null
103 /// if we reach the top of the hierarchy.
104 static Block *getAncestorBlock(Block *block) {
105  if (Operation *ancestorOp = block->getParentOp())
106  return ancestorOp->getBlock();
107  return nullptr;
108 }
109 
110 /// Walks up the list of containers of the given block and calls the
111 /// user-defined traversal function for every pair of a region and block that
112 /// could be found during traversal. If the user-defined function returns true
113 /// for a given pair, traverseAncestors will return the current block. Nullptr
114 /// otherwise.
115 template <typename FuncT>
116 static Block *traverseAncestors(Block *block, const FuncT &func) {
117  do {
118  // Invoke the user-defined traversal function for each block.
119  if (func(block))
120  return block;
121  } while ((block = getAncestorBlock(block)));
122  return nullptr;
123 }
124 
125 /// Tries to update the given block references to live in the same region by
126 /// exploring the relationship of both blocks with respect to their regions.
127 static bool tryGetBlocksInSameRegion(Block *&a, Block *&b) {
128  // If both block do not live in the same region, we will have to check their
129  // parent operations.
130  Region *aRegion = a->getParent();
131  Region *bRegion = b->getParent();
132  if (aRegion == bRegion)
133  return true;
134 
135  // Iterate over all ancestors of `a`, counting the depth of `a`. If one of
136  // `a`s ancestors are in the same region as `b`, then we stop early because we
137  // found our NCA.
138  size_t aRegionDepth = 0;
139  if (Block *aResult = traverseAncestors(a, [&](Block *block) {
140  ++aRegionDepth;
141  return block->getParent() == bRegion;
142  })) {
143  a = aResult;
144  return true;
145  }
146 
147  // Iterate over all ancestors of `b`, counting the depth of `b`. If one of
148  // `b`s ancestors are in the same region as `a`, then we stop early because
149  // we found our NCA.
150  size_t bRegionDepth = 0;
151  if (Block *bResult = traverseAncestors(b, [&](Block *block) {
152  ++bRegionDepth;
153  return block->getParent() == aRegion;
154  })) {
155  b = bResult;
156  return true;
157  }
158 
159  // Otherwise we found two blocks that are siblings at some level. Walk the
160  // deepest one up until we reach the top or find an NCA.
161  while (true) {
162  if (aRegionDepth > bRegionDepth) {
163  a = getAncestorBlock(a);
164  --aRegionDepth;
165  } else if (aRegionDepth < bRegionDepth) {
166  b = getAncestorBlock(b);
167  --bRegionDepth;
168  } else {
169  break;
170  }
171  }
172 
173  // If we found something with the same level, then we can march both up at the
174  // same time from here on out.
175  while (a) {
176  // If they are at the same level, and have the same parent region then we
177  // succeeded.
178  if (a->getParent() == b->getParent())
179  return true;
180 
181  a = getAncestorBlock(a);
182  b = getAncestorBlock(b);
183  }
184 
185  // They don't share an NCA, perhaps they are in different modules or
186  // something.
187  return false;
188 }
189 
190 template <bool IsPostDom>
191 Block *
193  Block *b) const {
194  // If either a or b are null, then conservatively return nullptr.
195  if (!a || !b)
196  return nullptr;
197 
198  // If they are the same block, then we are done.
199  if (a == b)
200  return a;
201 
202  // Try to find blocks that are in the same region.
203  if (!tryGetBlocksInSameRegion(a, b))
204  return nullptr;
205 
206  // If the common ancestor in a common region is the same block, then return
207  // it.
208  if (a == b)
209  return a;
210 
211  // Otherwise, there must be multiple blocks in the region, check the
212  // DomTree.
213  return getDomTree(a->getParent()).findNearestCommonDominator(a, b);
214 }
215 
216 /// Returns the given block iterator if it lies within the region region.
217 /// Otherwise, otherwise finds the ancestor of the given block iterator that
218 /// lies within the given region. Returns and "empty" iterator if the latter
219 /// fails.
220 ///
221 /// Note: This is a variant of Region::findAncestorOpInRegion that operates on
222 /// block iterators instead of ops.
223 static std::pair<Block *, Block::iterator>
225  // Case 1: The iterator lies within the region region.
226  if (b->getParent() == r)
227  return std::make_pair(b, it);
228 
229  // Otherwise: Find ancestor iterator. Bail if we run out of parent ops.
230  Operation *parentOp = b->getParentOp();
231  if (!parentOp)
232  return std::make_pair(static_cast<Block *>(nullptr), Block::iterator());
233  Operation *op = r->findAncestorOpInRegion(*parentOp);
234  if (!op)
235  return std::make_pair(static_cast<Block *>(nullptr), Block::iterator());
236  return std::make_pair(op->getBlock(), op->getIterator());
237 }
238 
239 /// Given two iterators into the same block, return "true" if `a` is before `b.
240 /// Note: This is a variant of Operation::isBeforeInBlock that operates on
241 /// block iterators instead of ops.
242 static bool isBeforeInBlock(Block *block, Block::iterator a,
243  Block::iterator b) {
244  if (a == b)
245  return false;
246  if (a == block->end())
247  return false;
248  if (b == block->end())
249  return true;
250  return a->isBeforeInBlock(&*b);
251 }
252 
253 template <bool IsPostDom>
255  Block *aBlock, Block::iterator aIt, Block *bBlock, Block::iterator bIt,
256  bool enclosingOk) const {
257  assert(aBlock && bBlock && "expected non-null blocks");
258 
259  // A block iterator (post)dominates, but does not properly (post)dominate,
260  // itself unless this is a graph region.
261  if (aBlock == bBlock && aIt == bIt)
262  return !hasSSADominance(aBlock);
263 
264  // If the iterators are in different regions, then normalize one into the
265  // other.
266  Region *aRegion = aBlock->getParent();
267  if (aRegion != bBlock->getParent()) {
268  // Scoot up b's region tree until we find a location in A's region that
269  // encloses it. If this fails, then we know there is no (post)dom relation.
270  if (!aRegion) {
271  bBlock = nullptr;
272  bIt = Block::iterator();
273  } else {
274  std::tie(bBlock, bIt) =
275  findAncestorIteratorInRegion(aRegion, bBlock, bIt);
276  }
277  if (!bBlock)
278  return false;
279  assert(bBlock->getParent() == aRegion && "expected block in regionA");
280 
281  // If 'a' encloses 'b', then we consider it to (post)dominate.
282  if (aBlock == bBlock && aIt == bIt && enclosingOk)
283  return true;
284  }
285 
286  // Ok, they are in the same region now.
287  if (aBlock == bBlock) {
288  // Dominance changes based on the region type. In a region with SSA
289  // dominance, uses inside the same block must follow defs. In other
290  // regions kinds, uses and defs can come in any order inside a block.
291  if (!hasSSADominance(aBlock))
292  return true;
293  if constexpr (IsPostDom) {
294  return isBeforeInBlock(aBlock, bIt, aIt);
295  } else {
296  return isBeforeInBlock(aBlock, aIt, bIt);
297  }
298  }
299 
300  // If the blocks are different, use DomTree to resolve the query.
301  return getDomTree(aRegion).properlyDominates(aBlock, bBlock);
302 }
303 
304 /// Return true if the specified block is reachable from the entry block of
305 /// its region.
306 template <bool IsPostDom>
308  // If this is the first block in its region, then it is obviously reachable.
309  Region *region = a->getParent();
310  if (&region->front() == a)
311  return true;
312 
313  // Otherwise this is some block in a multi-block region. Check DomTree.
314  return getDomTree(region).isReachableFromEntry(a);
315 }
316 
317 template class detail::DominanceInfoBase</*IsPostDom=*/true>;
318 template class detail::DominanceInfoBase</*IsPostDom=*/false>;
319 
320 //===----------------------------------------------------------------------===//
321 // DominanceInfo
322 //===----------------------------------------------------------------------===//
323 
325  bool enclosingOpOk) const {
326  return super::properlyDominatesImpl(a->getBlock(), a->getIterator(),
327  b->getBlock(), b->getIterator(),
328  enclosingOpOk);
329 }
330 
332  return super::properlyDominatesImpl(a, a->begin(), b, b->begin(),
333  /*enclosingOk=*/true);
334 }
335 
336 /// Return true if the `a` value properly dominates operation `b`, i.e if the
337 /// operation that defines `a` properlyDominates `b` and the operation that
338 /// defines `a` does not contain `b`.
340  // block arguments properly dominate all operations in their own block, so
341  // we use a dominates check here, not a properlyDominates check.
342  if (auto blockArg = dyn_cast<BlockArgument>(a))
343  return dominates(blockArg.getOwner(), b->getBlock());
344 
345  // `a` properlyDominates `b` if the operation defining `a` properlyDominates
346  // `b`, but `a` does not itself enclose `b` in one of its regions.
347  return properlyDominates(a.getDefiningOp(), b, /*enclosingOpOk=*/false);
348 }
349 
350 //===----------------------------------------------------------------------===//
351 // PostDominanceInfo
352 //===----------------------------------------------------------------------===//
353 
355  bool enclosingOpOk) const {
356  return super::properlyDominatesImpl(a->getBlock(), a->getIterator(),
357  b->getBlock(), b->getIterator(),
358  enclosingOpOk);
359 }
360 
362  return super::properlyDominatesImpl(a, a->end(), b, b->end(),
363  /*enclosingOk=*/true);
364 }
static Block * traverseAncestors(Block *block, const FuncT &func)
Walks up the list of containers of the given block and calls the user-defined traversal function for ...
Definition: Dominance.cpp:116
static bool isBeforeInBlock(Block *block, Block::iterator a, Block::iterator b)
Given two iterators into the same block, return "true" if a is before `b.
Definition: Dominance.cpp:242
static std::pair< Block *, Block::iterator > findAncestorIteratorInRegion(Region *r, Block *b, Block::iterator it)
Returns the given block iterator if it lies within the region region.
Definition: Dominance.cpp:224
static bool tryGetBlocksInSameRegion(Block *&a, Block *&b)
Tries to update the given block references to live in the same region by exploring the relationship o...
Definition: Dominance.cpp:127
static Block * getAncestorBlock(Block *block)
Return the ancestor block enclosing the specified block.
Definition: Dominance.cpp:104
Block represents an ordered list of Operations.
Definition: Block.h:33
OpListType::iterator iterator
Definition: Block.h:140
Region * getParent() const
Provide a 'getParent' method for ilist_node_with_parent methods.
Definition: Block.cpp:29
iterator end()
Definition: Block.h:144
iterator begin()
Definition: Block.h:143
Operation * getParentOp()
Returns the closest surrounding operation that contains this block.
Definition: Block.cpp:33
bool properlyDominates(Operation *a, Operation *b, bool enclosingOpOk=true) const
Return true if operation A properly dominates operation B, i.e.
Definition: Dominance.cpp:324
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
Block * getBlock()
Returns the operation block that contains this operation.
Definition: Operation.h:213
bool properlyPostDominates(Operation *a, Operation *b, bool enclosingOpOk=true) const
Return true if operation A properly postdominates operation B.
Definition: Dominance.cpp:354
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Definition: Region.h:26
unsigned getRegionNumber()
Return the number of this region in the parent operation.
Definition: Region.cpp:62
Operation * getParentOp()
Return the parent operation this region is attached to.
Definition: Region.h:200
Block & front()
Definition: Region.h:65
bool hasOneBlock()
Return true if this region has exactly one block.
Definition: Region.h:68
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
llvm::PointerIntPair< DomTree *, 1, bool > getDominanceInfo(Region *region, bool needsDomTree) const
Return the dom tree and "hasSSADominance" bit for the given region.
Definition: Dominance.cpp:57
bool isReachableFromEntry(Block *a) const
Return true if the specified block is reachable from the entry block of its region.
Definition: Dominance.cpp:307
bool properlyDominatesImpl(Block *aBlock, Block::iterator aIt, Block *bBlock, Block::iterator bIt, bool enclosingOk=true) const
Return "true" if block iterator A properly (post)dominates block iterator B.
Definition: Dominance.cpp:254
Block * findNearestCommonDominator(Block *a, Block *b) const
Finds the nearest common dominator block for the two given blocks a and b.
Definition: Dominance.cpp:192
void invalidate()
Invalidate dominance info.
Definition: Dominance.cpp:38
AttrTypeReplacer.
Include the generated interface declarations.