MLIR 22.0.0git
PadTilingInterface.cpp
Go to the documentation of this file.
1//===- PaddingTilingInterface.cpp - Padding of TilingInterface ops --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
16#include "mlir/IR/AffineExpr.h"
21#include "mlir/IR/Value.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Casting.h"
25
26#define DEBUG_TYPE "pad-tiling-interface"
27
28using namespace mlir;
29using namespace mlir::linalg;
30using namespace mlir::tensor;
31
32#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
33#define DBGSNL() (llvm::dbgs() << "\n")
34
35/// Form a "full-rank" padding specification so that the application is easy.
39 SmallVector<OpFoldResult> paddingSizes;
40 // Complete the padding specification to specify all dimensions.
41 for (size_t idx = 0, e = indexingSizes.size(); idx != e; ++idx) {
42 // Complete to zero if needed.
43 paddingSizes.push_back(options.paddingSizes.size() > idx
44 ? options.paddingSizes[idx]
45 : b.getIndexAttr(0));
46 // If a dimension is zero (either specified or completed), replace by:
47 // - 1 if we are padding to the next multiple of.
48 // - indexingSizes[idx] otherwise
49 if (isZeroInteger(paddingSizes[idx])) {
50 paddingSizes[idx] =
51 options.padToMultipleOf ? b.getIndexAttr(1) : indexingSizes[idx];
52 }
53 LLVM_DEBUG(DBGS() << "----idx: " << idx << " : " << paddingSizes[idx]
54 << "\n");
55 }
56 return paddingSizes;
57}
58
59/// Extracts the constant multiplier from an affine expression of the form
60/// `d * c` or `c * d`, where `d` is an AffineDimExpr and `c` is an
61/// AffineConstantExpr. Returns 1 if the expression is not a simple
62/// multiplication of a dimension and a constant.
64 if (auto binOp = dyn_cast<AffineBinaryOpExpr>(expr)) {
65 if (binOp.getKind() == AffineExprKind::Mul) {
66 auto lhsD = dyn_cast<AffineDimExpr>(binOp.getLHS());
67 auto rhsC = dyn_cast<AffineConstantExpr>(binOp.getRHS());
68 if (lhsD && rhsC) {
69 return rhsC.getValue();
70 }
71 auto lhsC = dyn_cast<AffineConstantExpr>(binOp.getLHS());
72 auto rhsD = dyn_cast<AffineDimExpr>(binOp.getRHS());
73 if (lhsC && rhsD) {
74 return lhsC.getValue();
75 }
76 }
77 }
78 return 1;
79}
80
81/// Compute the padded shape of the given value `v` of `RankedTensorType` given
82/// - `indexingSizes` a list of OpFoldResult.
83/// - an `indexingMap` that encodes how the shape of varies with increases
84/// in `indexingSizes`.
85/// The `indexingMap` encodes how the shape of varies with `indexingSizes`.
86/// The `indexingMap` + `indexingSizes` encoding suits StructuredOps.
87/// The implementaiton below iteratively combines increases from contributing
88/// dimensions using affine.apply operations.
89/// The padded shape is computed by evaluating the maximum accessed index per
90/// dimension, which may involve multiplying by constant factors derived from
91/// the affine indexing expressions. Currently, only a limited set of projected
92/// permutation indexing maps are supported, such as
93/// - affine_map<(d0, d1, d2) -> (d0, d1)>
94/// - affine_map<(d0, d1, d2) -> (d0, d1 + d2)>
95/// - affine_map<(d0, d1) -> (d0 * 3 + d1)>
96/// In the future, more general interfaces can be devised to encode similar
97/// shape evolutions and map between an op and its operands.
100 AffineMap indexingMap,
101 ArrayRef<OpFoldResult> indexingSizes,
103 Location loc = v.getLoc();
104 SmallVector<OpFoldResult> paddedShape;
105 auto tensorType = cast<RankedTensorType>(v.getType());
106 paddedShape.resize_for_overwrite(tensorType.getRank());
107 assert(tensorType.getRank() == indexingMap.getNumResults() &&
108 "expect the number of results of the affine map to match the tensor "
109 "rank");
110
111 // "Full-rank" padding specification.
112 SmallVector<OpFoldResult> paddingSizes =
113 getFullRankPaddingSizes(builder, indexingSizes, options);
114
115 // For each dimension in the operand's shape, iterate over indexingSizes and
116 // add the various term contributions.
117 for (const auto &enResults : enumerate(indexingMap.getResults())) {
118 int64_t resultIndex = enResults.index();
119 AffineMap partialIndexingMap = indexingMap.getSubMap(
120 ArrayRef<unsigned>{static_cast<unsigned>(resultIndex)});
121
122 LLVM_DEBUG(DBGS() << "----resultIndex: " << resultIndex
123 << " with partialIndexingMap: " << partialIndexingMap
124 << "\n");
125
126 // Find all padding dimensions that contribute to this operand dimension
127 // and compute the padded term contribution to the final padded shape.
129 for (size_t paddingDim = 0, e = paddingSizes.size(); paddingDim != e;
130 ++paddingDim) {
131 OpFoldResult paddingSize = paddingSizes[paddingDim];
132 LLVM_DEBUG(DBGS() << "------try apply padding of dim: " << paddingDim
133 << " to: " << paddingSize << "\n");
134 if (!enResults.value().isFunctionOfDim(paddingDim))
135 continue;
136
137 LLVM_DEBUG(DBGS() << "------apply padding of dim: " << paddingDim
138 << " to: " << paddingSize << "\n");
139
140 // Project non-'paddingDim' dimensions and compress the result.
141 llvm::SmallBitVector projectedDims(partialIndexingMap.getNumDims(), true);
142 projectedDims.flip(paddingDim);
143 AffineMap projectedMap =
144 mlir::projectDims(partialIndexingMap, projectedDims,
145 /*compressDimsFlag=*/true);
146
147 // If we are padding to the next multiple of, compose with ceil(sz) * sz.
148 OpFoldResult paddingDimOfr;
149 if (options.padToMultipleOf) {
150 AffineExpr d0, s0;
151 bindDims(builder.getContext(), d0);
152 bindSymbols(builder.getContext(), s0);
153 AffineMap ceilMap = AffineMap::get(1, 1, d0.ceilDiv(s0) * s0);
154 AffineMap composedMap = projectedMap.compose(ceilMap);
156 builder, loc, composedMap, {indexingSizes[paddingDim], paddingSize},
157 /*composeAffineMin=*/true);
158 } else {
159 // Otherwise just set to paddingSize.
161 builder, loc, projectedMap, paddingSize);
162 }
163
164 // Adjust for the maximum accessed index, which is (paddingSize - 1) *
165 // multiplier.
166 AffineExpr d0;
167 bindDims(builder.getContext(), d0);
168 int64_t multiplier = extractConstantMultiplier(projectedMap.getResult(0));
169 AffineMap subtractMap = AffineMap::get(1, 0, d0 - multiplier);
171 builder, loc, subtractMap, {paddingDimOfr});
172 terms.push_back(maxAccessIdx);
173
174 LLVM_DEBUG(DBGS() << "------new term: " << terms.back() << "\n");
175 }
176
177 // If there are no terms, just return the dim.
178 if (terms.empty()) {
179 paddedShape[resultIndex] =
180 createFoldedDimOp(builder, loc, v, resultIndex);
181 continue;
182 }
183
184 // Sum individual terms' contributions.
185 SmallVector<AffineExpr> dims(terms.size());
186 bindDimsList(builder.getContext(), MutableArrayRef{dims});
187 AffineExpr sumExpr = dims.front();
188 for (unsigned i = 1; i < dims.size(); ++i)
189 sumExpr = sumExpr + dims[i];
190 // Add 1 to the maximum accessed index and get the final padded size.
191 OpFoldResult paddedDimOfr =
192 affine::makeComposedFoldedAffineApply(builder, loc, sumExpr + 1, terms);
193 paddedShape[resultIndex] = paddedDimOfr;
194 }
195
196 return paddedShape;
197}
198
199FailureOr<SmallVector<OpFoldResult>>
201 OpBuilder &builder, OpOperand &operandToPad,
202 ArrayRef<Range> iterationDomain, const PadTilingInterfaceOptions &options) {
203 auto transferOp =
204 llvm::dyn_cast<IndexingMapOpInterface>(operandToPad.getOwner());
205 if (!transferOp)
206 return failure();
207
208 // clang-format off
209 assert(llvm::all_of(iterationDomain, [&builder](Range r) {
210 return r.offset == OpFoldResult(builder.getIndexAttr(0)) &&
211 r.stride == OpFoldResult(builder.getIndexAttr(1));
212 }) && "expected 0-offset 1-stride loop ranges");
213 // clang-format on
214 SmallVector<OpFoldResult> loopUpperBounds;
215 loopUpperBounds.reserve(iterationDomain.size());
216 for (const Range &range : iterationDomain)
217 loopUpperBounds.push_back(range.size);
218
219 AffineMap indexingMap = transferOp.getMatchingIndexingMap(&operandToPad);
220 return computePaddedShape(
221 builder, cast<TypedValue<RankedTensorType>>(operandToPad.get()),
222 indexingMap, loopUpperBounds, options);
223}
224
225/// Pad a single operand to `paddedShape` using `paddingValueAttr` as padding
226/// Value.
227static Value padOperand(OpBuilder &builder, TilingInterface opToPad,
229 ArrayRef<OpFoldResult> paddedShape,
230 Attribute paddingValueAttr) {
231 Value paddingValue;
232 if (auto complexTy =
233 dyn_cast<ComplexType>(getElementTypeOrSelf(v.getType()))) {
234 if (auto complexAttr = dyn_cast<ArrayAttr>(paddingValueAttr)) {
235 paddingValue = complex::ConstantOp::create(builder, opToPad.getLoc(),
236 complexTy, complexAttr);
237 }
238 } else if (isa<ub::PoisonAttr>(paddingValueAttr)) {
239 paddingValue = ub::PoisonOp::create(builder, opToPad.getLoc(),
240 getElementTypeOrSelf(v.getType()));
241 } else if (auto typedAttr = dyn_cast<TypedAttr>(paddingValueAttr)) {
242 paddingValue =
243 arith::ConstantOp::create(builder, opToPad.getLoc(), typedAttr);
244 }
245 assert(paddingValue && "failed to create value from padding attribute");
246
247 // Pad the operand to the bounding box defined by `paddedShape`.
248 SmallVector<int64_t> tensorShape;
249 SmallVector<Value> dynDims;
250 for (OpFoldResult ofr : paddedShape) {
251 std::optional<int64_t> cst = getConstantIntValue(ofr);
252 tensorShape.push_back(cst.has_value() ? *cst : ShapedType::kDynamic);
253 if (!cst.has_value())
254 dynDims.push_back(ofr.dyn_cast<Value>());
255 }
256 // TODO: use dispatchIndexOpFoldResults(paddedShape, dynDims, paddedShape);
257
258 auto paddedTensorType =
259 RankedTensorType::get(tensorShape, getElementTypeOrSelf(v));
260 LLVM_DEBUG(DBGS() << "--SUCCESS, makeComposedPadHighOp with type: "
261 << paddedTensorType);
262 return makeComposedPadHighOp(builder, opToPad.getLoc(), paddedTensorType, v,
263 paddingValue, /*nofold=*/false, dynDims);
264}
265
266FailureOr<PadTilingInterfaceResult> linalg::rewriteAsPaddedOp(
267 OpBuilder &builder, TilingInterface toPad,
269 const PadSizeComputationFunction &computePaddingSizeFun) {
270 LLVM_DEBUG(DBGS() << "Start rewriteAsPaddedOp : " << toPad << "\n");
272 Location loc = toPad.getLoc();
273
274 // Allow inference of pad values if they are not explicitly specified.
275 // TODO: be mindful about the value depending on the actual operation.
276 if (options.paddingValues.empty()) {
277 SmallVector<Type> types(toPad->getOperandTypes());
278 llvm::append_range(types, toPad->getResultTypes());
279 for (Type t : types) {
280 options.paddingValues.push_back(
282 }
283 }
284
285 if (llvm::any_of(toPad->getOperands(),
286 [](Value v) { return isa<MemRefType>(v.getType()); })) {
287 LLVM_DEBUG(DBGS() << "Not an operation on tensors: FAIL\n");
288 return failure();
289 }
290
291 // 1. Get the loopUpperBounds from the TilingInterface.
292 SmallVector<Range> iterationDomain = toPad.getIterationDomain(builder);
293
294 // 2. For each operand.
295 SmallVector<Value> newOperands;
296 newOperands.reserve(toPad->getNumOperands());
297 for (OpOperand &opOperand : toPad->getOpOperands()) {
298 Value operand = opOperand.get();
299 LLVM_DEBUG(DBGS() << "--start padding operand: " << operand << "\n");
300
301 // 2.a. Skip scalar-like operands.
302 Type operandType = operand.getType();
303 if (!isa<RankedTensorType>(operandType)) {
304 assert((!isa<ShapedType>(operandType) || isa<VectorType>(operandType)) &&
305 "Unexpected non-vector ShapedType");
306 newOperands.push_back(operand);
307 continue;
308 }
309
310 // 2.a. Compute padded shape.
311 FailureOr<SmallVector<OpFoldResult>> maybePaddedShape =
312 computePaddingSizeFun(builder, opOperand, iterationDomain, options);
313 if (failed(maybePaddedShape)) {
314 LLVM_DEBUG(DBGS() << "Could not get padded shape of operand: FAIL\n");
315 return failure();
316 }
317
318 // 2.b. Expect proper `paddingValues`.
319 // TODO: we may want to allow garbage padding in the future, in which case
320 // we would just not assert.
321 if (opOperand.getOperandNumber() >= options.paddingValues.size()) {
322 LLVM_DEBUG(DBGS() << "Too few padding values specified: FAIL\n");
323 return failure();
324 }
325 Attribute paddingValueAttr =
326 options.paddingValues[opOperand.getOperandNumber()];
327
328 // 2.c. Perform actual padding.
329 Value paddedOperand =
330 padOperand(builder, toPad, cast<TypedValue<RankedTensorType>>(operand),
331 *maybePaddedShape, paddingValueAttr);
332 LLVM_DEBUG(DBGS() << "--done padding operand: " << paddedOperand << "\n");
333
334 newOperands.push_back(paddedOperand);
335 if (auto padOp = paddedOperand.getDefiningOp<tensor::PadOp>())
336 padOps.push_back(padOp);
337 }
338
339 // 3. Form the resulting tensor::ExtractSliceOp.
340 ReifiedRankedShapedTypeDims reifiedResultShapes;
341 if (failed(reifyResultShapes(builder, toPad, reifiedResultShapes))) {
342 LLVM_DEBUG(DBGS() << "Failed to reify result shapes: FAIL\n");
343 return failure();
344 }
345 assert(reifiedResultShapes.size() == toPad->getNumResults() &&
346 "expected same number of results");
347
348 // Clone `toPad` to operate on the statically padded shapes.
349 auto resultTensorTypes =
350 ValueRange(newOperands).take_back(toPad->getNumResults()).getTypes();
351 // clone **should** properly notify the builder.
352 TilingInterface paddedOp =
353 clone(builder, toPad, resultTensorTypes, newOperands);
354 LLVM_DEBUG(DBGS() << "--cloned padded op: " << paddedOp << "\n");
355
356 // Recover the slice out of the new static results.
357 SmallVector<Value> paddedSubtensorResults;
358 paddedSubtensorResults.reserve(toPad->getNumResults());
359 for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
360 Value paddedResult = en.value();
361 int64_t resultNumber = en.index();
362 int64_t rank = cast<RankedTensorType>(paddedResult.getType()).getRank();
363 SmallVector<OpFoldResult> offsets(rank, builder.getIndexAttr(0));
364 SmallVector<OpFoldResult> strides(rank, builder.getIndexAttr(1));
365 paddedSubtensorResults.push_back(tensor::ExtractSliceOp::create(
366 builder, loc, paddedResult, offsets, reifiedResultShapes[resultNumber],
367 strides));
368 }
369
370 return PadTilingInterfaceResult{padOps, paddedOp, paddedSubtensorResults};
371}
b
Return true if permutation is a valid permutation of the outer_dims_perm (case OuterOrInnerPerm::Oute...
static SmallVector< OpFoldResult > getFullRankPaddingSizes(Builder &b, ArrayRef< OpFoldResult > indexingSizes, const PadTilingInterfaceOptions &options)
Form a "full-rank" padding specification so that the application is easy.
#define DBGS()
static int64_t extractConstantMultiplier(AffineExpr expr)
Extracts the constant multiplier from an affine expression of the form d * c or c * d,...
static Value padOperand(OpBuilder &builder, TilingInterface opToPad, TypedValue< RankedTensorType > v, ArrayRef< OpFoldResult > paddedShape, Attribute paddingValueAttr)
Pad a single operand to paddedShape using paddingValueAttr as padding Value.
static llvm::ManagedStatic< PassManagerOptions > options
Base type for affine expression.
Definition AffineExpr.h:68
AffineExpr ceilDiv(uint64_t v) const
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition AffineMap.h:46
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
AffineExpr getResult(unsigned idx) const
AffineMap getSubMap(ArrayRef< unsigned > resultPos) const
Returns the map consisting of the resultPos subset.
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
Attributes are known-constant values of operations.
Definition Attributes.h:25
This class is a general helper class for creating context-global objects like types,...
Definition Builders.h:51
IntegerAttr getIndexAttr(int64_t value)
Definition Builders.cpp:108
TypedAttr getZeroAttr(Type type)
Definition Builders.cpp:324
MLIRContext * getContext() const
Definition Builders.h:56
IRValueT get() const
Return the current value being used by this operand.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition Location.h:76
This class helps build Operations.
Definition Builders.h:207
This class represents a single result from folding an operation.
This class represents an operand of an operation.
Definition Value.h:257
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition Types.h:74
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
Type getType() const
Return the type of this value.
Definition Value.h:105
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition Value.cpp:18
Operation * getOwner() const
Return the owner of this operand.
Definition UseDefLists.h:38
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
LogicalResult rewriteAsPaddedOp(RewriterBase &rewriter, LinalgOp opToPad, const LinalgPaddingOptions &options, LinalgOp &paddedOp, SmallVector< Value > &replacements, SmallVector< tensor::PadOp > &padOps)
Pad the iterator dimensions options.paddingDimensions of all opToPad operands to a static bounding bo...
Definition Padding.cpp:244
std::function< FailureOr< SmallVector< OpFoldResult > >( OpBuilder &, OpOperand &, ArrayRef< Range >, const PadTilingInterfaceOptions &)> PadSizeComputationFunction
Definition Transforms.h:627
SmallVector< OpFoldResult > computePaddedShape(OpBuilder &, TypedValue< RankedTensorType > v, AffineMap indexingMap, ArrayRef< OpFoldResult > indexingSizes, const PadTilingInterfaceOptions &options)
Helper function to compute the padded shape of the given value v of RankedTensorType given:
OpFoldResult createFoldedDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
FailureOr< SmallVector< OpFoldResult > > computeIndexingMapOpInterfacePaddedShape(OpBuilder &, OpOperand &operandToPad, ArrayRef< Range > iterationDomain, const PadTilingInterfaceOptions &)
Specific helper for Linalg ops.
Value makeComposedPadHighOp(OpBuilder &b, Location loc, RankedTensorType type, Value source, Value padding, bool nofold, ValueRange typeDynDims={})
Create a tensor::PadOp that pads source to the shape of type whose sizes are assumed to be greater th...
Definition Utils.cpp:1115
Include the generated interface declarations.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
LogicalResult reifyResultShapes(OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes)
Reify the shape of the result of an operation (typically in terms of the shape of its operands).
void bindDimsList(MLIRContext *ctx, MutableArrayRef< AffineExprTy > exprs)
Definition AffineExpr.h:316
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
Definition AffineExpr.h:311
SmallVector< SmallVector< OpFoldResult > > ReifiedRankedShapedTypeDims
@ Mul
RHS of mul is always a constant or a symbolic expression.
Definition AffineExpr.h:43
Type getElementTypeOrSelf(Type type)
Return the element type or return the type itself.
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
Definition Value.h:497
bool isZeroInteger(OpFoldResult v)
Return true if v is an IntegerAttr with value 0.
void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to SymbolExpr at positions: [0 .
Definition AffineExpr.h:325
Operation * clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands)
AffineMap projectDims(AffineMap map, const llvm::SmallBitVector &projectedDimensions, bool compressDimsFlag=false)
Returns the map that results from projecting out the dimensions specified in projectedDimensions.
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
OpFoldResult stride
OpFoldResult offset
Operations and values created in the process of padding a TilingInterface operation.
Definition Transforms.h:640