23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Casting.h"
26#define DEBUG_TYPE "pad-tiling-interface"
32#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
33#define DBGSNL() (llvm::dbgs() << "\n")
41 for (
size_t idx = 0, e = indexingSizes.size(); idx != e; ++idx) {
43 paddingSizes.push_back(
options.paddingSizes.size() > idx
51 options.padToMultipleOf ?
b.getIndexAttr(1) : indexingSizes[idx];
53 LLVM_DEBUG(
DBGS() <<
"----idx: " << idx <<
" : " << paddingSizes[idx]
64 if (
auto binOp = dyn_cast<AffineBinaryOpExpr>(expr)) {
66 auto lhsD = dyn_cast<AffineDimExpr>(binOp.getLHS());
67 auto rhsC = dyn_cast<AffineConstantExpr>(binOp.getRHS());
69 return rhsC.getValue();
71 auto lhsC = dyn_cast<AffineConstantExpr>(binOp.getLHS());
72 auto rhsD = dyn_cast<AffineDimExpr>(binOp.getRHS());
74 return lhsC.getValue();
105 auto tensorType = cast<RankedTensorType>(v.getType());
106 paddedShape.resize_for_overwrite(tensorType.getRank());
107 assert(tensorType.getRank() == indexingMap.
getNumResults() &&
108 "expect the number of results of the affine map to match the tensor "
117 for (
const auto &enResults : enumerate(indexingMap.
getResults())) {
118 int64_t resultIndex = enResults.index();
122 LLVM_DEBUG(
DBGS() <<
"----resultIndex: " << resultIndex
123 <<
" with partialIndexingMap: " << partialIndexingMap
129 for (
size_t paddingDim = 0, e = paddingSizes.size(); paddingDim != e;
132 LLVM_DEBUG(
DBGS() <<
"------try apply padding of dim: " << paddingDim
133 <<
" to: " << paddingSize <<
"\n");
134 if (!enResults.value().isFunctionOfDim(paddingDim))
137 LLVM_DEBUG(
DBGS() <<
"------apply padding of dim: " << paddingDim
138 <<
" to: " << paddingSize <<
"\n");
141 llvm::SmallBitVector projectedDims(partialIndexingMap.
getNumDims(),
true);
142 projectedDims.flip(paddingDim);
156 builder, loc, composedMap, {indexingSizes[paddingDim], paddingSize},
161 builder, loc, projectedMap, paddingSize);
171 builder, loc, subtractMap, {paddingDimOfr});
172 terms.push_back(maxAccessIdx);
174 LLVM_DEBUG(
DBGS() <<
"------new term: " << terms.back() <<
"\n");
179 paddedShape[resultIndex] =
188 for (
unsigned i = 1; i < dims.size(); ++i)
189 sumExpr = sumExpr + dims[i];
193 paddedShape[resultIndex] = paddedDimOfr;
199FailureOr<SmallVector<OpFoldResult>>
204 llvm::dyn_cast<IndexingMapOpInterface>(operandToPad.
getOwner());
209 assert(llvm::all_of(iterationDomain, [&builder](
Range r) {
212 }) &&
"expected 0-offset 1-stride loop ranges");
215 loopUpperBounds.reserve(iterationDomain.size());
216 for (
const Range &range : iterationDomain)
217 loopUpperBounds.push_back(range.size);
219 AffineMap indexingMap = transferOp.getMatchingIndexingMap(&operandToPad);
222 indexingMap, loopUpperBounds,
options);
234 if (
auto complexAttr = dyn_cast<ArrayAttr>(paddingValueAttr)) {
235 paddingValue = complex::ConstantOp::create(builder, opToPad.getLoc(),
236 complexTy, complexAttr);
238 }
else if (isa<ub::PoisonAttr>(paddingValueAttr)) {
239 paddingValue = ub::PoisonOp::create(builder, opToPad.getLoc(),
241 }
else if (
auto typedAttr = dyn_cast<TypedAttr>(paddingValueAttr)) {
243 arith::ConstantOp::create(builder, opToPad.getLoc(), typedAttr);
245 assert(paddingValue &&
"failed to create value from padding attribute");
252 tensorShape.push_back(cst.has_value() ? *cst : ShapedType::kDynamic);
253 if (!cst.has_value())
254 dynDims.push_back(ofr.dyn_cast<
Value>());
258 auto paddedTensorType =
260 LLVM_DEBUG(
DBGS() <<
"--SUCCESS, makeComposedPadHighOp with type: "
261 << paddedTensorType);
263 paddingValue,
false, dynDims);
267 OpBuilder &builder, TilingInterface toPad,
270 LLVM_DEBUG(
DBGS() <<
"Start rewriteAsPaddedOp : " << toPad <<
"\n");
276 if (
options.paddingValues.empty()) {
278 llvm::append_range(types, toPad->getResultTypes());
279 for (
Type t : types) {
280 options.paddingValues.push_back(
285 if (llvm::any_of(toPad->getOperands(),
286 [](
Value v) { return isa<MemRefType>(v.getType()); })) {
287 LLVM_DEBUG(
DBGS() <<
"Not an operation on tensors: FAIL\n");
296 newOperands.reserve(toPad->getNumOperands());
297 for (
OpOperand &opOperand : toPad->getOpOperands()) {
298 Value operand = opOperand.get();
299 LLVM_DEBUG(
DBGS() <<
"--start padding operand: " << operand <<
"\n");
303 if (!isa<RankedTensorType>(operandType)) {
304 assert((!isa<ShapedType>(operandType) || isa<VectorType>(operandType)) &&
305 "Unexpected non-vector ShapedType");
306 newOperands.push_back(operand);
311 FailureOr<SmallVector<OpFoldResult>> maybePaddedShape =
312 computePaddingSizeFun(builder, opOperand, iterationDomain,
options);
313 if (failed(maybePaddedShape)) {
314 LLVM_DEBUG(
DBGS() <<
"Could not get padded shape of operand: FAIL\n");
321 if (opOperand.getOperandNumber() >=
options.paddingValues.size()) {
322 LLVM_DEBUG(
DBGS() <<
"Too few padding values specified: FAIL\n");
326 options.paddingValues[opOperand.getOperandNumber()];
329 Value paddedOperand =
331 *maybePaddedShape, paddingValueAttr);
332 LLVM_DEBUG(
DBGS() <<
"--done padding operand: " << paddedOperand <<
"\n");
334 newOperands.push_back(paddedOperand);
335 if (
auto padOp = paddedOperand.
getDefiningOp<tensor::PadOp>())
336 padOps.push_back(padOp);
342 LLVM_DEBUG(
DBGS() <<
"Failed to reify result shapes: FAIL\n");
345 assert(reifiedResultShapes.size() == toPad->getNumResults() &&
346 "expected same number of results");
349 auto resultTensorTypes =
350 ValueRange(newOperands).take_back(toPad->getNumResults()).getTypes();
352 TilingInterface paddedOp =
353 clone(builder, toPad, resultTensorTypes, newOperands);
354 LLVM_DEBUG(
DBGS() <<
"--cloned padded op: " << paddedOp <<
"\n");
358 paddedSubtensorResults.reserve(toPad->getNumResults());
359 for (
const auto &en : llvm::enumerate(paddedOp->getResults())) {
360 Value paddedResult = en.value();
361 int64_t resultNumber = en.index();
362 int64_t rank = cast<RankedTensorType>(paddedResult.
getType()).getRank();
365 paddedSubtensorResults.push_back(tensor::ExtractSliceOp::create(
366 builder, loc, paddedResult, offsets, reifiedResultShapes[resultNumber],
static SmallVector< OpFoldResult > getFullRankPaddingSizes(Builder &b, ArrayRef< OpFoldResult > indexingSizes, const PadTilingInterfaceOptions &options)
Form a "full-rank" padding specification so that the application is easy.
static int64_t extractConstantMultiplier(AffineExpr expr)
Extracts the constant multiplier from an affine expression of the form d * c or c * d,...
static Value padOperand(OpBuilder &builder, TilingInterface opToPad, TypedValue< RankedTensorType > v, ArrayRef< OpFoldResult > paddedShape, Attribute paddingValueAttr)
Pad a single operand to paddedShape using paddingValueAttr as padding Value.
static llvm::ManagedStatic< PassManagerOptions > options
Base type for affine expression.
AffineExpr ceilDiv(uint64_t v) const
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
AffineExpr getResult(unsigned idx) const
AffineMap getSubMap(ArrayRef< unsigned > resultPos) const
Returns the map consisting of the resultPos subset.
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
Attributes are known-constant values of operations.
This class is a general helper class for creating context-global objects like types,...
IntegerAttr getIndexAttr(int64_t value)
TypedAttr getZeroAttr(Type type)
MLIRContext * getContext() const
IRValueT get() const
Return the current value being used by this operand.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
This class helps build Operations.
This class represents a single result from folding an operation.
This class represents an operand of an operation.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Operation * getOwner() const
Return the owner of this operand.
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
LogicalResult rewriteAsPaddedOp(RewriterBase &rewriter, LinalgOp opToPad, const LinalgPaddingOptions &options, LinalgOp &paddedOp, SmallVector< Value > &replacements, SmallVector< tensor::PadOp > &padOps)
Pad the iterator dimensions options.paddingDimensions of all opToPad operands to a static bounding bo...
std::function< FailureOr< SmallVector< OpFoldResult > >( OpBuilder &, OpOperand &, ArrayRef< Range >, const PadTilingInterfaceOptions &)> PadSizeComputationFunction
SmallVector< OpFoldResult > computePaddedShape(OpBuilder &, TypedValue< RankedTensorType > v, AffineMap indexingMap, ArrayRef< OpFoldResult > indexingSizes, const PadTilingInterfaceOptions &options)
Helper function to compute the padded shape of the given value v of RankedTensorType given:
OpFoldResult createFoldedDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
FailureOr< SmallVector< OpFoldResult > > computeIndexingMapOpInterfacePaddedShape(OpBuilder &, OpOperand &operandToPad, ArrayRef< Range > iterationDomain, const PadTilingInterfaceOptions &)
Specific helper for Linalg ops.
Value makeComposedPadHighOp(OpBuilder &b, Location loc, RankedTensorType type, Value source, Value padding, bool nofold, ValueRange typeDynDims={})
Create a tensor::PadOp that pads source to the shape of type whose sizes are assumed to be greater th...
Include the generated interface declarations.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
LogicalResult reifyResultShapes(OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes)
Reify the shape of the result of an operation (typically in terms of the shape of its operands).
void bindDimsList(MLIRContext *ctx, MutableArrayRef< AffineExprTy > exprs)
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
SmallVector< SmallVector< OpFoldResult > > ReifiedRankedShapedTypeDims
@ Mul
RHS of mul is always a constant or a symbolic expression.
Type getElementTypeOrSelf(Type type)
Return the element type or return the type itself.
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
bool isZeroInteger(OpFoldResult v)
Return true if v is an IntegerAttr with value 0.
void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to SymbolExpr at positions: [0 .
Operation * clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands)
AffineMap projectDims(AffineMap map, const llvm::SmallBitVector &projectedDimensions, bool compressDimsFlag=false)
Returns the map that results from projecting out the dimensions specified in projectedDimensions.
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
Operations and values created in the process of padding a TilingInterface operation.