31#define DEBUG_TYPE "affine-utils"
41class AffineApplyExpander
48 : builder(builder), dimValues(dimValues), symbolValues(symbolValues),
51 template <
typename OpTy>
53 arith::IntegerOverflowFlags overflowFlags =
54 arith::IntegerOverflowFlags::none) {
59 auto op = OpTy::create(builder, loc,
lhs,
rhs, overflowFlags);
60 return op.getResult();
64 return buildBinaryExpr<arith::AddIOp>(expr);
68 return buildBinaryExpr<arith::MulIOp>(expr,
69 arith::IntegerOverflowFlags::nsw);
82 if (
auto rhsConst = dyn_cast<AffineConstantExpr>(expr.
getRHS())) {
83 if (rhsConst.getValue() <= 0) {
84 emitError(loc,
"modulo by non-positive value is not supported");
91 assert(
lhs &&
rhs &&
"unexpected affine expr lowering failure");
93 Value remainder = arith::RemSIOp::create(builder, loc,
lhs,
rhs);
95 Value isRemainderNegative = arith::CmpIOp::create(
96 builder, loc, arith::CmpIPredicate::slt, remainder, zeroCst);
97 Value correctedRemainder =
98 arith::AddIOp::create(builder, loc, remainder,
rhs);
99 Value result = arith::SelectOp::create(builder, loc, isRemainderNegative,
100 correctedRemainder, remainder);
122 if (
auto rhsConst = dyn_cast<AffineConstantExpr>(expr.
getRHS())) {
123 if (rhsConst.getValue() <= 0) {
124 emitError(loc,
"division by non-positive value is not supported");
130 assert(
lhs &&
rhs &&
"unexpected affine expr lowering failure");
134 Value negative = arith::CmpIOp::create(
135 builder, loc, arith::CmpIPredicate::slt,
lhs, zeroCst);
136 Value negatedDecremented =
137 arith::SubIOp::create(builder, loc, noneCst,
lhs);
138 Value dividend = arith::SelectOp::create(builder, loc, negative,
139 negatedDecremented,
lhs);
140 Value quotient = arith::DivSIOp::create(builder, loc, dividend,
rhs);
141 Value correctedQuotient =
142 arith::SubIOp::create(builder, loc, noneCst, quotient);
143 Value result = arith::SelectOp::create(builder, loc, negative,
144 correctedQuotient, quotient);
162 if (
auto rhsConst = dyn_cast<AffineConstantExpr>(expr.
getRHS())) {
163 if (rhsConst.getValue() <= 0) {
164 emitError(loc,
"division by non-positive value is not supported");
170 assert(
lhs &&
rhs &&
"unexpected affine expr lowering failure");
174 Value nonPositive = arith::CmpIOp::create(
175 builder, loc, arith::CmpIPredicate::sle,
lhs, zeroCst);
176 Value negated = arith::SubIOp::create(builder, loc, zeroCst,
lhs);
177 Value decremented = arith::SubIOp::create(builder, loc,
lhs, oneCst);
178 Value dividend = arith::SelectOp::create(builder, loc, nonPositive, negated,
180 Value quotient = arith::DivSIOp::create(builder, loc, dividend,
rhs);
181 Value negatedQuotient =
182 arith::SubIOp::create(builder, loc, zeroCst, quotient);
183 Value incrementedQuotient =
184 arith::AddIOp::create(builder, loc, quotient, oneCst);
186 builder, loc, nonPositive, negatedQuotient, incrementedQuotient);
192 return op.getResult();
197 "affine dim position out of range");
203 "symbol dim position out of range");
222 return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
227std::optional<SmallVector<Value, 8>>
231 auto expanded = llvm::to_vector<8>(
233 [numDims, &builder, loc, operands](
AffineExpr expr) {
234 return expandAffineExpr(builder, loc, expr,
235 operands.take_front(numDims),
236 operands.drop_front(numDims));
238 if (llvm::all_of(expanded, [](
Value v) {
return v; }))
248 assert(ifOp.hasElse() &&
"else block expected");
250 Block *destBlock = ifOp->getBlock();
251 Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock();
254 std::prev(srcBlock->
end()));
268 if (
auto forOp = dyn_cast<AffineForOp>(parentOp)) {
269 if (llvm::is_contained(ifOperands, forOp.getInductionVar()))
271 }
else if (
auto parallelOp = dyn_cast<AffineParallelOp>(parentOp)) {
272 if (llvm::any_of(parallelOp.getIVs(), [&](
Value iv) {
273 return llvm::is_contained(ifOperands, iv);
276 }
else if (!isa<AffineIfOp>(parentOp)) {
291 if (hoistOverOp == ifOp)
301 auto hoistedIfOp = AffineIfOp::create(
b, ifOp.getLoc(), ifOp.getIntegerSet(),
310 StringAttr idForIfOp =
b.getStringAttr(
"__mlir_if_hoisting");
312 b.setInsertionPointAfter(hoistOverOp);
314 ifOp->setAttr(idForIfOp,
b.getBoolAttr(
true));
315 hoistOverOpClone =
b.clone(*hoistOverOp, operandMap);
321 auto *thenBlock = hoistedIfOp.getThenBlock();
322 thenBlock->getOperations().splice(thenBlock->begin(),
327 AffineIfOp ifCloneInElse;
328 hoistOverOpClone->
walk([&](AffineIfOp ifClone) {
329 if (!ifClone->getAttr(idForIfOp))
331 ifCloneInElse = ifClone;
334 assert(ifCloneInElse &&
"if op clone should exist");
337 if (!ifCloneInElse.hasElse())
338 ifCloneInElse.erase();
343 auto *elseBlock = hoistedIfOp.getElseBlock();
344 elseBlock->getOperations().splice(
354 AffineParallelOp *resOp) {
356 unsigned numReductions = parallelReductions.size();
357 if (numReductions != forOp.getNumIterOperands())
362 AffineMap lowerBoundMap = forOp.getLowerBoundMap();
363 ValueRange lowerBoundOperands = forOp.getLowerBoundOperands();
364 AffineMap upperBoundMap = forOp.getUpperBoundMap();
365 ValueRange upperBoundOperands = forOp.getUpperBoundOperands();
368 auto reducedValues = llvm::to_vector<4>(llvm::map_range(
370 auto reductionKinds = llvm::to_vector<4>(llvm::map_range(
372 AffineParallelOp newPloop = AffineParallelOp::create(
373 outsideBuilder, loc,
ValueRange(reducedValues).getTypes(), reductionKinds,
378 newPloop.getRegion().takeBody(forOp.getRegion());
379 Operation *yieldOp = &newPloop.getBody()->back();
384 newResults.reserve(numReductions);
385 for (
unsigned i = 0; i < numReductions; ++i) {
386 Value init = forOp.getInits()[i];
391 assert(reductionOp &&
"yielded value is expected to be produced by an op");
395 reductionOp->
setOperands({init, newPloop->getResult(i)});
396 forOp->getResult(i).replaceAllUsesWith(reductionOp->
getResult(0));
405 newPloop.getBody()->eraseArguments(numIVs, numReductions);
414LogicalResult mlir::affine::hoistAffineIfOp(AffineIfOp ifOp,
bool *folded) {
417 if (ifOp.getNumResults() != 0)
426 AffineIfOp::getCanonicalizationPatterns(
patterns, ifOp.getContext());
430 ifOp.getOperation(), frozenPatterns,
442 assert(llvm::all_of(ifOp.getOperands(),
444 return isTopLevelValue(v) || isAffineInductionVar(v);
446 "operands not composed");
454 if (hoistedIfOp == ifOp)
471 return positivePath ?
min :
max;
472 if (
auto bin = dyn_cast<AffineBinaryOpExpr>(e)) {
476 return substWithMin(
lhs, dim,
min,
max, positivePath) +
477 substWithMin(
rhs, dim,
min,
max, positivePath);
479 auto c1 = dyn_cast<AffineConstantExpr>(bin.getLHS());
480 auto c2 = dyn_cast<AffineConstantExpr>(bin.getRHS());
481 if (c1 && c1.getValue() < 0)
483 bin.getKind(), c1, substWithMin(
rhs, dim,
min,
max, !positivePath));
484 if (c2 && c2.getValue() < 0)
486 bin.getKind(), substWithMin(
lhs, dim,
min,
max, !positivePath), c2);
488 bin.getKind(), substWithMin(
lhs, dim,
min,
max, positivePath),
489 substWithMin(
rhs, dim,
min,
max, positivePath));
494void mlir::affine::normalizeAffineParallel(AffineParallelOp op) {
496 if (op.hasMinMaxBounds())
499 AffineMap lbMap = op.getLowerBoundsMap();
502 bool isAlreadyNormalized =
503 llvm::all_of(llvm::zip(steps, lbMap.
getResults()), [](
auto tuple) {
504 int64_t step = std::get<0>(tuple);
505 auto lbExpr = dyn_cast<AffineConstantExpr>(std::get<1>(tuple));
506 return lbExpr && lbExpr.getValue() == 0 && step == 1;
508 if (isAlreadyNormalized)
513 op.getLowerBoundsValueMap(), &ranges);
518 for (
unsigned i = 0, e = steps.size(); i < e; ++i) {
522 lbExprs.push_back(zeroExpr);
526 ubExprs.push_back(ubExpr);
539 OperandRange dimOperands = lbOperands.take_front(nDims);
540 OperandRange symbolOperands = lbOperands.drop_front(nDims);
542 applyOperands.push_back(iv);
543 applyOperands.append(symbolOperands.begin(), symbolOperands.end());
545 AffineApplyOp::create(builder, op.getLoc(), map, applyOperands);
550 op.setSteps(newSteps);
552 0, 0, lbExprs, op.getContext());
553 op.setLowerBounds({}, newLowerMap);
555 ubExprs, op.getContext());
556 op.setUpperBounds(ranges.
getOperands(), newUpperMap);
559LogicalResult mlir::affine::normalizeAffineFor(AffineForOp op,
560 bool promoteSingleIter) {
565 if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) &&
573 if (op.getLowerBoundMap().getNumResults() != 1)
578 int64_t origLoopStep = op.getStepAsInt();
581 AffineMap oldLbMap = op.getLowerBoundMap();
588 op.getLowerBoundMap().getResult(0));
593 AffineValueMap paddedLbValueMap(paddedLbMap, op.getLowerBoundOperands());
594 AffineValueMap ubValueMap(op.getUpperBoundMap(), op.getUpperBoundOperands());
603 for (
unsigned i = 0; i < numResult; ++i)
604 scaleDownExprs[i] = opBuilder.getAffineDimExpr(i).ceilDiv(origLoopStep);
612 op.setUpperBound(newUbValueMap.
getOperands(), newUbMap);
613 op.setLowerBound({}, opBuilder.getConstantAffineMap(0));
618 opBuilder.setInsertionPointToStart(op.getBody());
621 AffineMap::get(1, 0, -opBuilder.getAffineDimExpr(0) * origLoopStep);
625 (
void)newIvToOldIvMap.canonicalize();
627 AffineApplyOp::create(opBuilder, loc, newIvToOldIvMap.getAffineMap(),
628 newIvToOldIvMap.getOperands());
629 op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV);
655 unsigned minSurroundingLoops) {
669 for (
unsigned d = nsLoops + 1; d > minSurroundingLoops; d--) {
671 srcAccess, destAccess, d, &dependenceConstraints,
686template <
typename EffectType,
typename T>
692 bool hasSideEffect =
false;
701 if (
auto memEffect = dyn_cast<MemoryEffectOpInterface>(op)) {
703 memEffect.getEffects(effects);
705 bool opMayHaveEffect =
false;
706 for (
auto effect : effects) {
709 if (isa<EffectType>(effect.getEffect())) {
710 if (effect.getValue() && effect.getValue() !=
memref &&
713 opMayHaveEffect =
true;
718 if (!opMayHaveEffect)
723 if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
730 unsigned minSurroundingLoops =
733 hasSideEffect =
true;
739 hasSideEffect =
true;
746 for (
Region ®ion : op->getRegions())
747 for (
Block &block : region)
755 hasSideEffect =
true;
766 checkOperation(parent);
775 "Checking for side effect between two operations without a common "
783 until(untilOp->getParentOp(), untilOp);
795 for (
auto iter = ++from->getIterator(), end = from->
getBlock()->
end();
796 iter != end && &*iter != untilOp; ++iter) {
797 checkOperation(&*iter);
802 if (untilOp->getBlock() != from->
getBlock())
804 todoBlocks.push_back(succ);
809 while (!todoBlocks.empty()) {
810 Block *blk = todoBlocks.pop_back_val();
814 for (
auto &op : *blk) {
820 todoBlocks.push_back(succ);
825 return !hasSideEffect;
844 for (
auto *user : loadOp.getMemRef().getUsers()) {
845 auto storeOp = dyn_cast<AffineWriteOpInterface>(user);
859 if (srcAccess != destAccess)
879 assert(lastWriteStoreOp ==
nullptr &&
880 "multiple simultaneous replacement stores");
881 lastWriteStoreOp = storeOp;
884 if (!lastWriteStoreOp)
889 cast<AffineWriteOpInterface>(lastWriteStoreOp).getValueToStore();
892 if (storeVal.
getType() != loadOp.getValue().getType())
896 memrefsToErase.insert(loadOp.getMemRef());
898 loadOpsToErase.push_back(loadOp);
903 affine::AffineReadOpInterface>(
919 auto writeB = dyn_cast<AffineWriteOpInterface>(user);
924 if (writeB == writeA)
928 if (writeB->getParentRegion() != writeA->getParentRegion())
935 if (srcAccess != destAccess)
948 opsToErase.push_back(writeA);
959static void loadCSE(AffineReadOpInterface loadA,
964 for (
auto *user : loadA.getMemRef().getUsers()) {
965 auto loadB = dyn_cast<AffineReadOpInterface>(user);
966 if (!loadB || loadB == loadA)
973 if (srcAccess != destAccess) {
983 loadB.getOperation(), loadA,
mayAlias))
988 if (loadB.getValue().getType() != loadA.getValue().getType())
991 loadCandidates.push_back(loadB);
997 for (AffineReadOpInterface option : loadCandidates) {
998 if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) {
999 return depStore == option ||
1000 domInfo.
dominates(option.getOperation(),
1001 depStore.getOperation());
1003 loadB = option.getValue();
1009 loadA.getValue().replaceAllUsesWith(loadB);
1011 loadOpsToErase.push_back(loadA);
1040void mlir::affine::affineScalarReplace(func::FuncOp f,
DominanceInfo &domInfo,
1050 return !aliasAnalysis.
alias(val1, val2).
isNo();
1054 f.walk([&](AffineReadOpInterface loadOp) {
1057 for (
auto *op : opsToErase)
1062 f.walk([&](AffineWriteOpInterface storeOp) {
1065 for (
auto *op : opsToErase)
1073 for (
auto memref : memrefsToErase) {
1081 return !isa<AffineWriteOpInterface>(ownerOp) &&
1082 !hasSingleEffect<MemoryEffects::Free>(ownerOp, memref);
1087 for (
auto *user : llvm::make_early_inc_range(
memref.getUsers()))
1095 f.walk([&](AffineReadOpInterface loadOp) {
1098 for (
auto *op : opsToErase)
1105 return isa<AffineMapAccessInterface, memref::LoadOp, memref::StoreOp>(op);
1109LogicalResult mlir::affine::replaceAllMemRefUsesWith(
1113 bool allowNonDereferencingOps) {
1114 unsigned newMemRefRank = cast<MemRefType>(newMemRef.
getType()).getRank();
1115 (
void)newMemRefRank;
1116 unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.
getType()).getRank();
1117 (
void)oldMemRefRank;
1119 assert(indexRemap.
getNumSymbols() == symbolOperands.size() &&
1120 "symbolic operand count mismatch");
1122 extraOperands.size() + oldMemRefRank + symbolOperands.size());
1123 assert(indexRemap.
getNumResults() + extraIndices.size() == newMemRefRank);
1125 assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
1129 assert(cast<MemRefType>(oldMemRef.
getType()).getElementType() ==
1130 cast<MemRefType>(newMemRef.
getType()).getElementType());
1133 for (
const auto &opEntry : llvm::enumerate(op->
getOperands())) {
1134 if (opEntry.value() == oldMemRef)
1135 usePositions.push_back(opEntry.index());
1139 if (usePositions.empty())
1142 unsigned memRefOperandPos = usePositions.front();
1148 if (!allowNonDereferencingOps) {
1154 for (
unsigned pos : usePositions)
1159 if (usePositions.size() > 1) {
1161 LLVM_DEBUG(llvm::dbgs()
1162 <<
"multiple dereferencing uses in a single op not supported");
1169 unsigned oldMemRefNumIndices = oldMemRefRank;
1171 auto affMapAccInterface = dyn_cast<AffineMapAccessInterface>(op);
1172 if (affMapAccInterface) {
1177 affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef);
1178 oldMap = cast<AffineMapAttr>(oldMapAttrPair.
getValue()).getValue();
1181 oldMapOperands.assign(startIdx, startIdx + oldMemRefNumIndices);
1186 oldMemRefOperands.reserve(oldMemRefRank);
1187 if (affMapAccInterface &&
1189 for (
auto resultExpr : oldMap.
getResults()) {
1192 auto afOp = AffineApplyOp::create(builder, op->
getLoc(), singleResMap,
1194 oldMemRefOperands.push_back(afOp);
1195 affineApplyOps.push_back(afOp);
1198 oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end());
1205 remapOperands.reserve(extraOperands.size() + oldMemRefRank +
1206 symbolOperands.size());
1207 remapOperands.append(extraOperands.begin(), extraOperands.end());
1208 remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
1209 remapOperands.append(symbolOperands.begin(), symbolOperands.end());
1212 remapOutputs.reserve(oldMemRefRank);
1216 for (
auto resultExpr : indexRemap.
getResults()) {
1219 auto afOp = AffineApplyOp::create(builder, op->
getLoc(), singleResMap,
1221 remapOutputs.push_back(afOp);
1222 affineApplyOps.push_back(afOp);
1226 remapOutputs.assign(remapOperands.begin(), remapOperands.end());
1229 newMapOperands.reserve(newMemRefRank);
1232 for (
Value extraIndex : extraIndices) {
1234 "invalid memory op index");
1235 newMapOperands.push_back(extraIndex);
1239 newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
1242 assert(newMapOperands.size() == newMemRefRank);
1248 for (
Value value : affineApplyOps)
1249 if (value.use_empty())
1250 value.getDefiningOp()->erase();
1254 state.operands.reserve(op->
getNumOperands() + extraIndices.size());
1259 state.operands.push_back(newMemRef);
1262 if (affMapAccInterface) {
1263 state.operands.append(newMapOperands.begin(), newMapOperands.end());
1268 for (
unsigned i = 0; i < newMemRefRank; i++) {
1269 state.operands.push_back(AffineApplyOp::create(
1272 newMap.getResult(i)),
1278 unsigned oldMapNumInputs = oldMapOperands.size();
1279 state.operands.append(op->
operand_begin() + memRefOperandPos + 1 +
1285 state.types.push_back(
result.getType());
1288 auto newMapAttr = AffineMapAttr::get(newMap);
1289 for (
auto namedAttr : op->
getAttrs()) {
1290 if (affMapAccInterface &&
1291 namedAttr.getName() ==
1292 affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef).getName())
1293 state.attributes.push_back({namedAttr.getName(), newMapAttr});
1295 state.attributes.push_back(namedAttr);
1299 auto *repOp = builder.
create(state);
1306LogicalResult mlir::affine::replaceAllMemRefUsesWith(
1311 bool allowNonDereferencingOps,
bool replaceInDeallocOp) {
1312 unsigned newMemRefRank = cast<MemRefType>(newMemRef.
getType()).getRank();
1313 (
void)newMemRefRank;
1314 unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.
getType()).getRank();
1315 (
void)oldMemRefRank;
1317 assert(indexRemap.
getNumSymbols() == symbolOperands.size() &&
1318 "symbol operand count mismatch");
1320 extraOperands.size() + oldMemRefRank + symbolOperands.size());
1321 assert(indexRemap.
getNumResults() + extraIndices.size() == newMemRefRank);
1323 assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
1327 assert(cast<MemRefType>(oldMemRef.
getType()).getElementType() ==
1328 cast<MemRefType>(newMemRef.
getType()).getElementType());
1334 for (
auto *user : oldMemRef.
getUsers()) {
1336 if (userFilterFn && !userFilterFn(user))
1342 !replaceInDeallocOp)
1348 if (!isa<AffineMapAccessInterface>(*user)) {
1349 if (!allowNonDereferencingOps) {
1352 <<
"Memref replacement failed: non-deferencing memref user: \n"
1359 LLVM_DEBUG(llvm::dbgs() <<
"Memref replacement failed: use without a "
1360 "memrefs normalizable trait: \n"
1369 opsToReplace.insert(user);
1372 for (
auto *user : opsToReplace) {
1373 if (
failed(replaceAllMemRefUsesWith(
1374 oldMemRef, newMemRef, user, extraIndices, indexRemap, extraOperands,
1375 symbolOperands, allowNonDereferencingOps)))
1376 llvm_unreachable(
"memref replacement guaranteed to succeed here");
1410void mlir::affine::createAffineComputationSlice(
1416 if (isa_and_nonnull<AffineApplyOp>(operand.getDefiningOp()))
1417 subOperands.push_back(operand);
1423 if (affineApplyOps.empty())
1428 bool localized =
true;
1429 for (
auto *op : affineApplyOps) {
1431 for (
auto *user :
result.getUsers()) {
1432 if (user != opInst) {
1448 sliceOps->reserve(composedMap.getNumResults());
1449 for (
auto resultExpr : composedMap.getResults()) {
1451 composedMap.getNumSymbols(), resultExpr);
1452 sliceOps->push_back(AffineApplyOp::create(
1453 builder, opInst->
getLoc(), singleResMap, composedOpOperands));
1461 for (
Value &operand : newOperands) {
1464 for (
j = 0, f = subOperands.size();
j < f;
j++) {
1465 if (operand == subOperands[
j])
1468 if (
j < subOperands.size())
1469 operand = (*sliceOps)[
j];
1471 for (
unsigned idx = 0, e = newOperands.size(); idx < e; idx++)
1494 SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) {
1505 if (isa<AffineConstantExpr>(binaryExpr.
getRHS()))
1506 floordivExprs.emplace_back(
1507 std::make_tuple(binaryExpr.
getLHS(), binaryExpr.
getRHS(), pos));
1512 if (floordivExprs.empty()) {
1519 for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) {
1520 AffineExpr floordivExprLHS = std::get<0>(fexpr);
1521 AffineExpr floordivExprRHS = std::get<1>(fexpr);
1522 unsigned floordivPos = std::get<2>(fexpr);
1534 bool notTiled =
false;
1535 if (pos != floordivPos) {
1537 if (e == floordivExprLHS) {
1541 if (floordivExprLHS == binaryExpr.
getLHS() &&
1542 floordivExprRHS == binaryExpr.
getRHS()) {
1546 tileSizePos.emplace_back(
1547 std::make_tuple(binaryExpr.
getRHS(), floordivPos, pos));
1599 if (isa<AffineDimExpr>(e) &&
1600 llvm::any_of(inMemrefTypeDynDims, [&](
unsigned dim) {
1619 binaryExpr = cast<AffineBinaryOpExpr>(oldMapOutput);
1620 newMapOutput = binaryExpr.
getRHS();
1623 binaryExpr = cast<AffineBinaryOpExpr>(oldMapOutput);
1628 newMapOutput = oldMapOutput;
1630 return newMapOutput;
1665template <
typename AllocLikeOp>
1667 MemRefType newMemRefType,
AffineMap map,
1673 unsigned dynIdx = 0;
1674 for (
unsigned d = 0; d < oldMemRefType.getRank(); ++d) {
1675 if (oldMemRefShape[d] < 0) {
1677 inAffineApply.emplace_back(allocOp.getDynamicSizes()[dynIdx]);
1681 auto constantAttr =
b.getIntegerAttr(
b.getIndexType(), oldMemRefShape[d]);
1682 inAffineApply.emplace_back(
1683 arith::ConstantOp::create(
b, allocOp.getLoc(), constantAttr));
1689 unsigned newDimIdx = 0;
1694 if (newMemRefShape[newDimIdx] < 0) {
1697 for (
auto pos : tileSizePos) {
1698 if (newDimIdx == std::get<1>(pos))
1700 else if (newDimIdx == std::get<2>(pos))
1707 AffineApplyOp::create(
b, allocOp.getLoc(), newMap, inAffineApply);
1708 newDynamicSizes.emplace_back(affineApp);
1714template <
typename AllocLikeOp>
1715LogicalResult mlir::affine::normalizeMemRef(AllocLikeOp allocOp) {
1716 MemRefType memrefType = allocOp.getType();
1721 MemRefType newMemRefType = normalizeMemRefType(memrefType);
1722 if (newMemRefType == memrefType)
1727 Value oldMemRef = allocOp.getResult();
1730 AffineMap layoutMap = memrefType.getLayout().getAffineMap();
1731 AllocLikeOp newAlloc;
1736 if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) {
1737 auto oldMemRefType = cast<MemRefType>(oldMemRef.
getType());
1742 newAlloc = AllocLikeOp::create(
b, allocOp.getLoc(), newMemRefType,
1743 newDynamicSizes, allocOp.getAlignmentAttr());
1745 newAlloc = AllocLikeOp::create(
b, allocOp.getLoc(), newMemRefType,
1746 allocOp.getAlignmentAttr());
1749 if (
failed(replaceAllMemRefUsesWith(oldMemRef, newAlloc,
1763 return hasSingleEffect<MemoryEffects::Free>(op, oldMemRef);
1771mlir::affine::normalizeMemRef(memref::ReinterpretCastOp reinterpretCastOp) {
1772 MemRefType memrefType = reinterpretCastOp.getType();
1773 AffineMap oldLayoutMap = memrefType.getLayout().getAffineMap();
1774 Value oldMemRef = reinterpretCastOp.getResult();
1782 MemRefType newMemRefType = normalizeMemRefType(memrefType);
1783 if (newMemRefType == memrefType)
1787 uint64_t newRank = newMemRefType.getRank();
1791 Location loc = reinterpretCastOp.getLoc();
1796 ValueRange oldSizes = reinterpretCastOp.getSizes();
1801 for (
unsigned i = 0, e = memrefType.getRank(); i < e; i++) {
1802 if (memrefType.isDynamicDim(i))
1804 arith::SubIOp::create(
b, loc, oldSizes[0].
getType(), oldSizes[idx++],
1809 for (
unsigned i = 0, e = oldStrides.size(); i < e; i++)
1810 mapOperands[memrefType.getRank() + i] = oldStrides[i];
1814 for (
unsigned i = 0; i < newRank; i++) {
1815 if (!newMemRefType.isDynamicDim(i))
1817 newSizes.push_back(AffineApplyOp::create(
1823 for (
unsigned i = 0, e = newSizes.size(); i < e; i++) {
1825 arith::AddIOp::create(
b, loc, newSizes[i].
getType(), newSizes[i],
1829 auto newReinterpretCast = memref::ReinterpretCastOp::create(
1830 b, loc, newMemRefType, reinterpretCastOp.getSource(),
1838 if (
failed(replaceAllMemRefUsesWith(oldMemRef,
1847 newReinterpretCast.erase();
1852 reinterpretCastOp.erase();
1856template LogicalResult
1857mlir::affine::normalizeMemRef<memref::AllocaOp>(memref::AllocaOp op);
1858template LogicalResult
1859mlir::affine::normalizeMemRef<memref::AllocOp>(memref::AllocOp op);
1861MemRefType mlir::affine::normalizeMemRefType(MemRefType memrefType) {
1862 unsigned rank = memrefType.getRank();
1866 if (memrefType.getLayout().isIdentity()) {
1871 AffineMap layoutMap = memrefType.getLayout().getAffineMap();
1882 if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty())
1891 for (
unsigned d = 0; d < rank; ++d) {
1894 fac.addBound(BoundType::LB, d, 0);
1895 fac.addBound(BoundType::UB, d,
shape[d] - 1);
1897 memrefTypeDynDims.emplace_back(d);
1903 if (
failed(fac.composeMatchingMap(layoutMap)))
1907 fac.projectOut(newRank, fac.getNumVars() - newRank - fac.getNumLocalVars());
1910 for (
unsigned d = 0; d < newRank; ++d) {
1913 newShape[d] = ShapedType::kDynamic;
1917 std::optional<int64_t> ubConst = fac.getConstantBound64(BoundType::UB, d);
1922 if (!ubConst.has_value() || *ubConst < 0) {
1923 LLVM_DEBUG(llvm::dbgs()
1924 <<
"can't normalize map due to unknown/invalid upper bound");
1928 newShape[d] = *ubConst + 1;
1932 auto newMemRefType =
1937 return newMemRefType;
1963FailureOr<SmallVector<Value>>
1967 basis = basis.drop_front();
1973 FailureOr<OpFoldResult> nextProd =
1977 basisProd = *nextProd;
1982 results.reserve(divisors.size() + 1);
1983 Value residual = linearIndex;
1984 for (
Value divisor : llvm::reverse(divisors)) {
1985 DivModValue divMod = getDivMod(
b, loc, residual, divisor);
1986 results.push_back(divMod.quotient);
1987 residual = divMod.remainder;
1989 results.push_back(residual);
1993FailureOr<SmallVector<Value>>
1996 bool hasOuterBound) {
1998 basis = basis.drop_front();
2004 FailureOr<OpFoldResult> nextProd =
2008 basisProd = *nextProd;
2013 results.reserve(divisors.size() + 1);
2014 Value residual = linearIndex;
2015 for (
Value divisor : llvm::reverse(divisors)) {
2016 DivModValue divMod = getDivMod(
b, loc, residual, divisor);
2017 results.push_back(divMod.quotient);
2018 residual = divMod.remainder;
2020 results.push_back(residual);
2033 assert(multiIndex.size() == basis.size() ||
2034 multiIndex.size() == basis.size() + 1);
2039 if (multiIndex.size() == basis.size() + 1)
2042 for (
size_t i = 0; i < basis.size(); ++i) {
2048 strides.reserve(stridesAffine.size());
2049 llvm::transform(stridesAffine, std::back_inserter(strides),
2050 [&builder, &basis, loc](
AffineExpr strideExpr) {
2052 builder, loc, strideExpr, basis);
2058 multiIndexAndStrides);
static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp, unsigned minSurroundingLoops)
Returns true if srcMemOp may have an effect on destMemOp within the scope of the outermost minSurroun...
static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp)
A helper for the mechanics of mlir::hoistAffineIfOp.
static void createNewDynamicSizes(MemRefType oldMemRefType, MemRefType newMemRefType, AffineMap map, AllocLikeOp allocOp, OpBuilder b, SmallVectorImpl< Value > &newDynamicSizes)
Create new maps to calculate each dimension size of newMemRefType, and create newDynamicSizes from th...
static bool isDereferencingOp(Operation *op)
static LogicalResult getTileSizePos(AffineMap map, SmallVectorImpl< std::tuple< AffineExpr, unsigned, unsigned > > &tileSizePos)
Check if map is a tiled layout.
TileExprPattern
Enum to set patterns of affine expr in tiled-layout map.
static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock)
Promotes the then or the else block of ifOp (depending on whether elseBlock is false or true) into if...
static bool isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap, SmallVectorImpl< unsigned > &inMemrefTypeDynDims)
Check if dim dimension of memrefType with layoutMap becomes dynamic after normalization.
static FailureOr< OpFoldResult > composedAffineMultiply(OpBuilder &b, Location loc, OpFoldResult lhs, OpFoldResult rhs)
Create an affine map that computes lhs * rhs, composing in any other affine maps.
static void loadCSE(AffineReadOpInterface loadA, SmallVectorImpl< Operation * > &loadOpsToErase, DominanceInfo &domInfo, llvm::function_ref< bool(Value, Value)> mayAlias)
static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput, TileExprPattern pat)
Create affine expr to calculate dimension size for a tiled-layout map.
static void findUnusedStore(AffineWriteOpInterface writeA, SmallVectorImpl< Operation * > &opsToErase, PostDominanceInfo &postDominanceInfo, llvm::function_ref< bool(Value, Value)> mayAlias)
static bool mustReachAtInnermost(const MemRefAccess &srcAccess, const MemRefAccess &destAccess)
Returns true if the memory operation of destAccess depends on srcAccess inside of the innermost commo...
static void forwardStoreToLoad(AffineReadOpInterface loadOp, SmallVectorImpl< Operation * > &loadOpsToErase, SmallPtrSetImpl< Value > &memrefsToErase, DominanceInfo &domInfo, llvm::function_ref< bool(Value, Value)> mayAlias)
Attempt to eliminate loadOp by replacing it with a value stored into memory which the load is guarant...
static Operation * getOutermostInvariantForOp(AffineIfOp ifOp)
Returns the outermost affine.for/parallel op that the ifOp is invariant on.
static void visit(Operation *op, DenseSet< Operation * > &visited)
Visits all the pdl.operand(s), pdl.result(s), and pdl.operation(s) connected to the given operation.
static bool mayAlias(Value first, Value second)
Returns true if two values may be referencing aliasing memory.
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
Affine binary operation expression.
AffineExpr getLHS() const
AffineExpr getRHS() const
An integer constant appearing in affine expression.
A dimensional identifier appearing in an affine expression.
unsigned getPosition() const
See documentation for AffineExprVisitorBase.
Base type for affine expression.
AffineExpr floorDiv(uint64_t v) const
RetT walk(FnT &&callback) const
Walk all of the AffineExpr's in this expression in postorder.
AffineExprKind getKind() const
Return the classification for this type.
AffineExpr ceilDiv(uint64_t v) const
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
MLIRContext * getContext() const
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumSymbols() const
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
unsigned getNumInputs() const
AffineExpr getResult(unsigned idx) const
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
bool isIdentity() const
Returns true if this affine map is an identity affine map.
A symbolic identifier appearing in an affine expression.
unsigned getPosition() const
This class represents the main alias analysis interface in MLIR.
AliasResult alias(Value lhs, Value rhs)
Given two values, return their aliasing behavior.
bool isNo() const
Returns if this result indicates no possibility of aliasing.
This class represents an argument of a Block.
Block represents an ordered list of Operations.
OpListType::iterator iterator
OpListType & getOperations()
SuccessorRange getSuccessors()
Operation * getTerminator()
Get the terminator operation of this block.
IntegerAttr getIndexAttr(int64_t value)
AffineMap getMultiDimIdentityMap(unsigned rank)
AffineExpr getAffineConstantExpr(int64_t constant)
AffineExpr getAffineDimExpr(unsigned position)
MLIRContext * getContext() const
A class for computing basic dominance information.
bool dominates(Operation *a, Operation *b) const
Return true if operation A dominates operation B, i.e.
This class represents a frozen set of patterns that can be processed by a pattern applicator.
This class allows control over how the GreedyPatternRewriteDriver works.
This is a utility class for mapping one set of IR entities to another.
void clear()
Clears all mappings held by the mapper.
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
Location getLoc() const
Accessors for the implied location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
This is a builder type that keeps local references to arguments.
Builder & setShape(ArrayRef< int64_t > newShape)
Builder & setLayout(MemRefLayoutAttrInterface newLayout)
NamedAttribute represents a combination of a name and an Attribute value.
Attribute getValue() const
Return the value of the attribute.
This class helps build Operations.
static OpBuilder atBlockBegin(Block *block, Listener *listener=nullptr)
Create a builder and set the insertion point to before the first operation in the block but still ins...
Block::iterator getInsertionPoint() const
Returns the current insertion point of the builder.
Block * getInsertionBlock() const
Return the block the current insertion point belongs to.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
This class represents a single result from folding an operation.
This trait indicates that the memory effects of an operation includes the effects of operations neste...
This class provides the API for ops that are known to be isolated from above.
This class implements the operand iterators for the Operation class.
Operation is the basic unit of execution within MLIR.
Value getOperand(unsigned idx)
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
void setOperand(unsigned idx, Value value)
ArrayRef< NamedAttribute > getAttrs()
Return all of the attributes on this operation.
operand_iterator operand_begin()
Block * getBlock()
Returns the operation block that contains this operation.
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Location getLoc()
The source location the operation was defined or derived from.
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
unsigned getNumOperands()
operand_iterator operand_end()
OperationName getName()
The name of an operation is the key identifier for it.
operand_range getOperands()
Returns an iterator on the underlying Value's.
bool isAncestor(Operation *other)
Return true if this operation is an ancestor of the other operation.
void replaceAllUsesWith(ValuesT &&values)
Replace all uses of results of this operation with the provided 'values'.
void setOperands(ValueRange operands)
Replace the current operands of this operation with the ones provided in 'operands'.
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
user_range getUsers()
Returns a range of all users.
result_range getResults()
Region * getParentRegion()
Returns the region to which the instruction belongs.
void erase()
Remove this operation from its parent block and delete it.
unsigned getNumResults()
Return the number of results held by this operation.
A class for computing basic postdominance information.
bool postDominates(Operation *a, Operation *b) const
Return true if operation A postdominates operation B.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Region * getParentRegion()
Return the region containing this region or nullptr if the region is attached to a top-level operatio...
bool isAncestor(Region *other)
Return true if this region is ancestor of the other region.
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
void replaceAllUsesExcept(Value newValue, const SmallPtrSetImpl< Operation * > &exceptions)
Replace all uses of 'this' value with 'newValue', updating anything in the IR that uses 'this' to use...
void replaceAllUsesWith(Value newValue)
Replace all uses of 'this' value with the new value, updating anything in the IR that uses 'this' to ...
user_range getUsers() const
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
static WalkResult advance()
static WalkResult interrupt()
An AffineValueMap is an affine map plus its ML value operands and results for analysis purposes.
LogicalResult canonicalize()
Attempts to canonicalize the map and operands.
unsigned getNumSymbols() const
ArrayRef< Value > getOperands() const
unsigned getNumDims() const
AffineExpr getResult(unsigned i)
AffineMap getAffineMap() const
unsigned getNumResults() const
static void difference(const AffineValueMap &a, const AffineValueMap &b, AffineValueMap *res)
Return the value map that is the difference of value maps 'a' and 'b', represented as an affine map a...
FlatAffineValueConstraints is an extension of FlatLinearValueConstraints with helper functions for Af...
static ConstantIndexOp create(OpBuilder &builder, Location location, int64_t value)
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
LogicalResult promoteIfSingleIteration(AffineForOp forOp)
Promotes the loop body of a AffineForOp to its containing block if the loop was known to have a singl...
bool isValidDim(Value value)
Returns true if the given Value can be used as a dimension id in the region of the closest surroundin...
unsigned getNumCommonSurroundingLoops(Operation &a, Operation &b)
Returns the number of surrounding loops common to both A and B.
DependenceResult checkMemrefAccessDependence(const MemRefAccess &srcAccess, const MemRefAccess &dstAccess, unsigned loopDepth, FlatAffineValueConstraints *dependenceConstraints=nullptr, SmallVector< DependenceComponent, 2 > *dependenceComponents=nullptr, bool allowRAR=false)
LogicalResult affineParallelize(AffineForOp forOp, ArrayRef< LoopReduction > parallelReductions={}, AffineParallelOp *resOp=nullptr)
Replaces a parallel affine.for op with a 1-d affine.parallel op.
void canonicalizeMapAndOperands(AffineMap *map, SmallVectorImpl< Value > *operands)
Modifies both map and operands in-place so as to:
void getReachableAffineApplyOps(ArrayRef< Value > operands, SmallVectorImpl< Operation * > &affineApplyOps)
Returns in affineApplyOps, the sequence of those AffineApplyOp Operations that are reachable via a se...
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
Region * getAffineAnalysisScope(Operation *op)
Returns the closest region enclosing op that is held by a non-affine operation; nullptr if there is n...
void fullyComposeAffineMapAndOperands(AffineMap *map, SmallVectorImpl< Value > *operands, bool composeAffineMin=false)
Given an affine map map and its input operands, this method composes into map, maps of AffineApplyOps...
bool isValidSymbol(Value value)
Returns true if the given value can be used as a symbol in the region of the closest surrounding op t...
bool hasDependence(DependenceResult result)
Utility function that returns true if the provided DependenceResult corresponds to a dependence resul...
bool hasNoInterveningEffect(Operation *start, T memOp, llvm::function_ref< bool(Value, Value)> mayAlias)
Hoists out affine.if/else to as high as possible, i.e., past all invariant affine....
bool noDependence(DependenceResult result)
Returns true if the provided DependenceResult corresponds to the absence of a dependence.
Value linearizeIndex(ValueRange indices, ArrayRef< int64_t > strides, int64_t offset, Type integerType, Location loc, OpBuilder &builder)
Generates IR to perform index linearization with the given indices and their corresponding strides,...
Include the generated interface declarations.
AffineMap simplifyAffineMap(AffineMap map)
Simplifies an affine map by simplifying its underlying AffineExpr results.
SmallVector< int64_t > computeStrides(ArrayRef< int64_t > sizes)
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
std::pair< AffineExpr, SmallVector< OpFoldResult > > computeLinearIndex(OpFoldResult sourceOffset, ArrayRef< OpFoldResult > strides, ArrayRef< OpFoldResult > indices)
Compute linear index from provided strides and indices, assuming strided layout.
LogicalResult applyPatternsGreedily(Region ®ion, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
llvm::DenseSet< ValueT, ValueInfoT > DenseSet
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
bool hasSingleEffect(Operation *op)
Returns "true" if op has only an effect of type EffectTy.
LogicalResult applyOpPatternsGreedily(ArrayRef< Operation * > ops, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr, bool *allErased=nullptr)
Rewrite the specified ops by repeatedly applying the highest benefit patterns in a greedy worklist dr...
@ CeilDiv
RHS of ceildiv is always a constant or a symbolic expression.
@ Mod
RHS of mod is always a constant or a symbolic expression with a positive value.
@ FloorDiv
RHS of floordiv is always a constant or a symbolic expression.
AffineExpr getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, AffineExpr rhs)
const FrozenRewritePatternSet & patterns
void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to SymbolExpr at positions: [0 .
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
@ ExistingOps
Only pre-existing ops are processed.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
AffineExpr getAffineSymbolExpr(unsigned position, MLIRContext *context)
The following effect indicates that the operation reads from some resource.
This represents an operation in an abstracted form, suitable for use with the builder APIs.
Checks whether two accesses to the same memref access the same element.
A description of a (parallelizable) reduction in an affine loop.
arith::AtomicRMWKind kind
Reduction kind.
Value value
The value being reduced.
Encapsulates a memref load or store access information.
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.