MLIR  21.0.0git
Utils.h
Go to the documentation of this file.
1 //===- Utils.h - Affine dialect utilities -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header file declares a set of utilities for the affine dialect ops.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef MLIR_DIALECT_AFFINE_UTILS_H
14 #define MLIR_DIALECT_AFFINE_UTILS_H
15 
19 #include "mlir/IR/OpDefinition.h"
20 #include <optional>
21 
22 namespace mlir {
23 class DominanceInfo;
24 class Operation;
25 class PostDominanceInfo;
26 class ImplicitLocOpBuilder;
27 
28 namespace func {
29 class FuncOp;
30 } // namespace func
31 
32 namespace memref {
33 class AllocOp;
34 class AllocaOp;
35 } // namespace memref
36 
37 namespace affine {
38 class AffineForOp;
39 class AffineIfOp;
40 class AffineParallelOp;
41 
43 
44 /// Replaces a parallel affine.for op with a 1-d affine.parallel op. `forOp`'s
45 /// body is taken by the affine.parallel op and the former is erased.
46 /// (mlir::isLoopParallel can be used to detect a parallel affine.for op.) The
47 /// reductions specified in `parallelReductions` are also parallelized.
48 /// Parallelization will fail in the presence of loop iteration arguments that
49 /// are not listed in `parallelReductions`. `resOp` if non-null is set to the
50 /// newly created affine.parallel op.
51 LogicalResult affineParallelize(AffineForOp forOp,
52  ArrayRef<LoopReduction> parallelReductions = {},
53  AffineParallelOp *resOp = nullptr);
54 
55 /// Hoists out affine.if/else to as high as possible, i.e., past all invariant
56 /// affine.fors/parallel's. Returns success if any hoisting happened; folded` is
57 /// set to true if the op was folded or erased. This hoisting could lead to
58 /// significant code expansion in some cases.
59 LogicalResult hoistAffineIfOp(AffineIfOp ifOp, bool *folded = nullptr);
60 
61 /// Holds parameters to perform n-D vectorization on a single loop nest.
62 /// For example, for the following loop nest:
63 ///
64 /// func @vec2d(%in: memref<64x128x512xf32>, %out: memref<64x128x512xf32>) {
65 /// affine.for %i0 = 0 to 64 {
66 /// affine.for %i1 = 0 to 128 {
67 /// affine.for %i2 = 0 to 512 {
68 /// %ld = affine.load %in[%i0, %i1, %i2] : memref<64x128x512xf32>
69 /// affine.store %ld, %out[%i0, %i1, %i2] : memref<64x128x512xf32>
70 /// }
71 /// }
72 /// }
73 /// return
74 /// }
75 ///
76 /// and VectorizationStrategy = 'vectorSizes = {8, 4}', 'loopToVectorDim =
77 /// {{i1->0}, {i2->1}}', SuperVectorizer will generate:
78 ///
79 /// func @vec2d(%arg0: memref<64x128x512xf32>, %arg1: memref<64x128x512xf32>) {
80 /// affine.for %arg2 = 0 to 64 {
81 /// affine.for %arg3 = 0 to 128 step 8 {
82 /// affine.for %arg4 = 0 to 512 step 4 {
83 /// %cst = arith.constant 0.000000e+00 : f32
84 /// %0 = vector.transfer_read %arg0[%arg2, %arg3, %arg4], %cst : ...
85 /// vector.transfer_write %0, %arg1[%arg2, %arg3, %arg4] : ...
86 /// }
87 /// }
88 /// }
89 /// return
90 /// }
91 // TODO: Hoist to a VectorizationStrategy.cpp when appropriate.
93  // Vectorization factors to apply to each target vector dimension.
94  // Each factor will be applied to a different loop.
96  // Maps each AffineForOp vectorization candidate with its vector dimension.
97  // The candidate will be vectorized using the vectorization factor in
98  // 'vectorSizes' for that dimension.
100  // Maps loops that implement vectorizable reductions to the corresponding
101  // reduction descriptors.
103 };
104 
105 /// Replace affine store and load accesses by scalars by forwarding stores to
106 /// loads and eliminate invariant affine loads; consequently, eliminate dead
107 /// allocs.
108 void affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo,
109  PostDominanceInfo &postDomInfo,
110  AliasAnalysis &analysis);
111 
112 /// Vectorizes affine loops in 'loops' using the n-D vectorization factors in
113 /// 'vectorSizes'. By default, each vectorization factor is applied
114 /// inner-to-outer to the loops of each loop nest. 'fastestVaryingPattern' can
115 /// be optionally used to provide a different loop vectorization order.
116 /// If `reductionLoops` is not empty, the given reduction loops may be
117 /// vectorized along the reduction dimension.
118 /// TODO: Vectorizing reductions is supported only for 1-D vectorization.
120  Operation *parentOp,
122  ArrayRef<int64_t> vectorSizes, ArrayRef<int64_t> fastestVaryingPattern,
123  const ReductionLoopMap &reductionLoops = ReductionLoopMap());
124 
125 /// External utility to vectorize affine loops from a single loop nest using an
126 /// n-D vectorization strategy (see doc in VectorizationStrategy definition).
127 /// Loops are provided in a 2D vector container. The first dimension represents
128 /// the nesting level relative to the loops to be vectorized. The second
129 /// dimension contains the loops. This means that:
130 /// a) every loop in 'loops[i]' must have a parent loop in 'loops[i-1]',
131 /// b) a loop in 'loops[i]' may or may not have a child loop in 'loops[i+1]'.
132 ///
133 /// For example, for the following loop nest:
134 ///
135 /// func @vec2d(%in0: memref<64x128x512xf32>, %in1: memref<64x128x128xf32>,
136 /// %out0: memref<64x128x512xf32>,
137 /// %out1: memref<64x128x128xf32>) {
138 /// affine.for %i0 = 0 to 64 {
139 /// affine.for %i1 = 0 to 128 {
140 /// affine.for %i2 = 0 to 512 {
141 /// %ld = affine.load %in0[%i0, %i1, %i2] : memref<64x128x512xf32>
142 /// affine.store %ld, %out0[%i0, %i1, %i2] : memref<64x128x512xf32>
143 /// }
144 /// affine.for %i3 = 0 to 128 {
145 /// %ld = affine.load %in1[%i0, %i1, %i3] : memref<64x128x128xf32>
146 /// affine.store %ld, %out1[%i0, %i1, %i3] : memref<64x128x128xf32>
147 /// }
148 /// }
149 /// }
150 /// return
151 /// }
152 ///
153 /// loops = {{%i0}, {%i2, %i3}}, to vectorize the outermost and the two
154 /// innermost loops;
155 /// loops = {{%i1}, {%i2, %i3}}, to vectorize the middle and the two innermost
156 /// loops;
157 /// loops = {{%i2}}, to vectorize only the first innermost loop;
158 /// loops = {{%i3}}, to vectorize only the second innermost loop;
159 /// loops = {{%i1}}, to vectorize only the middle loop.
160 LogicalResult
162  const VectorizationStrategy &strategy);
163 
164 /// Normalize a affine.parallel op so that lower bounds are 0 and steps are 1.
165 /// As currently implemented, this transformation cannot fail and will return
166 /// early if the op is already in a normalized form.
167 void normalizeAffineParallel(AffineParallelOp op);
168 
169 /// Normalize an affine.for op. An affine.for op is normalized by converting the
170 /// lower bound to zero and loop step to one. The upper bound is set to the trip
171 /// count of the loop. Original loops must have a lower bound with only a single
172 /// result. There is no such restriction on upper bounds. Returns success if the
173 /// loop has been normalized (or is already in the normal form). If
174 /// `promoteSingleIter` is true, the loop is simply promoted if it has a single
175 /// iteration.
176 LogicalResult normalizeAffineFor(AffineForOp op,
177  bool promoteSingleIter = false);
178 
179 /// Traverse `e` and return an AffineExpr where all occurrences of `dim` have
180 /// been replaced by either:
181 /// - `min` if `positivePath` is true when we reach an occurrence of `dim`
182 /// - `max` if `positivePath` is true when we reach an occurrence of `dim`
183 /// `positivePath` is negated each time we hit a multiplicative or divisive
184 /// binary op with a constant negative coefficient.
186  AffineExpr max, bool positivePath = true);
187 
188 /// Replaces all "dereferencing" uses of `oldMemRef` with `newMemRef` while
189 /// optionally remapping the old memref's indices using the supplied affine map,
190 /// `indexRemap`. The new memref could be of a different shape or rank.
191 /// `extraIndices` provides any additional access indices to be added to the
192 /// start.
193 ///
194 /// `indexRemap` remaps indices of the old memref access to a new set of indices
195 /// that are used to index the memref. Additional input operands to indexRemap
196 /// can be optionally provided in `extraOperands`, and they occupy the start
197 /// of its input list. `indexRemap`'s dimensional inputs are expected to
198 /// correspond to memref's indices, and its symbolic inputs if any should be
199 /// provided in `symbolOperands`.
200 ///
201 /// `domOpFilter`, if non-null, restricts the replacement to only those
202 /// operations that are dominated by the former; similarly, `postDomOpFilter`
203 /// restricts replacement to only those operations that are postdominated by it.
204 ///
205 /// 'allowNonDereferencingOps', if set, allows replacement of non-dereferencing
206 /// uses of a memref without any requirement for access index rewrites as long
207 /// as the user operation has the MemRefsNormalizable trait. The default value
208 /// of this flag is false.
209 ///
210 /// 'replaceInDeallocOp', if set, lets DeallocOp, a non-dereferencing user, to
211 /// also be a candidate for replacement. The default value of this flag is
212 /// false.
213 ///
214 /// Returns true on success and false if the replacement is not possible,
215 /// whenever a memref is used as an operand in a non-dereferencing context and
216 /// 'allowNonDereferencingOps' is false, except for dealloc's on the memref
217 /// which are left untouched. See comments at function definition for an
218 /// example.
219 //
220 // Ex: to replace load %A[%i, %j] with load %Abuf[%t mod 2, %ii - %i, %j]:
221 // The SSA value corresponding to '%t mod 2' should be in 'extraIndices', and
222 // index remap will perform (%i, %j) -> (%ii - %i, %j), i.e., indexRemap = (d0,
223 // d1, d2) -> (d0 - d1, d2), and %ii will be the extra operand. Without any
224 // extra operands, note that 'indexRemap' would just be applied to existing
225 // indices (%i, %j).
226 // TODO: allow extraIndices to be added at any position.
227 LogicalResult replaceAllMemRefUsesWith(
228  Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices = {},
229  AffineMap indexRemap = AffineMap(), ArrayRef<Value> extraOperands = {},
230  ArrayRef<Value> symbolOperands = {}, Operation *domOpFilter = nullptr,
231  Operation *postDomOpFilter = nullptr, bool allowNonDereferencingOps = false,
232  bool replaceInDeallocOp = false);
233 
234 /// Performs the same replacement as the other version above but only for the
235 /// dereferencing uses of `oldMemRef` in `op`, except in cases where
236 /// 'allowNonDereferencingOps' is set to true where we replace the
237 /// non-dereferencing uses as well.
238 LogicalResult replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
239  Operation *op,
240  ArrayRef<Value> extraIndices = {},
241  AffineMap indexRemap = AffineMap(),
242  ArrayRef<Value> extraOperands = {},
243  ArrayRef<Value> symbolOperands = {},
244  bool allowNonDereferencingOps = false);
245 
246 /// Rewrites the memref defined by this alloc op to have an identity layout map
247 /// and updates all its indexing uses. Returns failure if any of its uses
248 /// escape (while leaving the IR in a valid state).
249 template <typename AllocLikeOp>
250 LogicalResult normalizeMemRef(AllocLikeOp *op);
251 extern template LogicalResult
252 normalizeMemRef<memref::AllocaOp>(memref::AllocaOp *op);
253 extern template LogicalResult
254 normalizeMemRef<memref::AllocOp>(memref::AllocOp *op);
255 
256 /// Normalizes `memrefType` so that the affine layout map of the memref is
257 /// transformed to an identity map with a new shape being computed for the
258 /// normalized memref type and returns it. The old memref type is simplify
259 /// returned if the normalization failed.
260 MemRefType normalizeMemRefType(MemRefType memrefType);
261 
262 /// Given an operation, inserts one or more single result affine apply
263 /// operations, results of which are exclusively used by this operation.
264 /// The operands of these newly created affine apply ops are
265 /// guaranteed to be loop iterators or terminal symbols of a function.
266 ///
267 /// Before
268 ///
269 /// affine.for %i = 0 to #map(%N)
270 /// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
271 /// send %A[%idx], ...
272 /// %v = "compute"(%idx, ...)
273 ///
274 /// After
275 ///
276 /// affine.for %i = 0 to #map(%N)
277 /// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
278 /// send %A[%idx], ...
279 /// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
280 /// %v = "compute"(%idx_, ...)
281 
282 /// This allows the application of different transformations on send and
283 /// compute (for eg. different shifts/delays)
284 ///
285 /// Fills `sliceOps` with the list of affine.apply operations.
286 /// In the following cases, `sliceOps` remains empty:
287 /// 1. If none of opInst's operands were the result of an affine.apply
288 /// (i.e., there was no affine computation slice to create).
289 /// 2. If all the affine.apply op's supplying operands to this opInst did not
290 /// have any uses other than those in this opInst.
293 
294 /// Emit code that computes the given affine expression using standard
295 /// arithmetic operations applied to the provided dimension and symbol values.
297  ValueRange dimValues, ValueRange symbolValues);
298 
299 /// Create a sequence of operations that implement the `affineMap` applied to
300 /// the given `operands` (as it it were an AffineApplyOp).
301 std::optional<SmallVector<Value, 8>> expandAffineMap(OpBuilder &builder,
302  Location loc,
303  AffineMap affineMap,
304  ValueRange operands);
305 
306 /// Holds the result of (div a, b) and (mod a, b).
307 struct DivModValue {
310 };
311 
312 /// Create IR to calculate (div lhs, rhs) and (mod lhs, rhs).
314 
315 /// Generate the IR to delinearize `linearIndex` given the `basis` and return
316 /// the multi-index. `hasOuterBound` indicates whether `basis` has an entry
317 /// given the size of the first multi-index result - if it is true, the function
318 /// will return `basis.size()` values, otherwise, it will return `basis.size() +
319 /// 1`.
320 FailureOr<SmallVector<Value>> delinearizeIndex(OpBuilder &b, Location loc,
321  Value linearIndex,
322  ArrayRef<Value> basis,
323  bool hasOuterBound = true);
324 
325 FailureOr<SmallVector<Value>> delinearizeIndex(OpBuilder &b, Location loc,
326  Value linearIndex,
328  bool hasOuterBound = true);
329 
330 // Generate IR that extracts the linear index from a multi-index according to
331 // a basis/shape. The basis may contain either `multiIndex.size()` or
332 // `multiIndex.size() - 1` elements.
335  ImplicitLocOpBuilder &builder);
336 
338  ArrayRef<OpFoldResult> multiIndex,
339  ArrayRef<OpFoldResult> basis);
340 
341 /// Ensure that all operations that could be executed after `start`
342 /// (noninclusive) and prior to `memOp` (e.g. on a control flow/op path
343 /// between the operations) do not have the potential memory effect
344 /// `EffectType` on `memOp`. `memOp` is an operation that reads or writes to
345 /// a memref. For example, if `EffectType` is MemoryEffects::Write, this method
346 /// will check if there is no write to the memory between `start` and `memOp`
347 /// that would change the read within `memOp`.
348 template <typename EffectType, typename T>
349 bool hasNoInterveningEffect(Operation *start, T memOp,
351 
353  explicit AffineValueExpr(AffineExpr e) : e(e) {}
355  this->v = v;
356  return *this;
357  }
359  this->v = v;
360  return *this;
361  }
362  operator AffineExpr() const { return e; }
363  operator OpFoldResult() const { return v; }
366 };
367 
368 /// Helper struct to build simple AffineValueExprs with minimal type inference
369 /// support.
371  AffineBuilder(OpBuilder &b, Location loc) : b(b), loc(loc) {}
373  return makeComposedFoldedAffineApply(b, loc, {lhs.e + rhs.e}, {lhs, rhs});
374  }
376  return makeComposedFoldedAffineApply(b, loc, {lhs.e - rhs.e}, {lhs, rhs});
377  }
379  return makeComposedFoldedAffineApply(b, loc, {lhs.e * rhs.e}, {lhs, rhs});
380  }
382  return makeComposedFoldedAffineApply(b, loc, {lhs.e.floorDiv(rhs.e)},
383  {lhs, rhs});
384  }
386  return makeComposedFoldedAffineApply(b, loc, {lhs.e.ceilDiv(rhs.e)},
387  {lhs, rhs});
388  }
391  b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), b.getContext()),
392  vals);
393  }
396  b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), b.getContext()),
397  vals);
398  }
399 
400 private:
401  OpBuilder &b;
402  Location loc;
403 };
404 
405 } // namespace affine
406 } // namespace mlir
407 
408 #endif // MLIR_DIALECT_AFFINE_UTILS_H
static bool mayAlias(Value first, Value second)
Returns true if two values may be referencing aliasing memory.
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExpr floorDiv(uint64_t v) const
Definition: AffineExpr.cpp:917
AffineExpr ceilDiv(uint64_t v) const
Definition: AffineExpr.cpp:964
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
Definition: AffineMap.cpp:334
This class represents the main alias analysis interface in MLIR.
MLIRContext * getContext() const
Definition: Builders.h:56
A class for computing basic dominance information.
Definition: Dominance.h:140
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
This class helps build Operations.
Definition: Builders.h:205
This class represents a single result from folding an operation.
Definition: OpDefinition.h:268
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
A class for computing basic postdominance information.
Definition: Dominance.h:204
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
std::optional< SmallVector< Value, 8 > > expandAffineMap(OpBuilder &builder, Location loc, AffineMap affineMap, ValueRange operands)
Create a sequence of operations that implement the affineMap applied to the given operands (as it it ...
Definition: Utils.cpp:229
LogicalResult normalizeMemRef(AllocLikeOp *op)
Rewrites the memref defined by this alloc op to have an identity layout map and updates all its index...
Definition: Utils.cpp:1791
void affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo, PostDominanceInfo &postDomInfo, AliasAnalysis &analysis)
Replace affine store and load accesses by scalars by forwarding stores to loads and eliminate invaria...
Definition: Utils.cpp:1038
Value expandAffineExpr(OpBuilder &builder, Location loc, AffineExpr expr, ValueRange dimValues, ValueRange symbolValues)
Emit code that computes the given affine expression using standard arithmetic operations applied to t...
Definition: Utils.cpp:219
void normalizeAffineParallel(AffineParallelOp op)
Normalize a affine.parallel op so that lower bounds are 0 and steps are 1.
Definition: Utils.cpp:495
LogicalResult affineParallelize(AffineForOp forOp, ArrayRef< LoopReduction > parallelReductions={}, AffineParallelOp *resOp=nullptr)
Replaces a parallel affine.for op with a 1-d affine.parallel op.
Definition: Utils.cpp:352
OpFoldResult makeComposedFoldedAffineMax(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a maximum across the results of applying map to operands,...
Definition: AffineOps.cpp:1311
void vectorizeAffineLoops(Operation *parentOp, llvm::DenseSet< Operation *, DenseMapInfo< Operation * >> &loops, ArrayRef< int64_t > vectorSizes, ArrayRef< int64_t > fastestVaryingPattern, const ReductionLoopMap &reductionLoops=ReductionLoopMap())
Vectorizes affine loops in 'loops' using the n-D vectorization factors in 'vectorSizes'.
LogicalResult normalizeAffineFor(AffineForOp op, bool promoteSingleIter=false)
Normalize an affine.for op.
Definition: Utils.cpp:559
OpFoldResult makeComposedFoldedAffineMin(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a minimum across the results of applying map to operands,...
Definition: AffineOps.cpp:1304
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
Definition: AffineOps.cpp:1198
MemRefType normalizeMemRefType(MemRefType memrefType)
Normalizes memrefType so that the affine layout map of the memref is transformed to an identity map w...
Definition: Utils.cpp:1853
DenseMap< Operation *, SmallVector< LoopReduction, 2 > > ReductionLoopMap
Definition: Utils.h:42
FailureOr< SmallVector< Value > > delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex, ArrayRef< Value > basis, bool hasOuterBound=true)
Generate the IR to delinearize linearIndex given the basis and return the multi-index.
Definition: Utils.cpp:1956
OpFoldResult linearizeIndex(ArrayRef< OpFoldResult > multiIndex, ArrayRef< OpFoldResult > basis, ImplicitLocOpBuilder &builder)
Definition: Utils.cpp:2016
DivModValue getDivMod(OpBuilder &b, Location loc, Value lhs, Value rhs)
Create IR to calculate (div lhs, rhs) and (mod lhs, rhs).
Definition: Utils.cpp:1932
bool hasNoInterveningEffect(Operation *start, T memOp, llvm::function_ref< bool(Value, Value)> mayAlias)
Ensure that all operations that could be executed after start (noninclusive) and prior to memOp (e....
Definition: Utils.cpp:685
void createAffineComputationSlice(Operation *opInst, SmallVectorImpl< AffineApplyOp > *sliceOps)
Given an operation, inserts one or more single result affine apply operations, results of which are e...
Definition: Utils.cpp:1485
LogicalResult hoistAffineIfOp(AffineIfOp ifOp, bool *folded=nullptr)
Hoists out affine.if/else to as high as possible, i.e., past all invariant affine....
Definition: Utils.cpp:414
AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min, AffineExpr max, bool positivePath=true)
Traverse e and return an AffineExpr where all occurrences of dim have been replaced by either:
Definition: Utils.cpp:468
LogicalResult replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef, ArrayRef< Value > extraIndices={}, AffineMap indexRemap=AffineMap(), ArrayRef< Value > extraOperands={}, ArrayRef< Value > symbolOperands={}, Operation *domOpFilter=nullptr, Operation *postDomOpFilter=nullptr, bool allowNonDereferencingOps=false, bool replaceInDeallocOp=false)
Replaces all "dereferencing" uses of oldMemRef with newMemRef while optionally remapping the old memr...
Definition: Utils.cpp:1369
LogicalResult vectorizeAffineLoopNest(std::vector< SmallVector< AffineForOp, 2 >> &loops, const VectorizationStrategy &strategy)
External utility to vectorize affine loops from a single loop nest using an n-D vectorization strateg...
Include the generated interface declarations.
Helper struct to build simple AffineValueExprs with minimal type inference support.
Definition: Utils.h:370
OpFoldResult add(AffineValueExpr lhs, AffineValueExpr rhs)
Definition: Utils.h:372
OpFoldResult min(ArrayRef< OpFoldResult > vals)
Definition: Utils.h:389
OpFoldResult ceil(AffineValueExpr lhs, AffineValueExpr rhs)
Definition: Utils.h:385
OpFoldResult max(ArrayRef< OpFoldResult > vals)
Definition: Utils.h:394
AffineBuilder(OpBuilder &b, Location loc)
Definition: Utils.h:371
OpFoldResult floor(AffineValueExpr lhs, AffineValueExpr rhs)
Definition: Utils.h:381
OpFoldResult sub(AffineValueExpr lhs, AffineValueExpr rhs)
Definition: Utils.h:375
OpFoldResult mul(AffineValueExpr lhs, AffineValueExpr rhs)
Definition: Utils.h:378
AffineValueExpr(AffineExpr e)
Definition: Utils.h:353
AffineValueExpr bind(Value v)
Definition: Utils.h:354
AffineValueExpr bind(OpFoldResult v)
Definition: Utils.h:358
Holds the result of (div a, b) and (mod a, b).
Definition: Utils.h:307
Holds parameters to perform n-D vectorization on a single loop nest.
Definition: Utils.h:92
SmallVector< int64_t, 8 > vectorSizes
Definition: Utils.h:95
DenseMap< Operation *, unsigned > loopToVectorDim
Definition: Utils.h:99
ReductionLoopMap reductionLoops
Definition: Utils.h:102