MLIR 22.0.0git
Utils.h
Go to the documentation of this file.
1//===- Utils.h - Affine dialect utilities -----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This header file declares a set of utilities for the affine dialect ops.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef MLIR_DIALECT_AFFINE_UTILS_H
14#define MLIR_DIALECT_AFFINE_UTILS_H
15
20#include <optional>
21
22namespace mlir {
23class DominanceInfo;
24class Operation;
27
28namespace func {
29class FuncOp;
30} // namespace func
31
32namespace memref {
33class AllocOp;
34class AllocaOp;
35class ReinterpretCastOp;
36} // namespace memref
37
38namespace affine {
39class AffineForOp;
40class AffineIfOp;
41class AffineParallelOp;
42
44
45/// Replaces a parallel affine.for op with a 1-d affine.parallel op. `forOp`'s
46/// body is taken by the affine.parallel op and the former is erased.
47/// (mlir::isLoopParallel can be used to detect a parallel affine.for op.) The
48/// reductions specified in `parallelReductions` are also parallelized.
49/// Parallelization will fail in the presence of loop iteration arguments that
50/// are not listed in `parallelReductions`. `resOp` if non-null is set to the
51/// newly created affine.parallel op.
52LogicalResult affineParallelize(AffineForOp forOp,
53 ArrayRef<LoopReduction> parallelReductions = {},
54 AffineParallelOp *resOp = nullptr);
55
56/// Hoists out affine.if/else to as high as possible, i.e., past all invariant
57/// affine.fors/parallel's. Returns success if any hoisting happened; folded` is
58/// set to true if the op was folded or erased. This hoisting could lead to
59/// significant code expansion in some cases.
60LogicalResult hoistAffineIfOp(AffineIfOp ifOp, bool *folded = nullptr);
61
62/// Holds parameters to perform n-D vectorization on a single loop nest.
63/// For example, for the following loop nest:
64///
65/// func @vec2d(%in: memref<64x128x512xf32>, %out: memref<64x128x512xf32>) {
66/// affine.for %i0 = 0 to 64 {
67/// affine.for %i1 = 0 to 128 {
68/// affine.for %i2 = 0 to 512 {
69/// %ld = affine.load %in[%i0, %i1, %i2] : memref<64x128x512xf32>
70/// affine.store %ld, %out[%i0, %i1, %i2] : memref<64x128x512xf32>
71/// }
72/// }
73/// }
74/// return
75/// }
76///
77/// and VectorizationStrategy = 'vectorSizes = {8, 4}', 'loopToVectorDim =
78/// {{i1->0}, {i2->1}}', SuperVectorizer will generate:
79///
80/// func @vec2d(%arg0: memref<64x128x512xf32>, %arg1: memref<64x128x512xf32>) {
81/// affine.for %arg2 = 0 to 64 {
82/// affine.for %arg3 = 0 to 128 step 8 {
83/// affine.for %arg4 = 0 to 512 step 4 {
84/// %cst = arith.constant 0.000000e+00 : f32
85/// %0 = vector.transfer_read %arg0[%arg2, %arg3, %arg4], %cst : ...
86/// vector.transfer_write %0, %arg1[%arg2, %arg3, %arg4] : ...
87/// }
88/// }
89/// }
90/// return
91/// }
92// TODO: Hoist to a VectorizationStrategy.cpp when appropriate.
93struct VectorizationStrategy {
94 // Vectorization factors to apply to each target vector dimension.
95 // Each factor will be applied to a different loop.
96 SmallVector<int64_t, 8> vectorSizes;
97 // Maps each AffineForOp vectorization candidate with its vector dimension.
98 // The candidate will be vectorized using the vectorization factor in
99 // 'vectorSizes' for that dimension.
100 DenseMap<Operation *, unsigned> loopToVectorDim;
101 // Maps loops that implement vectorizable reductions to the corresponding
102 // reduction descriptors.
103 ReductionLoopMap reductionLoops;
104};
105
106/// Replace affine store and load accesses by scalars by forwarding stores to
107/// loads and eliminate invariant affine loads; consequently, eliminate dead
108/// allocs.
109void affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo,
110 PostDominanceInfo &postDomInfo,
111 AliasAnalysis &analysis);
112
113/// Vectorizes affine loops in 'loops' using the n-D vectorization factors in
114/// 'vectorSizes'. By default, each vectorization factor is applied
115/// inner-to-outer to the loops of each loop nest. 'fastestVaryingPattern' can
116/// be optionally used to provide a different loop vectorization order.
117/// If `reductionLoops` is not empty, the given reduction loops may be
118/// vectorized along the reduction dimension.
119/// TODO: Vectorizing reductions is supported only for 1-D vectorization.
120void vectorizeAffineLoops(
121 Operation *parentOp,
122 llvm::DenseSet<Operation *, DenseMapInfo<Operation *>> &loops,
123 ArrayRef<int64_t> vectorSizes, ArrayRef<int64_t> fastestVaryingPattern,
124 const ReductionLoopMap &reductionLoops = ReductionLoopMap());
125
126/// External utility to vectorize affine loops from a single loop nest using an
127/// n-D vectorization strategy (see doc in VectorizationStrategy definition).
128/// Loops are provided in a 2D vector container. The first dimension represents
129/// the nesting level relative to the loops to be vectorized. The second
130/// dimension contains the loops. This means that:
131/// a) every loop in 'loops[i]' must have a parent loop in 'loops[i-1]',
132/// b) a loop in 'loops[i]' may or may not have a child loop in 'loops[i+1]'.
133///
134/// For example, for the following loop nest:
135///
136/// func @vec2d(%in0: memref<64x128x512xf32>, %in1: memref<64x128x128xf32>,
137/// %out0: memref<64x128x512xf32>,
138/// %out1: memref<64x128x128xf32>) {
139/// affine.for %i0 = 0 to 64 {
140/// affine.for %i1 = 0 to 128 {
141/// affine.for %i2 = 0 to 512 {
142/// %ld = affine.load %in0[%i0, %i1, %i2] : memref<64x128x512xf32>
143/// affine.store %ld, %out0[%i0, %i1, %i2] : memref<64x128x512xf32>
144/// }
145/// affine.for %i3 = 0 to 128 {
146/// %ld = affine.load %in1[%i0, %i1, %i3] : memref<64x128x128xf32>
147/// affine.store %ld, %out1[%i0, %i1, %i3] : memref<64x128x128xf32>
148/// }
149/// }
150/// }
151/// return
152/// }
153///
154/// loops = {{%i0}, {%i2, %i3}}, to vectorize the outermost and the two
155/// innermost loops;
156/// loops = {{%i1}, {%i2, %i3}}, to vectorize the middle and the two innermost
157/// loops;
158/// loops = {{%i2}}, to vectorize only the first innermost loop;
159/// loops = {{%i3}}, to vectorize only the second innermost loop;
160/// loops = {{%i1}}, to vectorize only the middle loop.
161LogicalResult
162vectorizeAffineLoopNest(std::vector<SmallVector<AffineForOp, 2>> &loops,
163 const VectorizationStrategy &strategy);
164
165/// Normalize a affine.parallel op so that lower bounds are 0 and steps are 1.
166/// As currently implemented, this transformation cannot fail and will return
167/// early if the op is already in a normalized form.
168void normalizeAffineParallel(AffineParallelOp op);
169
170/// Normalize an affine.for op. An affine.for op is normalized by converting the
171/// lower bound to zero and loop step to one. The upper bound is set to the trip
172/// count of the loop. Original loops must have a lower bound with only a single
173/// result. There is no such restriction on upper bounds. Returns success if the
174/// loop has been normalized (or is already in the normal form). If
175/// `promoteSingleIter` is true, the loop is simply promoted if it has a single
176/// iteration.
177LogicalResult normalizeAffineFor(AffineForOp op,
178 bool promoteSingleIter = false);
179
180/// Traverse `e` and return an AffineExpr where all occurrences of `dim` have
181/// been replaced by either:
182/// - `min` if `positivePath` is true when we reach an occurrence of `dim`
183/// - `max` if `positivePath` is true when we reach an occurrence of `dim`
184/// `positivePath` is negated each time we hit a multiplicative or divisive
185/// binary op with a constant negative coefficient.
186AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min,
187 AffineExpr max, bool positivePath = true);
188
189/// Replaces all "dereferencing" uses of `oldMemRef` with `newMemRef` while
190/// optionally remapping the old memref's indices using the supplied affine map,
191/// `indexRemap`. The new memref could be of a different shape or rank.
192/// `extraIndices` provides any additional access indices to be added to the
193/// start.
194///
195/// `indexRemap` remaps indices of the old memref access to a new set of indices
196/// that are used to index the memref. Additional input operands to indexRemap
197/// can be optionally provided in `extraOperands`, and they occupy the start
198/// of its input list. `indexRemap`'s dimensional inputs are expected to
199/// correspond to memref's indices, and its symbolic inputs if any should be
200/// provided in `symbolOperands`.
201//
202/// If `userFilterFn` is specified, restrict replacement to only those users
203/// that pass the specified filter (i.e., the filter returns true).
204///
205/// 'allowNonDereferencingOps', if set, allows replacement of non-dereferencing
206/// uses of a memref without any requirement for access index rewrites as long
207/// as the user operation has the MemRefsNormalizable trait. The default value
208/// of this flag is false.
209///
210/// 'replaceInDeallocOp', if set, lets DeallocOp, a non-dereferencing user, to
211/// also be a candidate for replacement. The default value of this flag is
212/// false.
213///
214/// Returns true on success and false if the replacement is not possible,
215/// whenever a memref is used as an operand in a non-dereferencing context and
216/// 'allowNonDereferencingOps' is false, except for dealloc's on the memref
217/// which are left untouched. See comments at function definition for an
218/// example.
219//
220// Ex: to replace load %A[%i, %j] with load %Abuf[%t mod 2, %ii - %i, %j]:
221// The SSA value corresponding to '%t mod 2' should be in 'extraIndices', and
222// index remap will perform (%i, %j) -> (%ii - %i, %j), i.e., indexRemap = (d0,
223// d1, d2) -> (d0 - d1, d2), and %ii will be the extra operand. Without any
224// extra operands, note that 'indexRemap' would just be applied to existing
225// indices (%i, %j).
226//
227// TODO: allow extraIndices to be added at any position.
228LogicalResult replaceAllMemRefUsesWith(
229 Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices = {},
230 AffineMap indexRemap = AffineMap(), ArrayRef<Value> extraOperands = {},
231 ArrayRef<Value> symbolOperands = {},
232 llvm::function_ref<bool(Operation *)> userFilterFn = nullptr,
233 bool allowNonDereferencingOps = false, bool replaceInDeallocOp = false);
234
235/// Performs the same replacement as the other version above but only for the
236/// dereferencing uses of `oldMemRef` in `op`, except in cases where
237/// 'allowNonDereferencingOps' is set to true where we replace the
238/// non-dereferencing uses as well.
239LogicalResult replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
240 Operation *op,
241 ArrayRef<Value> extraIndices = {},
242 AffineMap indexRemap = AffineMap(),
243 ArrayRef<Value> extraOperands = {},
244 ArrayRef<Value> symbolOperands = {},
245 bool allowNonDereferencingOps = false);
246
247/// Rewrites the memref defined by alloc or reinterpret_cast op to have an
248/// identity layout map and updates all its indexing uses. Returns failure if
249/// any of its uses escape (while leaving the IR in a valid state).
250template <typename AllocLikeOp>
251LogicalResult normalizeMemRef(AllocLikeOp op);
252extern template LogicalResult
253normalizeMemRef<memref::AllocaOp>(memref::AllocaOp op);
254extern template LogicalResult
255normalizeMemRef<memref::AllocOp>(memref::AllocOp op);
256LogicalResult normalizeMemRef(memref::ReinterpretCastOp op);
257
258/// Normalizes `memrefType` so that the affine layout map of the memref is
259/// transformed to an identity map with a new shape being computed for the
260/// normalized memref type and returns it. The old memref type is simplify
261/// returned if the normalization failed.
262MemRefType normalizeMemRefType(MemRefType memrefType);
263
264/// Given an operation, inserts one or more single result affine apply
265/// operations, results of which are exclusively used by this operation.
266/// The operands of these newly created affine apply ops are
267/// guaranteed to be loop iterators or terminal symbols of a function.
268///
269/// Before
270///
271/// affine.for %i = 0 to #map(%N)
272/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
273/// send %A[%idx], ...
274/// %v = "compute"(%idx, ...)
275///
276/// After
277///
278/// affine.for %i = 0 to #map(%N)
279/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
280/// send %A[%idx], ...
281/// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
282/// %v = "compute"(%idx_, ...)
283
284/// This allows the application of different transformations on send and
285/// compute (for eg. different shifts/delays)
286///
287/// Fills `sliceOps` with the list of affine.apply operations.
288/// In the following cases, `sliceOps` remains empty:
289/// 1. If none of opInst's operands were the result of an affine.apply
290/// (i.e., there was no affine computation slice to create).
291/// 2. If all the affine.apply op's supplying operands to this opInst did not
292/// have any uses other than those in this opInst.
293void createAffineComputationSlice(Operation *opInst,
294 SmallVectorImpl<AffineApplyOp> *sliceOps);
295
296/// Emit code that computes the given affine expression using standard
297/// arithmetic operations applied to the provided dimension and symbol values.
298Value expandAffineExpr(OpBuilder &builder, Location loc, AffineExpr expr,
299 ValueRange dimValues, ValueRange symbolValues);
300
301/// Create a sequence of operations that implement the `affineMap` applied to
302/// the given `operands` (as it it were an AffineApplyOp).
303std::optional<SmallVector<Value, 8>> expandAffineMap(OpBuilder &builder,
304 Location loc,
305 AffineMap affineMap,
306 ValueRange operands);
307
308/// Holds the result of (div a, b) and (mod a, b).
309struct DivModValue {
310 Value quotient;
311 Value remainder;
312};
313
314/// Create IR to calculate (div lhs, rhs) and (mod lhs, rhs).
315DivModValue getDivMod(OpBuilder &b, Location loc, Value lhs, Value rhs);
316
317/// Generate the IR to delinearize `linearIndex` given the `basis` and return
318/// the multi-index. `hasOuterBound` indicates whether `basis` has an entry
319/// given the size of the first multi-index result - if it is true, the function
320/// will return `basis.size()` values, otherwise, it will return `basis.size() +
321/// 1`.
322FailureOr<SmallVector<Value>> delinearizeIndex(OpBuilder &b, Location loc,
323 Value linearIndex,
324 ArrayRef<Value> basis,
325 bool hasOuterBound = true);
326
327FailureOr<SmallVector<Value>> delinearizeIndex(OpBuilder &b, Location loc,
328 Value linearIndex,
329 ArrayRef<OpFoldResult> basis,
330 bool hasOuterBound = true);
331
332// Generate IR that extracts the linear index from a multi-index according to
333// a basis/shape. The basis may contain either `multiIndex.size()` or
334// `multiIndex.size() - 1` elements.
335OpFoldResult linearizeIndex(ArrayRef<OpFoldResult> multiIndex,
336 ArrayRef<OpFoldResult> basis,
337 ImplicitLocOpBuilder &builder);
338
339OpFoldResult linearizeIndex(OpBuilder &builder, Location loc,
340 ArrayRef<OpFoldResult> multiIndex,
341 ArrayRef<OpFoldResult> basis);
342
343/// Ensure that all operations that could be executed after `start`
344/// (noninclusive) and prior to `memOp` (e.g. on a control flow/op path
345/// between the operations) do not have the potential memory effect
346/// `EffectType` on `memOp`. `memOp` is an operation that reads or writes to
347/// a memref. For example, if `EffectType` is MemoryEffects::Write, this method
348/// will check if there is no write to the memory between `start` and `memOp`
349/// that would change the read within `memOp`.
350template <typename EffectType, typename T>
351bool hasNoInterveningEffect(Operation *start, T memOp,
352 llvm::function_ref<bool(Value, Value)> mayAlias);
353
357 this->v = v;
358 return *this;
359 }
361 this->v = v;
362 return *this;
363 }
364 operator AffineExpr() const { return e; }
365 operator OpFoldResult() const { return v; }
368};
369
370/// Helper struct to build simple AffineValueExprs with minimal type inference
371/// support.
373 AffineBuilder(OpBuilder &b, Location loc) : b(b), loc(loc) {}
384 return makeComposedFoldedAffineApply(b, loc, {lhs.e.floorDiv(rhs.e)},
385 {lhs, rhs});
386 }
388 return makeComposedFoldedAffineApply(b, loc, {lhs.e.ceilDiv(rhs.e)},
389 {lhs, rhs});
390 }
393 b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), b.getContext()),
394 vals);
395 }
398 b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), b.getContext()),
399 vals);
400 }
401
402private:
403 OpBuilder &b;
404 Location loc;
405};
406
407} // namespace affine
408} // namespace mlir
409
410#endif // MLIR_DIALECT_AFFINE_UTILS_H
static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp)
A helper for the mechanics of mlir::hoistAffineIfOp.
Definition Utils.cpp:289
template LogicalResult mlir::affine::normalizeMemRef< memref::AllocaOp >(memref::AllocaOp op)
template LogicalResult mlir::affine::normalizeMemRef< memref::AllocOp >(memref::AllocOp op)
static bool mayAlias(Value first, Value second)
Returns true if two values may be referencing aliasing memory.
lhs
b
Return true if permutation is a valid permutation of the outer_dims_perm (case OuterOrInnerPerm::Oute...
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
Base type for affine expression.
Definition AffineExpr.h:68
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
A class for computing basic dominance information.
Definition Dominance.h:140
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
Definition Builders.h:630
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition Location.h:76
This class helps build Operations.
Definition Builders.h:207
This class represents a single result from folding an operation.
Operation is the basic unit of execution within MLIR.
Definition Operation.h:88
A class for computing basic postdominance information.
Definition Dominance.h:204
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
DenseMap< Operation *, SmallVector< LoopReduction, 2 > > ReductionLoopMap
Definition Utils.h:43
LogicalResult affineParallelize(AffineForOp forOp, ArrayRef< LoopReduction > parallelReductions={}, AffineParallelOp *resOp=nullptr)
Replaces a parallel affine.for op with a 1-d affine.parallel op.
Definition Utils.cpp:352
OpFoldResult makeComposedFoldedAffineMax(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a maximum across the results of applying map to operands,...
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
OpFoldResult makeComposedFoldedAffineMin(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a minimum across the results of applying map to operands,...
bool hasNoInterveningEffect(Operation *start, T memOp, llvm::function_ref< bool(Value, Value)> mayAlias)
Hoists out affine.if/else to as high as possible, i.e., past all invariant affine....
Definition Utils.cpp:687
Value linearizeIndex(ValueRange indices, ArrayRef< int64_t > strides, int64_t offset, Type integerType, Location loc, OpBuilder &builder)
Generates IR to perform index linearization with the given indices and their corresponding strides,...
Include the generated interface declarations.
llvm::DenseMapInfo< T, Enable > DenseMapInfo
Definition LLVM.h:122
llvm::DenseMap< KeyT, ValueT, KeyInfoT, BucketT > DenseMap
Definition LLVM.h:126
OpFoldResult add(AffineValueExpr lhs, AffineValueExpr rhs)
Definition Utils.h:374
OpFoldResult min(ArrayRef< OpFoldResult > vals)
Definition Utils.h:391
OpFoldResult ceil(AffineValueExpr lhs, AffineValueExpr rhs)
Definition Utils.h:387
OpFoldResult max(ArrayRef< OpFoldResult > vals)
Definition Utils.h:396
AffineBuilder(OpBuilder &b, Location loc)
Definition Utils.h:373
OpFoldResult floor(AffineValueExpr lhs, AffineValueExpr rhs)
Definition Utils.h:383
OpFoldResult sub(AffineValueExpr lhs, AffineValueExpr rhs)
Definition Utils.h:377
OpFoldResult mul(AffineValueExpr lhs, AffineValueExpr rhs)
Definition Utils.h:380
AffineValueExpr(AffineExpr e)
Definition Utils.h:355
AffineValueExpr bind(Value v)
Definition Utils.h:356
AffineValueExpr bind(OpFoldResult v)
Definition Utils.h:360