29#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/Debug.h"
35#define GEN_PASS_DEF_AFFINEVECTORIZE
36#include "mlir/Dialect/Affine/Passes.h.inc"
575#define DEBUG_TYPE "early-vect"
582 int fastestVaryingMemRefDimension);
588static std::optional<NestedPattern>
592 int64_t d0 = fastestVaryingPattern.empty() ? -1 : fastestVaryingPattern[0];
593 int64_t d1 = fastestVaryingPattern.size() < 2 ? -1 : fastestVaryingPattern[1];
594 int64_t d2 = fastestVaryingPattern.size() < 3 ? -1 : fastestVaryingPattern[2];
595 switch (vectorRank) {
613 llvm::IsaPred<vector::TransferReadOp, vector::TransferWriteOp>);
624 void runOnOperation()
override;
630 unsigned patternDepth,
631 VectorizationStrategy *strategy) {
632 assert(patternDepth > depthInPattern &&
633 "patternDepth is greater than depthInPattern");
634 if (patternDepth - depthInPattern > strategy->vectorSizes.size()) {
638 strategy->loopToVectorDim[loop] =
639 strategy->vectorSizes.size() - (patternDepth - depthInPattern);
658 unsigned depthInPattern,
659 unsigned patternDepth,
660 VectorizationStrategy *strategy) {
661 for (
auto m : matches) {
663 patternDepth, strategy))) {
667 patternDepth, strategy);
676struct VectorizationState {
689 void registerOpVectorReplacement(Operation *replaced, Operation *
replacement);
702 void registerValueVectorReplacement(Value replaced, Operation *
replacement);
709 void registerBlockArgVectorReplacement(BlockArgument replaced,
722 void registerValueScalarReplacement(Value replaced, Value
replacement);
734 void registerLoopResultScalarReplacement(Value replaced, Value
replacement);
738 void getScalarValueReplacementsFor(
ValueRange inputVals,
739 SmallVectorImpl<Value> &replacedVals);
742 void finishVectorizationPattern(AffineForOp rootLoop);
751 IRMapping valueVectorReplacement;
754 IRMapping valueScalarReplacement;
756 DenseMap<Value, Value> loopResultScalarReplacement;
766 const VectorizationStrategy *strategy =
nullptr;
771 void registerValueVectorReplacementImpl(Value replaced, Value
replacement);
785void VectorizationState::registerOpVectorReplacement(
Operation *replaced,
787 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ commit vectorized op:\n");
788 LLVM_DEBUG(dbgs() << *replaced <<
"\n");
789 LLVM_DEBUG(dbgs() <<
"into\n");
793 "Unexpected replaced and replacement results");
794 assert(opVectorReplacement.count(replaced) == 0 &&
"already registered");
797 for (
auto resultTuple :
799 registerValueVectorReplacementImpl(std::get<0>(resultTuple),
800 std::get<1>(resultTuple));
813void VectorizationState::registerValueVectorReplacement(
816 "Expected single-result replacement");
820 registerValueVectorReplacementImpl(replaced,
replacement->getResult(0));
828void VectorizationState::registerBlockArgVectorReplacement(
829 BlockArgument replaced, BlockArgument
replacement) {
830 registerValueVectorReplacementImpl(replaced,
replacement);
833void VectorizationState::registerValueVectorReplacementImpl(Value replaced,
835 assert(!valueVectorReplacement.
contains(replaced) &&
836 "Vector replacement already registered");
838 "Expected vector type in vector replacement");
852void VectorizationState::registerValueScalarReplacement(Value replaced,
854 assert(!valueScalarReplacement.
contains(replaced) &&
855 "Scalar value replacement already registered");
857 "Expected scalar type in scalar replacement");
870void VectorizationState::registerLoopResultScalarReplacement(
873 assert(loopResultScalarReplacement.count(replaced) == 0 &&
874 "already registered");
875 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ will replace a result of the loop "
878 loopResultScalarReplacement[replaced] =
replacement;
882void VectorizationState::getScalarValueReplacementsFor(
883 ValueRange inputVals, SmallVectorImpl<Value> &replacedVals) {
884 for (Value inputVal : inputVals)
885 replacedVals.push_back(valueScalarReplacement.
lookupOrDefault(inputVal));
890 LLVM_DEBUG(dbgs() <<
"[early-vect]+++++ erasing:\n" << forOp <<
"\n");
895void VectorizationState::finishVectorizationPattern(AffineForOp rootLoop) {
896 LLVM_DEBUG(dbgs() <<
"\n[early-vect] Finalizing vectorization\n");
903 VectorizationState &state,
908 auto afOp = AffineApplyOp::create(state.builder, op->
getLoc(), singleResMap,
910 results.push_back(afOp);
919 int fastestVaryingMemRefDimension) {
920 return [¶llelLoops, fastestVaryingMemRefDimension](
Operation &forOp) {
921 auto loop = cast<AffineForOp>(forOp);
922 if (!parallelLoops.contains(loop))
925 auto vectorizableBody =
927 if (!vectorizableBody)
929 return memRefDim == -1 || fastestVaryingMemRefDimension == -1 ||
930 memRefDim == fastestVaryingMemRefDimension;
937 const VectorizationStrategy *strategy) {
938 assert(!isa<VectorType>(scalarTy) &&
"Expected scalar type");
939 return VectorType::get(strategy->vectorSizes, scalarTy);
946 VectorizationState &state) {
947 Type scalarTy = constOp.getType();
948 if (!VectorType::isValidElementType(scalarTy))
957 while (parentOp && !state.vecLoopToVecDim.count(parentOp))
959 assert(parentOp && state.vecLoopToVecDim.count(parentOp) &&
960 isa<AffineForOp>(parentOp) &&
"Expected a vectorized for op");
961 auto vecForOp = cast<AffineForOp>(parentOp);
964 arith::ConstantOp::create(state.builder, constOp.getLoc(), vecAttr);
967 state.registerOpVectorReplacement(constOp, newConstOp);
974 VectorizationState &state) {
976 for (
Value operand : applyOp.getOperands()) {
977 if (state.valueVectorReplacement.
contains(operand)) {
979 dbgs() <<
"\n[early-vect]+++++ affine.apply on vector operand\n");
984 updatedOperand = operand;
985 updatedOperands.push_back(updatedOperand);
988 auto newApplyOp = AffineApplyOp::create(
989 state.builder, applyOp.getLoc(), applyOp.getAffineMap(), updatedOperands);
992 state.registerValueScalarReplacement(applyOp.getResult(),
993 newApplyOp.getResult());
1002 VectorizationState &state) {
1004 if (!VectorType::isValidElementType(scalarTy))
1007 Attribute valueAttr = getIdentityValueAttr(
1008 reductionKind, scalarTy, state.builder, oldOperand.
getLoc());
1012 arith::ConstantOp::create(state.builder, oldOperand.
getLoc(), vecAttr);
1025 assert(state.strategy->vectorSizes.size() == 1 &&
1026 "Creating a mask non-1-D vectors is not supported.");
1027 assert(vecForOp.getStep() == state.strategy->vectorSizes[0] &&
1028 "Creating a mask for loops with non-unit original step size is not "
1032 if (
Value mask = state.vecLoopToMask.lookup(vecForOp))
1037 if (vecForOp.hasConstantBounds()) {
1039 vecForOp.getConstantUpperBound() - vecForOp.getConstantLowerBound();
1040 if (originalTripCount % vecForOp.getStepAsInt() == 0)
1061 AffineMap ubMap = vecForOp.getUpperBoundMap();
1064 ub = AffineApplyOp::create(state.builder, loc, vecForOp.getUpperBoundMap(),
1065 vecForOp.getUpperBoundOperands());
1067 ub = AffineMinOp::create(state.builder, loc, vecForOp.getUpperBoundMap(),
1068 vecForOp.getUpperBoundOperands());
1074 {ub, vecForOp.getInductionVar()});
1077 ub.getDefiningOp()->erase();
1079 Type maskTy = VectorType::get(state.strategy->vectorSizes,
1082 vector::CreateMaskOp::create(state.builder, loc, maskTy, itersLeft);
1084 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ creating a mask:\n"
1085 << itersLeft <<
"\n"
1088 state.vecLoopToMask[vecForOp] = mask;
1098 const VectorizationStrategy *strategy) {
1100 if (forOp && strategy->loopToVectorDim.count(forOp) == 0)
1103 for (
auto loopToDim : strategy->loopToVectorDim) {
1104 auto loop = cast<AffineForOp>(loopToDim.first);
1105 if (!loop.isDefinedOutsideOfLoop(value))
1115 VectorizationState &state) {
1117 Value uniformScalarRepl =
1122 auto bcastOp = BroadcastOp::create(state.builder, uniformVal.
getLoc(),
1123 vectorTy, uniformScalarRepl);
1124 state.registerValueVectorReplacement(uniformVal, bcastOp);
1146 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ vectorize operand: " << operand);
1149 LLVM_DEBUG(dbgs() <<
" -> already vectorized: " << vecRepl);
1156 assert(!isa<VectorType>(operand.
getType()) &&
1157 "Vector op not found in replacement map");
1160 if (
auto constOp = operand.
getDefiningOp<arith::ConstantOp>()) {
1162 LLVM_DEBUG(dbgs() <<
"-> constant: " << vecConstant);
1163 return vecConstant.getResult();
1169 LLVM_DEBUG(dbgs() <<
"-> uniform: " << *vecUniform);
1176 LLVM_DEBUG(dbgs() <<
"-> unsupported block argument\n");
1179 LLVM_DEBUG(dbgs() <<
"-> non-vectorizable\n");
1188 for (
auto &kvp : loopToVectorDim) {
1189 AffineForOp forOp = cast<AffineForOp>(kvp.first);
1194 unsigned nonInvariant = 0;
1196 if (invariants.count(idx))
1199 if (++nonInvariant > 1) {
1200 LLVM_DEBUG(dbgs() <<
"[early‑vect] Bail out: IV "
1201 << forOp.getInductionVar() <<
" drives "
1202 << nonInvariant <<
" indices\n");
1217 VectorizationState &state) {
1218 MemRefType memRefType = loadOp.getMemRefType();
1219 Type elementType = memRefType.getElementType();
1220 auto vectorType = VectorType::get(state.strategy->vectorSizes, elementType);
1224 state.getScalarValueReplacementsFor(loadOp.getMapOperands(), mapOperands);
1228 indices.reserve(memRefType.getRank());
1229 if (loadOp.getAffineMap() !=
1232 for (
auto op : mapOperands) {
1233 if (op.getDefiningOp<AffineApplyOp>())
1239 indices.append(mapOperands.begin(), mapOperands.end());
1247 indices, state.vecLoopToVecDim);
1248 if (!permutationMap) {
1249 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ can't compute permutationMap\n");
1252 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ permutationMap: ");
1253 LLVM_DEBUG(permutationMap.print(dbgs()));
1255 auto transfer = vector::TransferReadOp::create(
1256 state.builder, loadOp.getLoc(), vectorType, loadOp.getMemRef(),
indices,
1257 std::nullopt, permutationMap);
1260 state.registerOpVectorReplacement(loadOp, transfer);
1271 VectorizationState &state) {
1272 MemRefType memRefType = storeOp.getMemRefType();
1279 state.getScalarValueReplacementsFor(storeOp.getMapOperands(), mapOperands);
1283 indices.reserve(memRefType.getRank());
1284 if (storeOp.getAffineMap() !=
1289 indices.append(mapOperands.begin(), mapOperands.end());
1296 indices, state.vecLoopToVecDim);
1297 if (!permutationMap)
1299 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ permutationMap: ");
1300 LLVM_DEBUG(permutationMap.print(dbgs()));
1302 auto transfer = vector::TransferWriteOp::create(
1303 state.builder, storeOp.getLoc(), vectorValue, storeOp.getMemRef(),
1305 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ vectorized store: " << transfer);
1308 state.registerOpVectorReplacement(storeOp, transfer);
1315 Value value, VectorizationState &state) {
1317 if (!VectorType::isValidElementType(scalarTy))
1319 Attribute valueAttr = getIdentityValueAttr(reductionKind, scalarTy,
1320 state.builder, value.
getLoc());
1321 if (
auto constOp = value.
getDefiningOp<arith::ConstantOp>())
1322 return constOp.getValue() == valueAttr;
1333 VectorizationState &state) {
1334 const VectorizationStrategy &strategy = *state.strategy;
1335 auto loopToVecDimIt = strategy.loopToVectorDim.find(forOp);
1336 bool isLoopVecDim = loopToVecDimIt != strategy.loopToVectorDim.end();
1339 if (isLoopVecDim && forOp.getNumIterOperands() > 0 && forOp.getStep() != 1) {
1342 <<
"\n[early-vect]+++++ unsupported step size for reduction loop: "
1343 << forOp.getStep() <<
"\n");
1352 unsigned vectorDim = loopToVecDimIt->second;
1353 assert(vectorDim < strategy.vectorSizes.size() &&
"vector dim overflow");
1354 int64_t forOpVecFactor = strategy.vectorSizes[vectorDim];
1355 newStep = forOp.getStepAsInt() * forOpVecFactor;
1357 newStep = forOp.getStepAsInt();
1362 if (isLoopVecDim && forOp.getNumIterOperands() > 0) {
1363 auto it = strategy.reductionLoops.find(forOp);
1364 assert(it != strategy.reductionLoops.end() &&
1365 "Reduction descriptors not found when vectorizing a reduction loop");
1366 reductions = it->second;
1367 assert(reductions.size() == forOp.getNumIterOperands() &&
1368 "The size of reductions array must match the number of iter_args");
1373 if (!isLoopVecDim) {
1374 for (
auto operand : forOp.getInits())
1380 for (
auto redAndOperand : llvm::zip(reductions, forOp.getInits())) {
1382 std::get<0>(redAndOperand).kind, std::get<1>(redAndOperand), state));
1386 auto vecForOp = AffineForOp::create(
1387 state.builder, forOp.getLoc(), forOp.getLowerBoundOperands(),
1388 forOp.getLowerBoundMap(), forOp.getUpperBoundOperands(),
1389 forOp.getUpperBoundMap(), newStep, vecIterOperands,
1408 state.registerOpVectorReplacement(forOp, vecForOp);
1409 state.registerValueScalarReplacement(forOp.getInductionVar(),
1410 vecForOp.getInductionVar());
1411 for (
auto iterTuple :
1412 llvm ::zip(forOp.getRegionIterArgs(), vecForOp.getRegionIterArgs()))
1413 state.registerBlockArgVectorReplacement(std::get<0>(iterTuple),
1414 std::get<1>(iterTuple));
1417 for (
unsigned i = 0; i < vecForOp.getNumIterOperands(); ++i) {
1421 vecForOp.getLoc(), vecForOp.getResult(i));
1422 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ creating a vector reduction: "
1426 Value origInit = forOp.getOperand(forOp.getNumControlOperands() + i);
1427 Value finalRes = reducedRes;
1431 reducedRes.
getLoc(), reducedRes, origInit);
1432 state.registerLoopResultScalarReplacement(forOp.getResult(i), finalRes);
1437 state.vecLoopToVecDim[vecForOp] = loopToVecDimIt->second;
1445 if (isLoopVecDim && forOp.getNumIterOperands() > 0)
1457 vectorTypes.push_back(
1458 VectorType::get(state.strategy->vectorSizes,
result.getType()));
1464 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ an operand failed vectorize\n");
1467 vectorOperands.push_back(vecOperand);
1477 vectorOperands, vectorTypes, op->
getAttrs());
1478 state.registerOpVectorReplacement(op, vecOp);
1487 VectorizationState &state) {
1500 if (
Value mask = state.vecLoopToMask.lookup(newParentOp)) {
1505 cast<AffineForOp>(newParentOp).getRegionIterArgs(), i, combinerOps);
1506 assert(reducedVal &&
"expect non-null value for parallel reduction loop");
1507 assert(combinerOps.size() == 1 &&
"expect only one combiner op");
1509 Value neutralVal = cast<AffineForOp>(newParentOp).getInits()[i];
1511 Value maskedReducedVal = arith::SelectOp::create(
1512 state.builder, reducedVal.
getLoc(), mask, reducedVal, neutralVal);
1514 dbgs() <<
"\n[early-vect]+++++ masking an input to a binary op that"
1515 "produces value for a yield Op: "
1516 << maskedReducedVal);
1517 combinerOps.back()->replaceUsesOfWith(reducedVal, maskedReducedVal);
1535 VectorizationState &state) {
1537 assert(!isa<vector::TransferReadOp>(op) &&
1538 "vector.transfer_read cannot be further vectorized");
1539 assert(!isa<vector::TransferWriteOp>(op) &&
1540 "vector.transfer_write cannot be further vectorized");
1542 if (
auto loadOp = dyn_cast<AffineLoadOp>(op))
1544 if (
auto storeOp = dyn_cast<AffineStoreOp>(op))
1546 if (
auto forOp = dyn_cast<AffineForOp>(op))
1548 if (
auto yieldOp = dyn_cast<AffineYieldOp>(op))
1550 if (
auto constant = dyn_cast<arith::ConstantOp>(op))
1552 if (
auto applyOp = dyn_cast<AffineApplyOp>(op))
1570 assert(currentLevel <= loops.size() &&
"Unexpected currentLevel");
1571 if (currentLevel == loops.size())
1572 loops.emplace_back();
1596 const VectorizationStrategy &strategy) {
1597 assert(loops[0].size() == 1 &&
"Expected single root loop");
1598 AffineForOp rootLoop = loops[0][0];
1599 VectorizationState state(rootLoop.getContext());
1601 state.strategy = &strategy;
1611 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ loop is not vectorizable");
1624 LLVM_DEBUG(dbgs() <<
"[early-vect]+++++ Vectorizing: " << *op);
1628 dbgs() <<
"[early-vect]+++++ failed vectorizing the operation: "
1636 if (opVecResult.wasInterrupted()) {
1637 LLVM_DEBUG(dbgs() <<
"[early-vect]+++++ failed vectorization for: "
1638 << rootLoop <<
"\n");
1640 auto vecRootLoopIt = state.opVectorReplacement.find(rootLoop);
1641 if (vecRootLoopIt != state.opVectorReplacement.end())
1649 for (
auto resPair : state.loopResultScalarReplacement)
1650 resPair.first.replaceAllUsesWith(resPair.second);
1652 assert(state.opVectorReplacement.count(rootLoop) == 1 &&
1653 "Expected vector replacement for loop nest");
1654 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ success vectorizing pattern");
1655 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ vectorization result:\n"
1656 << *state.opVectorReplacement[rootLoop]);
1659 state.finishVectorizationPattern(rootLoop);
1667 const VectorizationStrategy &strategy) {
1668 std::vector<SmallVector<AffineForOp, 2>> loopsToVectorize;
1680 assert(intersectionBuckets.empty() &&
"Expected empty output");
1685 AffineForOp matchRoot = cast<AffineForOp>(match.getMatchedOperation());
1686 bool intersects =
false;
1687 for (
int i = 0, end = intersectionBuckets.size(); i < end; ++i) {
1688 AffineForOp bucketRoot = bucketRoots[i];
1690 if (bucketRoot->isAncestor(matchRoot)) {
1691 intersectionBuckets[i].push_back(match);
1697 if (matchRoot->isAncestor(bucketRoot)) {
1698 bucketRoots[i] = matchRoot;
1699 intersectionBuckets[i].push_back(match);
1708 bucketRoots.push_back(matchRoot);
1709 intersectionBuckets.emplace_back();
1710 intersectionBuckets.back().push_back(match);
1725 assert((reductionLoops.empty() || vectorSizes.size() == 1) &&
1726 "Vectorizing reductions is supported only for 1-D vectors");
1729 std::optional<NestedPattern> pattern =
1730 makePattern(loops, vectorSizes.size(), fastestVaryingPattern);
1732 LLVM_DEBUG(dbgs() <<
"\n[early-vect] pattern couldn't be computed\n");
1736 LLVM_DEBUG(dbgs() <<
"\n******************************************");
1737 LLVM_DEBUG(dbgs() <<
"\n******************************************");
1738 LLVM_DEBUG(dbgs() <<
"\n[early-vect] new pattern on parent op\n");
1739 LLVM_DEBUG(dbgs() << *parentOp <<
"\n");
1741 unsigned patternDepth = pattern->getDepth();
1746 pattern->match(parentOp, &allMatches);
1747 std::vector<SmallVector<NestedMatch, 8>> intersectionBuckets;
1753 for (
auto &intersectingMatches : intersectionBuckets) {
1755 VectorizationStrategy strategy;
1757 strategy.vectorSizes.assign(vectorSizes.begin(), vectorSizes.end());
1758 strategy.reductionLoops = reductionLoops;
1760 patternDepth, &strategy))) {
1774 LLVM_DEBUG(dbgs() <<
"\n");
1779void Vectorize::runOnOperation() {
1780 func::FuncOp f = getOperation();
1781 if (!fastestVaryingPattern.empty() &&
1782 fastestVaryingPattern.size() != vectorSizes.size()) {
1783 f.emitRemark(
"Fastest varying pattern specified with different size than "
1784 "the vector size.");
1785 return signalPassFailure();
1788 if (vectorizeReductions && vectorSizes.size() != 1) {
1789 f.emitError(
"Vectorizing reductions is supported only for 1-D vectors.");
1790 return signalPassFailure();
1793 if (llvm::any_of(vectorSizes, [](int64_t size) {
return size <= 0; })) {
1794 f.emitError(
"Vectorization factor must be greater than zero.");
1795 return signalPassFailure();
1803 if (vectorizeReductions) {
1804 f.walk([¶llelLoops, &reductionLoops](AffineForOp loop) {
1805 SmallVector<LoopReduction, 2> reductions;
1806 if (isLoopParallel(loop, &reductions)) {
1807 parallelLoops.insert(loop);
1809 if (!reductions.empty())
1810 reductionLoops[loop] = reductions;
1814 f.walk([¶llelLoops](AffineForOp loop) {
1815 if (isLoopParallel(loop))
1816 parallelLoops.insert(loop);
1821 NestedPatternContext mlContext;
1822 vectorizeLoops(f, parallelLoops, vectorSizes, fastestVaryingPattern,
1839 if (loops[0].size() != 1)
1843 for (
int i = 1, end = loops.size(); i < end; ++i) {
1844 for (AffineForOp loop : loops[i]) {
1847 if (none_of(loops[i - 1], [&](AffineForOp maybeParent) {
1848 return maybeParent->isProperAncestor(loop);
1854 for (AffineForOp sibling : loops[i]) {
1855 if (sibling->isProperAncestor(loop))
1872void mlir::affine::vectorizeAffineLoops(
1874 ArrayRef<int64_t> vectorSizes, ArrayRef<int64_t> fastestVaryingPattern,
1877 NestedPatternContext mlContext;
1878 vectorizeLoops(parentOp, loops, vectorSizes, fastestVaryingPattern,
1917LogicalResult mlir::affine::vectorizeAffineLoopNest(
1918 std::vector<SmallVector<AffineForOp, 2>> &loops,
1919 const VectorizationStrategy &strategy) {
1921 NestedPatternContext mlContext;
*if copies could not be generated due to yet unimplemented cases *copyInPlacementStart and copyOutPlacementStart in copyPlacementBlock *specify the insertion points where the incoming copies and outgoing should be the output argument nBegin is set to its * replacement(set to `begin` if no invalidation happens). Since outgoing *copies could have been inserted at `end`
static Operation * vectorizeUniform(Value uniformVal, VectorizationState &state)
Generates a broadcast op for the provided uniform value using the vectorization strategy in 'state'.
static std::optional< NestedPattern > makePattern(const DenseSet< Operation * > ¶llelLoops, int vectorRank, ArrayRef< int64_t > fastestVaryingPattern)
Creates a vectorization pattern from the command line arguments.
static LogicalResult vectorizeRootMatch(NestedMatch m, const VectorizationStrategy &strategy)
Extracts the matched loops and vectorizes them following a topological order.
static void vectorizeLoopIfProfitable(Operation *loop, unsigned depthInPattern, unsigned patternDepth, VectorizationStrategy *strategy)
static LogicalResult verifyLoopNesting(const std::vector< SmallVector< AffineForOp, 2 > > &loops)
Verify that affine loops in 'loops' meet the nesting criteria expected by SuperVectorizer:
static Operation * vectorizeOneOperation(Operation *op, VectorizationState &state)
Encodes Operation-specific behavior for vectorization.
static bool isNeutralElementConst(arith::AtomicRMWKind reductionKind, Value value, VectorizationState &state)
Returns true if value is a constant equal to the neutral element of the given vectorizable reduction.
static LogicalResult vectorizeLoopNest(std::vector< SmallVector< AffineForOp, 2 > > &loops, const VectorizationStrategy &strategy)
Internal implementation to vectorize affine loops from a single loop nest using an n-D vectorization ...
static Operation * vectorizeAffineLoad(AffineLoadOp loadOp, VectorizationState &state)
Vectorizes an affine load with the vectorization strategy in 'state' by generating a 'vector....
static Operation * vectorizeAffineForOp(AffineForOp forOp, VectorizationState &state)
Vectorizes a loop with the vectorization strategy in 'state'.
static Operation * vectorizeAffineApplyOp(AffineApplyOp applyOp, VectorizationState &state)
We have no need to vectorize affine.apply.
static LogicalResult analyzeProfitability(ArrayRef< NestedMatch > matches, unsigned depthInPattern, unsigned patternDepth, VectorizationStrategy *strategy)
Implements a simple strawman strategy for vectorization.
static FilterFunctionType isVectorizableLoopPtrFactory(const DenseSet< Operation * > ¶llelLoops, int fastestVaryingMemRefDimension)
Forward declaration.
static bool isIVMappedToMultipleIndices(ArrayRef< Value > indices, const DenseMap< Operation *, unsigned > &loopToVectorDim)
Returns true if any vectorized loop IV drives more than one index.
static arith::ConstantOp vectorizeConstant(arith::ConstantOp constOp, VectorizationState &state)
Tries to transform a scalar constant into a vector constant.
static bool isUniformDefinition(Value value, const VectorizationStrategy *strategy)
Returns true if the provided value is vector uniform given the vectorization strategy.
static void eraseLoopNest(AffineForOp forOp)
Erases a loop nest, including all its nested operations.
static VectorType getVectorType(Type scalarTy, const VectorizationStrategy *strategy)
Returns the vector type resulting from applying the provided vectorization strategy on the scalar typ...
static void getMatchedAffineLoops(NestedMatch match, std::vector< SmallVector< AffineForOp, 2 > > &loops)
Converts all the nested loops in 'match' to a 2D vector container that preserves the relative nesting...
static Value vectorizeOperand(Value operand, VectorizationState &state)
Tries to vectorize a given operand by applying the following logic:
static void getMatchedAffineLoopsRec(NestedMatch match, unsigned currentLevel, std::vector< SmallVector< AffineForOp, 2 > > &loops)
Recursive implementation to convert all the nested loops in 'match' to a 2D vector container that pre...
static Operation * vectorizeAffineYieldOp(AffineYieldOp yieldOp, VectorizationState &state)
Vectorizes a yield operation by widening its types.
static arith::ConstantOp createInitialVector(arith::AtomicRMWKind reductionKind, Value oldOperand, VectorizationState &state)
Creates a constant vector filled with the neutral elements of the given reduction.
static Operation * widenOp(Operation *op, VectorizationState &state)
Vectorizes arbitrary operation by plain widening.
static Operation * vectorizeAffineStore(AffineStoreOp storeOp, VectorizationState &state)
Vectorizes an affine store with the vectorization strategy in 'state' by generating a 'vector....
static NestedPattern & vectorTransferPattern()
static void vectorizeLoops(Operation *parentOp, DenseSet< Operation * > &loops, ArrayRef< int64_t > vectorSizes, ArrayRef< int64_t > fastestVaryingPattern, const ReductionLoopMap &reductionLoops)
Internal implementation to vectorize affine loops in 'loops' using the n-D vectorization factors in '...
static void computeMemoryOpIndices(Operation *op, AffineMap map, ValueRange mapOperands, VectorizationState &state, SmallVectorImpl< Value > &results)
static void computeIntersectionBuckets(ArrayRef< NestedMatch > matches, std::vector< SmallVector< NestedMatch, 8 > > &intersectionBuckets)
Traverses all the loop matches and classifies them into intersection buckets.
static Value createMask(AffineForOp vecForOp, VectorizationState &state)
Creates a mask used to filter out garbage elements in the last iteration of unaligned loops.
static AffineMap makePermutationMap(ArrayRef< Value > indices, const DenseMap< Operation *, unsigned > &enclosingLoopToVectorDim)
Constructs a permutation map from memref indices to vector dimension.
Base type for affine expression.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumSymbols() const
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
Attributes are known-constant values of operations.
Operation * getParentOp()
Returns the closest surrounding operation that contains this block.
AffineMap getMultiDimIdentityMap(unsigned rank)
IntegerType getIntegerType(unsigned width)
AffineExpr getAffineDimExpr(unsigned position)
static DenseElementsAttr get(ShapedType type, ArrayRef< Attribute > values)
Constructs a dense elements attribute from an array of element values.
auto lookupOrDefault(T from) const
Lookup a mapped value within the map.
void map(Value from, Value to)
Inserts a new mapping for 'from' to 'to'.
bool contains(T from) const
Checks to see if a mapping for 'from' exists.
auto lookupOrNull(T from) const
Lookup a mapped value within the map.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Block * getInsertionBlock() const
Return the block the current insertion point belongs to.
void setInsertionPointAfterValue(Value val)
Sets the insertion point to the node after the specified value.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
StringAttr getIdentifier() const
Return the name of this operation as a StringAttr.
Operation is the basic unit of execution within MLIR.
ArrayRef< NamedAttribute > getAttrs()
Return all of the attributes on this operation.
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
unsigned getNumRegions()
Returns the number of regions held by this operation.
Location getLoc()
The source location the operation was defined or derived from.
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
unsigned getNumOperands()
OperationName getName()
The name of an operation is the key identifier for it.
operand_range getOperands()
Returns an iterator on the underlying Value's.
result_range getResults()
unsigned getNumResults()
Return the number of results held by this operation.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
bool isIntOrIndexOrFloat() const
Return true if this is an integer (of any signedness), index, or float type.
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Location getLoc() const
Return the location of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
static WalkResult advance()
static WalkResult interrupt()
An NestedPattern captures nested patterns in the IR.
ArrayRef< NestedMatch > getMatchedChildren()
Operation * getMatchedOperation() const
NestedPattern For(const NestedPattern &child)
NestedPattern Op(FilterFunctionType filter=defaultFilterFunction)
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
DenseMap< Operation *, SmallVector< LoopReduction, 2 > > ReductionLoopMap
bool isVectorizableLoopBody(AffineForOp loop, NestedPattern &vectorTransferMatcher)
Checks whether the loop is structurally vectorizable; i.e.:
DenseSet< Value, DenseMapInfo< Value > > getInvariantAccesses(Value iv, ArrayRef< Value > indices)
Given an induction variable iv of type AffineForOp and indices of type IndexType, returns the set of ...
AffineForOp getForInductionVarOwner(Value val)
Returns the loop parent of an induction variable.
std::function< bool(Operation &)> FilterFunctionType
A NestedPattern is a nested operation walker that:
Value getReductionOp(AtomicRMWKind op, OpBuilder &builder, Location loc, Value lhs, Value rhs)
Returns the value obtained by applying the reduction operation kind associated with a binary AtomicRM...
Value getVectorReductionOp(arith::AtomicRMWKind op, OpBuilder &builder, Location loc, Value vector)
Returns the value obtained by reducing the vector into a scalar using the operation kind associated w...
Include the generated interface declarations.
llvm::DenseSet< ValueT, ValueInfoT > DenseSet
Value matchReduction(ArrayRef< BlockArgument > iterCarriedArgs, unsigned redPos, SmallVectorImpl< Operation * > &combinerOps)
Utility to match a generic reduction given a list of iteration-carried arguments, iterCarriedArgs and...
llvm::DenseMap< KeyT, ValueT, KeyInfoT, BucketT > DenseMap
VectorizationState(RewriterBase &rewriter)