29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/Debug.h"
35 #define GEN_PASS_DEF_AFFINEVECTORIZE
36 #include "mlir/Dialect/Affine/Passes.h.inc"
41 using namespace affine;
42 using namespace vector;
575 #define DEBUG_TYPE "early-vect"
582 int fastestVaryingMemRefDimension);
588 static std::optional<NestedPattern>
592 int64_t d0 = fastestVaryingPattern.empty() ? -1 : fastestVaryingPattern[0];
593 int64_t d1 = fastestVaryingPattern.size() < 2 ? -1 : fastestVaryingPattern[1];
594 int64_t d2 = fastestVaryingPattern.size() < 3 ? -1 : fastestVaryingPattern[2];
595 switch (vectorRank) {
613 llvm::IsaPred<vector::TransferReadOp, vector::TransferWriteOp>);
621 struct Vectorize :
public affine::impl::AffineVectorizeBase<Vectorize> {
624 void runOnOperation()
override;
630 unsigned patternDepth,
632 assert(patternDepth > depthInPattern &&
633 "patternDepth is greater than depthInPattern");
634 if (patternDepth - depthInPattern > strategy->
vectorSizes.size()) {
639 strategy->
vectorSizes.size() - (patternDepth - depthInPattern);
658 unsigned depthInPattern,
659 unsigned patternDepth,
661 for (
auto m : matches) {
663 patternDepth, strategy))) {
667 patternDepth, strategy);
702 void registerValueVectorReplacement(
Value replaced,
Operation *replacement);
709 void registerBlockArgVectorReplacement(
BlockArgument replaced,
722 void registerValueScalarReplacement(
Value replaced,
Value replacement);
734 void registerLoopResultScalarReplacement(
Value replaced,
Value replacement);
738 void getScalarValueReplacementsFor(
ValueRange inputVals,
742 void finishVectorizationPattern(AffineForOp rootLoop);
771 void registerValueVectorReplacementImpl(
Value replaced,
Value replacement);
785 void VectorizationState::registerOpVectorReplacement(
Operation *replaced,
787 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ commit vectorized op:\n");
788 LLVM_DEBUG(dbgs() << *replaced <<
"\n");
789 LLVM_DEBUG(dbgs() <<
"into\n");
790 LLVM_DEBUG(dbgs() << *replacement <<
"\n");
793 "Unexpected replaced and replacement results");
794 assert(opVectorReplacement.count(replaced) == 0 &&
"already registered");
795 opVectorReplacement[replaced] = replacement;
797 for (
auto resultTuple :
799 registerValueVectorReplacementImpl(std::get<0>(resultTuple),
800 std::get<1>(resultTuple));
813 void VectorizationState::registerValueVectorReplacement(
816 "Expected single-result replacement");
818 registerOpVectorReplacement(defOp, replacement);
820 registerValueVectorReplacementImpl(replaced, replacement->
getResult(0));
828 void VectorizationState::registerBlockArgVectorReplacement(
830 registerValueVectorReplacementImpl(replaced, replacement);
833 void VectorizationState::registerValueVectorReplacementImpl(
Value replaced,
835 assert(!valueVectorReplacement.contains(replaced) &&
836 "Vector replacement already registered");
837 assert(isa<VectorType>(replacement.
getType()) &&
838 "Expected vector type in vector replacement");
839 valueVectorReplacement.map(replaced, replacement);
852 void VectorizationState::registerValueScalarReplacement(
Value replaced,
854 assert(!valueScalarReplacement.contains(replaced) &&
855 "Scalar value replacement already registered");
856 assert(!isa<VectorType>(replacement.
getType()) &&
857 "Expected scalar type in scalar replacement");
858 valueScalarReplacement.map(replaced, replacement);
870 void VectorizationState::registerLoopResultScalarReplacement(
873 assert(loopResultScalarReplacement.count(replaced) == 0 &&
874 "already registered");
875 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ will replace a result of the loop "
878 loopResultScalarReplacement[replaced] = replacement;
882 void VectorizationState::getScalarValueReplacementsFor(
884 for (
Value inputVal : inputVals)
885 replacedVals.push_back(valueScalarReplacement.lookupOrDefault(inputVal));
890 LLVM_DEBUG(dbgs() <<
"[early-vect]+++++ erasing:\n" << forOp <<
"\n");
895 void VectorizationState::finishVectorizationPattern(AffineForOp rootLoop) {
896 LLVM_DEBUG(dbgs() <<
"\n[early-vect] Finalizing vectorization\n");
908 auto afOp = state.builder.create<AffineApplyOp>(op->
getLoc(), singleResMap,
910 results.push_back(afOp);
919 int fastestVaryingMemRefDimension) {
920 return [¶llelLoops, fastestVaryingMemRefDimension](
Operation &forOp) {
921 auto loop = cast<AffineForOp>(forOp);
922 if (!parallelLoops.contains(loop))
925 auto vectorizableBody =
927 if (!vectorizableBody)
929 return memRefDim == -1 || fastestVaryingMemRefDimension == -1 ||
930 memRefDim == fastestVaryingMemRefDimension;
938 assert(!isa<VectorType>(scalarTy) &&
"Expected scalar type");
947 Type scalarTy = constOp.getType();
948 if (!VectorType::isValidElementType(scalarTy))
955 Operation *parentOp = state.builder.getInsertionBlock()->getParentOp();
957 while (parentOp && !state.vecLoopToVecDim.count(parentOp))
959 assert(parentOp && state.vecLoopToVecDim.count(parentOp) &&
960 isa<AffineForOp>(parentOp) &&
"Expected a vectorized for op");
961 auto vecForOp = cast<AffineForOp>(parentOp);
962 state.builder.setInsertionPointToStart(vecForOp.getBody());
964 state.builder.create<arith::ConstantOp>(constOp.getLoc(), vecAttr);
967 state.registerOpVectorReplacement(constOp, newConstOp);
976 for (
Value operand : applyOp.getOperands()) {
977 if (state.valueVectorReplacement.contains(operand)) {
979 dbgs() <<
"\n[early-vect]+++++ affine.apply on vector operand\n");
982 Value updatedOperand = state.valueScalarReplacement.lookupOrNull(operand);
984 updatedOperand = operand;
985 updatedOperands.push_back(updatedOperand);
989 auto newApplyOp = state.builder.create<AffineApplyOp>(
990 applyOp.getLoc(), applyOp.getAffineMap(), updatedOperands);
993 state.registerValueScalarReplacement(applyOp.getResult(),
994 newApplyOp.getResult());
1005 if (!VectorType::isValidElementType(scalarTy))
1009 reductionKind, scalarTy, state.builder, oldOperand.
getLoc());
1013 state.builder.create<arith::ConstantOp>(oldOperand.
getLoc(), vecAttr);
1026 assert(state.strategy->vectorSizes.size() == 1 &&
1027 "Creating a mask non-1-D vectors is not supported.");
1028 assert(vecForOp.getStep() == state.strategy->vectorSizes[0] &&
1029 "Creating a mask for loops with non-unit original step size is not "
1033 if (
Value mask = state.vecLoopToMask.lookup(vecForOp))
1038 if (vecForOp.hasConstantBounds()) {
1039 int64_t originalTripCount =
1040 vecForOp.getConstantUpperBound() - vecForOp.getConstantLowerBound();
1041 if (originalTripCount % vecForOp.getStepAsInt() == 0)
1046 state.builder.setInsertionPointToStart(vecForOp.getBody());
1062 AffineMap ubMap = vecForOp.getUpperBoundMap();
1065 ub = state.builder.create<AffineApplyOp>(loc, vecForOp.getUpperBoundMap(),
1066 vecForOp.getUpperBoundOperands());
1068 ub = state.builder.create<AffineMinOp>(loc, vecForOp.getUpperBoundMap(),
1069 vecForOp.getUpperBoundOperands());
1072 state.builder.getAffineDimExpr(0) - state.builder.getAffineDimExpr(1);
1075 {ub, vecForOp.getInductionVar()});
1081 state.builder.getIntegerType(1));
1083 state.builder.create<vector::CreateMaskOp>(loc, maskTy, itersLeft);
1085 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ creating a mask:\n"
1086 << itersLeft <<
"\n"
1089 state.vecLoopToMask[vecForOp] = mask;
1105 auto loop = cast<AffineForOp>(loopToDim.first);
1106 if (!loop.isDefinedOutsideOfLoop(value))
1117 Value uniformScalarRepl =
1118 state.valueScalarReplacement.lookupOrDefault(uniformVal);
1119 state.builder.setInsertionPointAfterValue(uniformScalarRepl);
1122 auto bcastOp = state.builder.create<BroadcastOp>(uniformVal.
getLoc(),
1123 vectorTy, uniformScalarRepl);
1124 state.registerValueVectorReplacement(uniformVal, bcastOp);
1146 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ vectorize operand: " << operand);
1148 if (
Value vecRepl = state.valueVectorReplacement.lookupOrNull(operand)) {
1149 LLVM_DEBUG(dbgs() <<
" -> already vectorized: " << vecRepl);
1156 assert(!isa<VectorType>(operand.
getType()) &&
1157 "Vector op not found in replacement map");
1160 if (
auto constOp = operand.
getDefiningOp<arith::ConstantOp>()) {
1162 LLVM_DEBUG(dbgs() <<
"-> constant: " << vecConstant);
1163 return vecConstant.getResult();
1169 LLVM_DEBUG(dbgs() <<
"-> uniform: " << *vecUniform);
1176 LLVM_DEBUG(dbgs() <<
"-> unsupported block argument\n");
1179 LLVM_DEBUG(dbgs() <<
"-> non-vectorizable\n");
1192 MemRefType memRefType = loadOp.getMemRefType();
1193 Type elementType = memRefType.getElementType();
1194 auto vectorType =
VectorType::get(state.strategy->vectorSizes, elementType);
1198 state.getScalarValueReplacementsFor(loadOp.getMapOperands(), mapOperands);
1202 indices.reserve(memRefType.getRank());
1203 if (loadOp.getAffineMap() !=
1204 state.builder.getMultiDimIdentityMap(memRefType.getRank())) {
1206 for (
auto op : mapOperands) {
1207 if (op.getDefiningOp<AffineApplyOp>())
1213 indices.append(mapOperands.begin(), mapOperands.end());
1218 indices, state.vecLoopToVecDim);
1219 if (!permutationMap) {
1220 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ can't compute permutationMap\n");
1223 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ permutationMap: ");
1224 LLVM_DEBUG(permutationMap.print(dbgs()));
1233 for (
auto idx : broadcastedDims)
1234 inBounds[idx] =
true;
1236 auto transfer = state.builder.create<vector::TransferReadOp>(
1237 loadOp.getLoc(), vectorType, loadOp.getMemRef(), indices, permutationMap,
1241 state.registerOpVectorReplacement(loadOp, transfer);
1253 MemRefType memRefType = storeOp.getMemRefType();
1260 state.getScalarValueReplacementsFor(storeOp.getMapOperands(), mapOperands);
1264 indices.reserve(memRefType.getRank());
1265 if (storeOp.getAffineMap() !=
1266 state.builder.getMultiDimIdentityMap(memRefType.getRank()))
1270 indices.append(mapOperands.begin(), mapOperands.end());
1274 indices, state.vecLoopToVecDim);
1275 if (!permutationMap)
1277 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ permutationMap: ");
1278 LLVM_DEBUG(permutationMap.print(dbgs()));
1280 auto transfer = state.builder.create<vector::TransferWriteOp>(
1281 storeOp.getLoc(), vectorValue, storeOp.getMemRef(), indices,
1283 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ vectorized store: " << transfer);
1286 state.registerOpVectorReplacement(storeOp, transfer);
1295 if (!VectorType::isValidElementType(scalarTy))
1298 state.builder, value.
getLoc());
1299 if (
auto constOp = dyn_cast_or_null<arith::ConstantOp>(value.
getDefiningOp()))
1300 return constOp.getValue() == valueAttr;
1317 if (isLoopVecDim && forOp.getNumIterOperands() > 0 && forOp.getStep() != 1) {
1320 <<
"\n[early-vect]+++++ unsupported step size for reduction loop: "
1321 << forOp.getStep() <<
"\n");
1330 unsigned vectorDim = loopToVecDimIt->second;
1331 assert(vectorDim < strategy.
vectorSizes.size() &&
"vector dim overflow");
1332 int64_t forOpVecFactor = strategy.
vectorSizes[vectorDim];
1333 newStep = forOp.getStepAsInt() * forOpVecFactor;
1335 newStep = forOp.getStepAsInt();
1340 if (isLoopVecDim && forOp.getNumIterOperands() > 0) {
1343 "Reduction descriptors not found when vectorizing a reduction loop");
1344 reductions = it->second;
1345 assert(reductions.size() == forOp.getNumIterOperands() &&
1346 "The size of reductions array must match the number of iter_args");
1351 if (!isLoopVecDim) {
1352 for (
auto operand : forOp.getInits())
1358 for (
auto redAndOperand : llvm::zip(reductions, forOp.getInits())) {
1360 std::get<0>(redAndOperand).kind, std::get<1>(redAndOperand), state));
1364 auto vecForOp = state.builder.create<AffineForOp>(
1365 forOp.getLoc(), forOp.getLowerBoundOperands(), forOp.getLowerBoundMap(),
1366 forOp.getUpperBoundOperands(), forOp.getUpperBoundMap(), newStep,
1386 state.registerOpVectorReplacement(forOp, vecForOp);
1387 state.registerValueScalarReplacement(forOp.getInductionVar(),
1388 vecForOp.getInductionVar());
1389 for (
auto iterTuple :
1390 llvm ::zip(forOp.getRegionIterArgs(), vecForOp.getRegionIterArgs()))
1391 state.registerBlockArgVectorReplacement(std::get<0>(iterTuple),
1392 std::get<1>(iterTuple));
1395 for (
unsigned i = 0; i < vecForOp.getNumIterOperands(); ++i) {
1399 vecForOp.getLoc(), vecForOp.getResult(i));
1400 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ creating a vector reduction: "
1404 Value origInit = forOp.getOperand(forOp.getNumControlOperands() + i);
1405 Value finalRes = reducedRes;
1409 reducedRes.
getLoc(), reducedRes, origInit);
1410 state.registerLoopResultScalarReplacement(forOp.getResult(i), finalRes);
1415 state.vecLoopToVecDim[vecForOp] = loopToVecDimIt->second;
1419 state.builder.setInsertionPointToStart(vecForOp.getBody());
1423 if (isLoopVecDim && forOp.getNumIterOperands() > 0)
1435 vectorTypes.push_back(
1442 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ an operand failed vectorize\n");
1445 vectorOperands.push_back(vecOperand);
1455 vectorOperands, vectorTypes, op->
getAttrs());
1456 state.registerOpVectorReplacement(op, vecOp);
1467 Operation *newParentOp = state.builder.getInsertionBlock()->getParentOp();
1478 if (
Value mask = state.vecLoopToMask.lookup(newParentOp)) {
1479 state.builder.setInsertionPoint(newYieldOp);
1483 cast<AffineForOp>(newParentOp).getRegionIterArgs(), i, combinerOps);
1484 assert(reducedVal &&
"expect non-null value for parallel reduction loop");
1485 assert(combinerOps.size() == 1 &&
"expect only one combiner op");
1487 Value neutralVal = cast<AffineForOp>(newParentOp).getInits()[i];
1488 state.builder.setInsertionPoint(combinerOps.back());
1489 Value maskedReducedVal = state.builder.create<arith::SelectOp>(
1490 reducedVal.
getLoc(), mask, reducedVal, neutralVal);
1492 dbgs() <<
"\n[early-vect]+++++ masking an input to a binary op that"
1493 "produces value for a yield Op: "
1494 << maskedReducedVal);
1495 combinerOps.back()->replaceUsesOfWith(reducedVal, maskedReducedVal);
1499 state.builder.setInsertionPointAfter(newParentOp);
1515 assert(!isa<vector::TransferReadOp>(op) &&
1516 "vector.transfer_read cannot be further vectorized");
1517 assert(!isa<vector::TransferWriteOp>(op) &&
1518 "vector.transfer_write cannot be further vectorized");
1520 if (
auto loadOp = dyn_cast<AffineLoadOp>(op))
1522 if (
auto storeOp = dyn_cast<AffineStoreOp>(op))
1524 if (
auto forOp = dyn_cast<AffineForOp>(op))
1526 if (
auto yieldOp = dyn_cast<AffineYieldOp>(op))
1528 if (
auto constant = dyn_cast<arith::ConstantOp>(op))
1530 if (
auto applyOp = dyn_cast<AffineApplyOp>(op))
1548 assert(currentLevel <= loops.size() &&
"Unexpected currentLevel");
1549 if (currentLevel == loops.size())
1550 loops.emplace_back();
1572 static LogicalResult
1575 assert(loops[0].size() == 1 &&
"Expected single root loop");
1576 AffineForOp rootLoop = loops[0][0];
1578 state.builder.setInsertionPointAfter(rootLoop);
1579 state.strategy = &strategy;
1589 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ loop is not vectorizable");
1602 LLVM_DEBUG(dbgs() <<
"[early-vect]+++++ Vectorizing: " << *op);
1606 dbgs() <<
"[early-vect]+++++ failed vectorizing the operation: "
1614 if (opVecResult.wasInterrupted()) {
1615 LLVM_DEBUG(dbgs() <<
"[early-vect]+++++ failed vectorization for: "
1616 << rootLoop <<
"\n");
1618 auto vecRootLoopIt = state.opVectorReplacement.find(rootLoop);
1619 if (vecRootLoopIt != state.opVectorReplacement.end())
1627 for (
auto resPair : state.loopResultScalarReplacement)
1628 resPair.first.replaceAllUsesWith(resPair.second);
1630 assert(state.opVectorReplacement.count(rootLoop) == 1 &&
1631 "Expected vector replacement for loop nest");
1632 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ success vectorizing pattern");
1633 LLVM_DEBUG(dbgs() <<
"\n[early-vect]+++++ vectorization result:\n"
1634 << *state.opVectorReplacement[rootLoop]);
1637 state.finishVectorizationPattern(rootLoop);
1646 std::vector<SmallVector<AffineForOp, 2>> loopsToVectorize;
1658 assert(intersectionBuckets.empty() &&
"Expected empty output");
1663 AffineForOp matchRoot = cast<AffineForOp>(match.getMatchedOperation());
1664 bool intersects =
false;
1665 for (
int i = 0, end = intersectionBuckets.size(); i < end; ++i) {
1666 AffineForOp bucketRoot = bucketRoots[i];
1668 if (bucketRoot->isAncestor(matchRoot)) {
1669 intersectionBuckets[i].push_back(match);
1675 if (matchRoot->isAncestor(bucketRoot)) {
1676 bucketRoots[i] = matchRoot;
1677 intersectionBuckets[i].push_back(match);
1686 bucketRoots.push_back(matchRoot);
1687 intersectionBuckets.emplace_back();
1688 intersectionBuckets.back().push_back(match);
1703 assert((reductionLoops.empty() || vectorSizes.size() == 1) &&
1704 "Vectorizing reductions is supported only for 1-D vectors");
1707 std::optional<NestedPattern> pattern =
1708 makePattern(loops, vectorSizes.size(), fastestVaryingPattern);
1710 LLVM_DEBUG(dbgs() <<
"\n[early-vect] pattern couldn't be computed\n");
1714 LLVM_DEBUG(dbgs() <<
"\n******************************************");
1715 LLVM_DEBUG(dbgs() <<
"\n******************************************");
1716 LLVM_DEBUG(dbgs() <<
"\n[early-vect] new pattern on parent op\n");
1717 LLVM_DEBUG(dbgs() << *parentOp <<
"\n");
1719 unsigned patternDepth = pattern->getDepth();
1724 pattern->match(parentOp, &allMatches);
1725 std::vector<SmallVector<NestedMatch, 8>> intersectionBuckets;
1731 for (
auto &intersectingMatches : intersectionBuckets) {
1735 strategy.
vectorSizes.assign(vectorSizes.begin(), vectorSizes.end());
1738 patternDepth, &strategy))) {
1752 LLVM_DEBUG(dbgs() <<
"\n");
1757 void Vectorize::runOnOperation() {
1758 func::FuncOp f = getOperation();
1759 if (!fastestVaryingPattern.empty() &&
1760 fastestVaryingPattern.size() != vectorSizes.size()) {
1761 f.emitRemark(
"Fastest varying pattern specified with different size than "
1762 "the vector size.");
1763 return signalPassFailure();
1766 if (vectorizeReductions && vectorSizes.size() != 1) {
1767 f.emitError(
"Vectorizing reductions is supported only for 1-D vectors.");
1768 return signalPassFailure();
1771 if (llvm::any_of(vectorSizes, [](int64_t size) {
return size <= 0; })) {
1772 f.emitError(
"Vectorization factor must be greater than zero.");
1773 return signalPassFailure();
1781 if (vectorizeReductions) {
1782 f.walk([¶llelLoops, &reductionLoops](AffineForOp loop) {
1785 parallelLoops.insert(loop);
1787 if (!reductions.empty())
1788 reductionLoops[loop] = reductions;
1792 f.walk([¶llelLoops](AffineForOp loop) {
1794 parallelLoops.insert(loop);
1800 vectorizeLoops(f, parallelLoops, vectorSizes, fastestVaryingPattern,
1810 static LogicalResult
1817 if (loops[0].size() != 1)
1821 for (
int i = 1, end = loops.size(); i < end; ++i) {
1822 for (AffineForOp loop : loops[i]) {
1825 if (none_of(loops[i - 1], [&](AffineForOp maybeParent) {
1826 return maybeParent->isProperAncestor(loop);
1832 for (AffineForOp sibling : loops[i]) {
1833 if (sibling->isProperAncestor(loop))
1857 vectorizeLoops(parentOp, loops, vectorSizes, fastestVaryingPattern,
static Operation * vectorizeAffineStore(AffineStoreOp storeOp, VectorizationState &state)
Vectorizes an affine store with the vectorization strategy in 'state' by generating a 'vector....
static Operation * vectorizeAffineForOp(AffineForOp forOp, VectorizationState &state)
Vectorizes a loop with the vectorization strategy in 'state'.
static LogicalResult vectorizeRootMatch(NestedMatch m, const VectorizationStrategy &strategy)
Extracts the matched loops and vectorizes them following a topological order.
static LogicalResult verifyLoopNesting(const std::vector< SmallVector< AffineForOp, 2 >> &loops)
Verify that affine loops in 'loops' meet the nesting criteria expected by SuperVectorizer:
static void getMatchedAffineLoopsRec(NestedMatch match, unsigned currentLevel, std::vector< SmallVector< AffineForOp, 2 >> &loops)
Recursive implementation to convert all the nested loops in 'match' to a 2D vector container that pre...
static void vectorizeLoopIfProfitable(Operation *loop, unsigned depthInPattern, unsigned patternDepth, VectorizationStrategy *strategy)
static Operation * vectorizeOneOperation(Operation *op, VectorizationState &state)
Encodes Operation-specific behavior for vectorization.
static bool isNeutralElementConst(arith::AtomicRMWKind reductionKind, Value value, VectorizationState &state)
Returns true if value is a constant equal to the neutral element of the given vectorizable reduction.
static Operation * vectorizeUniform(Value uniformVal, VectorizationState &state)
Generates a broadcast op for the provided uniform value using the vectorization strategy in 'state'.
static Operation * vectorizeAffineYieldOp(AffineYieldOp yieldOp, VectorizationState &state)
Vectorizes a yield operation by widening its types.
static void computeIntersectionBuckets(ArrayRef< NestedMatch > matches, std::vector< SmallVector< NestedMatch, 8 >> &intersectionBuckets)
Traverses all the loop matches and classifies them into intersection buckets.
static LogicalResult analyzeProfitability(ArrayRef< NestedMatch > matches, unsigned depthInPattern, unsigned patternDepth, VectorizationStrategy *strategy)
Implements a simple strawman strategy for vectorization.
static FilterFunctionType isVectorizableLoopPtrFactory(const DenseSet< Operation * > ¶llelLoops, int fastestVaryingMemRefDimension)
Forward declaration.
static Operation * widenOp(Operation *op, VectorizationState &state)
Vectorizes arbitrary operation by plain widening.
static arith::ConstantOp vectorizeConstant(arith::ConstantOp constOp, VectorizationState &state)
Tries to transform a scalar constant into a vector constant.
static bool isUniformDefinition(Value value, const VectorizationStrategy *strategy)
Returns true if the provided value is vector uniform given the vectorization strategy.
static void eraseLoopNest(AffineForOp forOp)
Erases a loop nest, including all its nested operations.
static VectorType getVectorType(Type scalarTy, const VectorizationStrategy *strategy)
Returns the vector type resulting from applying the provided vectorization strategy on the scalar typ...
static void getMatchedAffineLoops(NestedMatch match, std::vector< SmallVector< AffineForOp, 2 >> &loops)
Converts all the nested loops in 'match' to a 2D vector container that preserves the relative nesting...
static Value vectorizeOperand(Value operand, VectorizationState &state)
Tries to vectorize a given operand by applying the following logic:
static arith::ConstantOp createInitialVector(arith::AtomicRMWKind reductionKind, Value oldOperand, VectorizationState &state)
Creates a constant vector filled with the neutral elements of the given reduction.
static LogicalResult vectorizeLoopNest(std::vector< SmallVector< AffineForOp, 2 >> &loops, const VectorizationStrategy &strategy)
Internal implementation to vectorize affine loops from a single loop nest using an n-D vectorization ...
static NestedPattern & vectorTransferPattern()
static Operation * vectorizeAffineApplyOp(AffineApplyOp applyOp, VectorizationState &state)
We have no need to vectorize affine.apply.
static void vectorizeLoops(Operation *parentOp, DenseSet< Operation * > &loops, ArrayRef< int64_t > vectorSizes, ArrayRef< int64_t > fastestVaryingPattern, const ReductionLoopMap &reductionLoops)
Internal implementation to vectorize affine loops in 'loops' using the n-D vectorization factors in '...
static void computeMemoryOpIndices(Operation *op, AffineMap map, ValueRange mapOperands, VectorizationState &state, SmallVectorImpl< Value > &results)
static Operation * vectorizeAffineLoad(AffineLoadOp loadOp, VectorizationState &state)
Vectorizes an affine load with the vectorization strategy in 'state' by generating a 'vector....
static Value createMask(AffineForOp vecForOp, VectorizationState &state)
Creates a mask used to filter out garbage elements in the last iteration of unaligned loops.
static std::optional< NestedPattern > makePattern(const DenseSet< Operation * > ¶llelLoops, int vectorRank, ArrayRef< int64_t > fastestVaryingPattern)
Creates a vectorization pattern from the command line arguments.
static AffineMap makePermutationMap(ArrayRef< Value > indices, const DenseMap< Operation *, unsigned > &enclosingLoopToVectorDim)
Constructs a permutation map from memref indices to vector dimension.
Base type for affine expression.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumSymbols() const
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
Attributes are known-constant values of operations.
This class represents an argument of a Block.
static DenseElementsAttr get(ShapedType type, ArrayRef< Attribute > values)
Constructs a dense elements attribute from an array of element values.
This is a utility class for mapping one set of IR entities to another.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
StringAttr getIdentifier() const
Return the name of this operation as a StringAttr.
Operation is the basic unit of execution within MLIR.
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
unsigned getNumRegions()
Returns the number of regions held by this operation.
Location getLoc()
The source location the operation was defined or derived from.
unsigned getNumOperands()
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
ArrayRef< NamedAttribute > getAttrs()
Return all of the attributes on this operation.
OperationName getName()
The name of an operation is the key identifier for it.
operand_range getOperands()
Returns an iterator on the underlying Value's.
result_range getResults()
void erase()
Remove this operation from its parent block and delete it.
unsigned getNumResults()
Return the number of results held by this operation.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
bool use_empty() const
Returns true if this value has no uses.
Type getType() const
Return the type of this value.
Location getLoc() const
Return the location of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
static WalkResult advance()
static WalkResult interrupt()
An NestedPattern captures nested patterns in the IR.
Operation * getMatchedOperation() const
ArrayRef< NestedMatch > getMatchedChildren()
RAII structure to transparently manage the bump allocator for NestedPattern and NestedMatch classes.
NestedPattern For(const NestedPattern &child)
NestedPattern Op(FilterFunctionType filter=defaultFilterFunction)
bool isVectorizableLoopBody(AffineForOp loop, NestedPattern &vectorTransferMatcher)
Checks whether the loop is structurally vectorizable; i.e.
AffineForOp getForInductionVarOwner(Value val)
Returns the loop parent of an induction variable.
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
std::function< bool(Operation &)> FilterFunctionType
A NestedPattern is a nested operation walker that:
void vectorizeAffineLoops(Operation *parentOp, llvm::DenseSet< Operation *, DenseMapInfo< Operation * >> &loops, ArrayRef< int64_t > vectorSizes, ArrayRef< int64_t > fastestVaryingPattern, const ReductionLoopMap &reductionLoops=ReductionLoopMap())
Vectorizes affine loops in 'loops' using the n-D vectorization factors in 'vectorSizes'.
bool isLoopParallel(AffineForOp forOp, SmallVectorImpl< LoopReduction > *parallelReductions=nullptr)
Returns true if ‘forOp’ is a parallel loop.
LogicalResult vectorizeAffineLoopNest(std::vector< SmallVector< AffineForOp, 2 >> &loops, const VectorizationStrategy &strategy)
External utility to vectorize affine loops from a single loop nest using an n-D vectorization strateg...
TypedAttr getIdentityValueAttr(AtomicRMWKind kind, Type resultType, OpBuilder &builder, Location loc, bool useOnlyFiniteValue=false)
Returns the identity value attribute associated with an AtomicRMWKind op.
Value getReductionOp(AtomicRMWKind op, OpBuilder &builder, Location loc, Value lhs, Value rhs)
Returns the value obtained by applying the reduction operation kind associated with a binary AtomicRM...
Value getVectorReductionOp(arith::AtomicRMWKind op, OpBuilder &builder, Location loc, Value vector)
Returns the value obtained by reducing the vector into a scalar using the operation kind associated w...
Include the generated interface declarations.
Value matchReduction(ArrayRef< BlockArgument > iterCarriedArgs, unsigned redPos, SmallVectorImpl< Operation * > &combinerOps)
Utility to match a generic reduction given a list of iteration-carried arguments, iterCarriedArgs and...
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
Contains the vectorization state and related methods used across the vectorization process of a given...
Holds parameters to perform n-D vectorization on a single loop nest.
SmallVector< int64_t, 8 > vectorSizes
DenseMap< Operation *, unsigned > loopToVectorDim
ReductionLoopMap reductionLoops