21 #include "llvm/Support/MathExtras.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/Debug.h"
29 #include <type_traits>
34 #define DEBUG_TYPE "affine-loop-analysis"
42 AffineForOp forOp,
AffineMap *tripCountMap,
45 int64_t step = forOp.getStepAsInt();
47 if (forOp.hasConstantBounds()) {
48 int64_t lb = forOp.getConstantLowerBound();
49 int64_t ub = forOp.getConstantUpperBound();
54 llvm::divideCeilSigned(loopSpan, step), context);
55 tripCountOperands->clear();
58 auto lbMap = forOp.getLowerBoundMap();
59 auto ubMap = forOp.getUpperBoundMap();
60 if (lbMap.getNumResults() != 1) {
72 auto lbMapSplat =
AffineMap::get(lbMap.getNumDims(), lbMap.getNumSymbols(),
73 lbSplatExpr, context);
74 AffineValueMap lbSplatValueMap(lbMapSplat, forOp.getLowerBoundOperands());
78 for (
unsigned i = 0, e = tripCountValueMap.
getNumResults(); i < e; ++i)
83 tripCountOperands->assign(tripCountValueMap.
getOperands().begin(),
100 std::optional<uint64_t> tripCount;
102 if (
auto constExpr = dyn_cast<AffineConstantExpr>(resultExpr)) {
103 if (tripCount.has_value())
105 std::min(*tripCount,
static_cast<uint64_t
>(constExpr.getValue()));
107 tripCount = constExpr.getValue();
127 assert(map.
getNumResults() >= 1 &&
"expected one or more results");
128 std::optional<uint64_t> gcd;
131 if (
auto constExpr = dyn_cast<AffineConstantExpr>(resultExpr)) {
132 uint64_t tripCount = constExpr.getValue();
141 thisGcd = resultExpr.getLargestKnownDivisor();
144 gcd = std::gcd(*gcd, thisGcd);
148 assert(gcd.has_value() &&
"value expected per above logic");
158 assert(isa<IndexType>(index.
getType()) &&
"index must be of 'index' type");
167 template <
typename LoadOrStoreOp>
171 return !llvm::is_contained(avm.
getOperands(), forOp.getInductionVar());
185 for (
auto val : indices) {
194 template <
typename LoadOrStoreOp>
197 static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
198 AffineWriteOpInterface>::value,
199 "Must be called on either an affine read or write op");
200 assert(memRefDim &&
"memRefDim == nullptr");
201 auto memRefType = memoryOp.getMemRefType();
203 if (!memRefType.getLayout().isIdentity())
204 return memoryOp.emitError(
"NYI: non-trivial layout map"),
false;
206 int uniqueVaryingIndexAlongIv = -1;
207 auto accessMap = memoryOp.getAffineMap();
209 unsigned numDims = accessMap.getNumDims();
210 for (
unsigned i = 0, e = memRefType.getRank(); i < e; ++i) {
213 auto resultExpr = accessMap.getResult(i);
215 if (
auto dimExpr = dyn_cast<AffineDimExpr>(expr))
216 exprOperands.push_back(mapOperands[dimExpr.getPosition()]);
217 else if (
auto symExpr = dyn_cast<AffineSymbolExpr>(expr))
218 exprOperands.push_back(mapOperands[numDims + symExpr.getPosition()]);
221 for (
Value exprOperand : exprOperands) {
223 if (uniqueVaryingIndexAlongIv != -1) {
227 uniqueVaryingIndexAlongIv = i;
232 if (uniqueVaryingIndexAlongIv == -1)
235 *memRefDim = memRefType.getRank() - (uniqueVaryingIndexAlongIv + 1);
240 AffineReadOpInterface loadOp,
243 AffineWriteOpInterface loadOp,
246 template <
typename LoadOrStoreOp>
248 auto memRefType = memoryOp.getMemRefType();
249 return isa<VectorType>(memRefType.getElementType());
258 auto *forOp = loop.getOperation();
263 conditionals.match(forOp, &conditionalsMatched);
264 if (!conditionalsMatched.empty()) {
272 if (MemRefType t = dyn_cast<MemRefType>(type))
273 return !VectorType::isValidElementType(t.getElementType());
274 return !VectorType::isValidElementType(type);
278 return !VectorType::isValidElementType(type);
282 types.match(forOp, &opsMatched);
283 if (!opsMatched.empty()) {
289 return op.
getNumRegions() != 0 && !isa<AffineIfOp, AffineForOp>(op);
292 regions.match(forOp, ®ionsMatched);
293 if (!regionsMatched.empty()) {
298 vectorTransferMatcher.
match(forOp, &vectorTransfersMatched);
299 if (!vectorTransfersMatched.empty()) {
305 loadAndStores.match(forOp, &loadAndStoresMatched);
306 for (
auto ls : loadAndStoresMatched) {
307 auto *op = ls.getMatchedOperation();
308 auto load = dyn_cast<AffineLoadOp>(op);
309 auto store = dyn_cast<AffineStoreOp>(op);
317 if (isVectorizableOp && !isVectorizableOp(loop, *op)) {
325 AffineForOp loop,
int *memRefDim,
NestedPattern &vectorTransferMatcher) {
328 auto load = dyn_cast<AffineLoadOp>(op);
329 auto store = dyn_cast<AffineStoreOp>(op);
330 int thisOpMemRefDim = -1;
333 cast<AffineReadOpInterface>(*load),
336 cast<AffineWriteOpInterface>(*store),
338 if (thisOpMemRefDim != -1) {
341 if (*memRefDim != -1 && *memRefDim != thisOpMemRefDim)
343 *memRefDim = thisOpMemRefDim;
362 auto *forBody = forOp.getBody();
363 assert(shifts.size() == forBody->getOperations().size());
368 for (
const auto &it :
370 auto &op = it.value();
374 size_t index = shifts.size() - it.index() - 1;
377 uint64_t shift = shifts[index];
378 forBodyShift.try_emplace(&op, shift);
383 for (
auto *user : result.
getUsers()) {
386 if (
auto *ancOp = forBody->findAncestorOpInBlock(*user)) {
387 assert(forBodyShift.count(ancOp) > 0 &&
"ancestor expected in map");
388 if (shift != forBodyShift[ancOp])
398 assert(!loops.empty() &&
"no original loops provided");
403 if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
404 loadAndStoreOps.push_back(op);
407 unsigned numOps = loadAndStoreOps.size();
408 unsigned numLoops = loops.size();
409 for (
unsigned d = 1; d <= numLoops + 1; ++d) {
410 for (
unsigned i = 0; i < numOps; ++i) {
413 for (
unsigned j = 0;
j < numOps; ++
j) {
419 srcAccess, dstAccess, d,
nullptr,
429 LLVM_DEBUG(llvm::dbgs() <<
"Checking whether tiling legality violated "
430 "for dependence at depth: "
431 << Twine(d) <<
" between:\n";);
435 if (depComp.lb.has_value() && depComp.ub.has_value() &&
436 *depComp.lb < *depComp.ub && *depComp.ub < 0) {
437 LLVM_DEBUG(llvm::dbgs()
438 <<
"Dependence component lb = " << Twine(*depComp.lb)
439 <<
" ub = " << Twine(*depComp.ub)
440 <<
" is negative at depth: " << Twine(d)
441 <<
" and thus violates the legality rule.\n");
static bool isVectorizableLoopBodyWithOpCond(AffineForOp loop, const VectorizableOpFun &isVectorizableOp, NestedPattern &vectorTransferMatcher)
std::function< bool(AffineForOp, Operation &)> VectorizableOpFun
static bool isAccessIndexInvariant(Value iv, Value index)
Given an affine.for iv and an access index of type index, returns true if index is independent of iv ...
static bool isVectorElement(LoadOrStoreOp memoryOp)
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
Base type for affine expression.
AffineExpr ceilDiv(uint64_t v) const
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
static AffineMap getConstantMap(int64_t val, MLIRContext *context)
Returns a single constant result affine map.
MLIRContext is the top-level object for a collection of MLIR operations.
Operation is the basic unit of execution within MLIR.
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
unsigned getNumRegions()
Returns the number of regions held by this operation.
operand_type_range getOperandTypes()
result_type_range getResultTypes()
unsigned getNumResults()
Return the number of results held by this operation.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
MLIRContext * getContext() const
Utility to get the associated MLIRContext that this value is defined in.
Type getType() const
Return the type of this value.
user_range getUsers() const
An AffineValueMap is an affine map plus its ML value operands and results for analysis purposes.
void composeSimplifyAndCanonicalize()
Composes all incoming affine.apply ops and then simplifies and canonicalizes the map and operands.
ArrayRef< Value > getOperands() const
AffineExpr getResult(unsigned i)
AffineMap getAffineMap() const
bool isFunctionOf(unsigned idx, Value value) const
Return true if the idx^th result depends on 'value', false otherwise.
void setResult(unsigned i, AffineExpr e)
unsigned getNumResults() const
static void difference(const AffineValueMap &a, const AffineValueMap &b, AffineValueMap *res)
Return the value map that is the difference of value maps 'a' and 'b', represented as an affine map a...
void match(Operation *op, SmallVectorImpl< NestedMatch > *matches)
Returns all the top-level matches in op.
NestedPattern If(const NestedPattern &child)
bool isLoadOrStore(Operation &op)
NestedPattern Op(FilterFunctionType filter=defaultFilterFunction)
std::optional< uint64_t > getConstantTripCount(AffineForOp forOp)
Returns the trip count of the loop if it's a constant, std::nullopt otherwise.
bool isTilingValid(ArrayRef< AffineForOp > loops)
Checks whether hyper-rectangular loop tiling of the nest represented by loops is valid.
bool isVectorizableLoopBody(AffineForOp loop, NestedPattern &vectorTransferMatcher)
Checks whether the loop is structurally vectorizable; i.e.
DenseSet< Value, DenseMapInfo< Value > > getInvariantAccesses(Value iv, ArrayRef< Value > indices)
Given an induction variable iv of type AffineForOp and indices of type IndexType, returns the set of ...
void getTripCountMapAndOperands(AffineForOp forOp, AffineMap *map, SmallVectorImpl< Value > *operands)
Returns the trip count of the loop as an affine map with its corresponding operands if the latter is ...
bool isInvariantAccess(LoadOrStoreOp memOp, AffineForOp forOp)
Checks if an affine read or write operation depends on forOp's IV, i.e., if the memory access is inva...
DependenceResult checkMemrefAccessDependence(const MemRefAccess &srcAccess, const MemRefAccess &dstAccess, unsigned loopDepth, FlatAffineValueConstraints *dependenceConstraints=nullptr, SmallVector< DependenceComponent, 2 > *dependenceComponents=nullptr, bool allowRAR=false)
bool isAffineForInductionVar(Value val)
Returns true if the provided value is the induction variable of an AffineForOp.
uint64_t getLargestDivisorOfTripCount(AffineForOp forOp)
Returns the greatest known integral divisor of the trip count.
bool isContiguousAccess(Value iv, LoadOrStoreOp memoryOp, int *memRefDim)
Given:
bool hasDependence(DependenceResult result)
Utility function that returns true if the provided DependenceResult corresponds to a dependence resul...
bool isOpwiseShiftValid(AffineForOp forOp, ArrayRef< uint64_t > shifts)
Checks where SSA dominance would be violated if a for op's body operations are shifted by the specifi...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Include the generated interface declarations.
Checks whether two accesses to the same memref access the same element.
Encapsulates a memref load or store access information.
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.