MLIR  20.0.0git
VectorUtils.cpp
Go to the documentation of this file.
1 //===- VectorUtils.cpp - MLIR Utilities for VectorOps ------------------===//
2 //
3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utility methods for working with the Vector dialect.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 
23 #include "mlir/IR/Builders.h"
24 #include "mlir/IR/IntegerSet.h"
25 #include "mlir/IR/Operation.h"
26 #include "mlir/IR/TypeUtilities.h"
27 #include "mlir/Support/LLVM.h"
28 
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/SetVector.h"
31 
32 #define DEBUG_TYPE "vector-utils"
33 
34 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
35 #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
36 
37 using namespace mlir;
38 
39 /// Helper function that creates a memref::DimOp or tensor::DimOp depending on
40 /// the type of `source`.
42  int64_t dim) {
43  if (isa<UnrankedMemRefType, MemRefType>(source.getType()))
44  return b.createOrFold<memref::DimOp>(loc, source, dim);
45  if (isa<UnrankedTensorType, RankedTensorType>(source.getType()))
46  return b.createOrFold<tensor::DimOp>(loc, source, dim);
47  llvm_unreachable("Expected MemRefType or TensorType");
48 }
49 
50 /// Given the n-D transpose pattern 'transp', return true if 'dim0' and 'dim1'
51 /// should be transposed with each other within the context of their 2D
52 /// transposition slice.
53 ///
54 /// Example 1: dim0 = 0, dim1 = 2, transp = [2, 1, 0]
55 /// Return true: dim0 and dim1 are transposed within the context of their 2D
56 /// transposition slice ([1, 0]).
57 ///
58 /// Example 2: dim0 = 0, dim1 = 1, transp = [2, 1, 0]
59 /// Return true: dim0 and dim1 are transposed within the context of their 2D
60 /// transposition slice ([1, 0]). Paradoxically, note how dim1 (1) is *not*
61 /// transposed within the full context of the transposition.
62 ///
63 /// Example 3: dim0 = 0, dim1 = 1, transp = [2, 0, 1]
64 /// Return false: dim0 and dim1 are *not* transposed within the context of
65 /// their 2D transposition slice ([0, 1]). Paradoxically, note how dim0 (0)
66 /// and dim1 (1) are transposed within the full context of the of the
67 /// transposition.
68 static bool areDimsTransposedIn2DSlice(int64_t dim0, int64_t dim1,
69  ArrayRef<int64_t> transp) {
70  // Perform a linear scan along the dimensions of the transposed pattern. If
71  // dim0 is found first, dim0 and dim1 are not transposed within the context of
72  // their 2D slice. Otherwise, 'dim1' is found first and they are transposed.
73  for (int64_t permDim : transp) {
74  if (permDim == dim0)
75  return false;
76  if (permDim == dim1)
77  return true;
78  }
79 
80  llvm_unreachable("Ill-formed transpose pattern");
81 }
82 
83 FailureOr<std::pair<int, int>>
84 mlir::vector::isTranspose2DSlice(vector::TransposeOp op) {
85  VectorType srcType = op.getSourceVectorType();
86  SmallVector<int64_t> srcGtOneDims;
87  for (auto [index, size] : llvm::enumerate(srcType.getShape()))
88  if (size > 1)
89  srcGtOneDims.push_back(index);
90 
91  if (srcGtOneDims.size() != 2)
92  return failure();
93 
94  // Check whether the two source vector dimensions that are greater than one
95  // must be transposed with each other so that we can apply one of the 2-D
96  // transpose pattens. Otherwise, these patterns are not applicable.
97  if (!areDimsTransposedIn2DSlice(srcGtOneDims[0], srcGtOneDims[1],
98  op.getPermutation()))
99  return failure();
100 
101  return std::pair<int, int>(srcGtOneDims[0], srcGtOneDims[1]);
102 }
103 
104 /// Constructs a permutation map from memref indices to vector dimension.
105 ///
106 /// The implementation uses the knowledge of the mapping of enclosing loop to
107 /// vector dimension. `enclosingLoopToVectorDim` carries this information as a
108 /// map with:
109 /// - keys representing "vectorized enclosing loops";
110 /// - values representing the corresponding vector dimension.
111 /// The algorithm traverses "vectorized enclosing loops" and extracts the
112 /// at-most-one MemRef index that is invariant along said loop. This index is
113 /// guaranteed to be at most one by construction: otherwise the MemRef is not
114 /// vectorizable.
115 /// If this invariant index is found, it is added to the permutation_map at the
116 /// proper vector dimension.
117 /// If no index is found to be invariant, 0 is added to the permutation_map and
118 /// corresponds to a vector broadcast along that dimension.
119 ///
120 /// Returns an empty AffineMap if `enclosingLoopToVectorDim` is empty,
121 /// signalling that no permutation map can be constructed given
122 /// `enclosingLoopToVectorDim`.
123 ///
124 /// Examples can be found in the documentation of `makePermutationMap`, in the
125 /// header file.
127  ArrayRef<Value> indices,
128  const DenseMap<Operation *, unsigned> &enclosingLoopToVectorDim) {
129  if (enclosingLoopToVectorDim.empty())
130  return AffineMap();
131  MLIRContext *context =
132  enclosingLoopToVectorDim.begin()->getFirst()->getContext();
133  SmallVector<AffineExpr> perm(enclosingLoopToVectorDim.size(),
134  getAffineConstantExpr(0, context));
135 
136  for (auto kvp : enclosingLoopToVectorDim) {
137  assert(kvp.second < perm.size());
138  auto invariants = affine::getInvariantAccesses(
139  cast<affine::AffineForOp>(kvp.first).getInductionVar(), indices);
140  unsigned numIndices = indices.size();
141  unsigned countInvariantIndices = 0;
142  for (unsigned dim = 0; dim < numIndices; ++dim) {
143  if (!invariants.count(indices[dim])) {
144  assert(perm[kvp.second] == getAffineConstantExpr(0, context) &&
145  "permutationMap already has an entry along dim");
146  perm[kvp.second] = getAffineDimExpr(dim, context);
147  } else {
148  ++countInvariantIndices;
149  }
150  }
151  assert((countInvariantIndices == numIndices ||
152  countInvariantIndices == numIndices - 1) &&
153  "Vectorization prerequisite violated: at most 1 index may be "
154  "invariant wrt a vectorized loop");
155  (void)countInvariantIndices;
156  }
157  return AffineMap::get(indices.size(), 0, perm, context);
158 }
159 
160 /// Implementation detail that walks up the parents and records the ones with
161 /// the specified type.
162 /// TODO: could also be implemented as a collect parents followed by a
163 /// filter and made available outside this file.
164 template <typename T>
167  auto *current = block->getParentOp();
168  while (current) {
169  if ([[maybe_unused]] auto typedParent = dyn_cast<T>(current)) {
170  assert(res.count(current) == 0 && "Already inserted");
171  res.insert(current);
172  }
173  current = current->getParentOp();
174  }
175  return res;
176 }
177 
178 /// Returns the enclosing AffineForOp, from closest to farthest.
180  return getParentsOfType<affine::AffineForOp>(block);
181 }
182 
184  Block *insertPoint, ArrayRef<Value> indices,
185  const DenseMap<Operation *, unsigned> &loopToVectorDim) {
186  DenseMap<Operation *, unsigned> enclosingLoopToVectorDim;
187  auto enclosingLoops = getEnclosingforOps(insertPoint);
188  for (auto *forInst : enclosingLoops) {
189  auto it = loopToVectorDim.find(forInst);
190  if (it != loopToVectorDim.end()) {
191  enclosingLoopToVectorDim.insert(*it);
192  }
193  }
194  return ::makePermutationMap(indices, enclosingLoopToVectorDim);
195 }
196 
198  Operation *op, ArrayRef<Value> indices,
199  const DenseMap<Operation *, unsigned> &loopToVectorDim) {
200  return makePermutationMap(op->getBlock(), indices, loopToVectorDim);
201 }
202 
203 bool matcher::operatesOnSuperVectorsOf(Operation &op,
204  VectorType subVectorType) {
205  // First, extract the vector type and distinguish between:
206  // a. ops that *must* lower a super-vector (i.e. vector.transfer_read,
207  // vector.transfer_write); and
208  // b. ops that *may* lower a super-vector (all other ops).
209  // The ops that *may* lower a super-vector only do so if the super-vector to
210  // sub-vector ratio exists. The ops that *must* lower a super-vector are
211  // explicitly checked for this property.
212  /// TODO: there should be a single function for all ops to do this so we
213  /// do not have to special case. Maybe a trait, or just a method, unclear atm.
214  bool mustDivide = false;
215  (void)mustDivide;
216  VectorType superVectorType;
217  if (auto transfer = dyn_cast<VectorTransferOpInterface>(op)) {
218  superVectorType = transfer.getVectorType();
219  mustDivide = true;
220  } else if (op.getNumResults() == 0) {
221  if (!isa<func::ReturnOp>(op)) {
222  op.emitError("NYI: assuming only return operations can have 0 "
223  " results at this point");
224  }
225  return false;
226  } else if (op.getNumResults() == 1) {
227  if (auto v = dyn_cast<VectorType>(op.getResult(0).getType())) {
228  superVectorType = v;
229  } else {
230  // Not a vector type.
231  return false;
232  }
233  } else {
234  // Not a vector.transfer and has more than 1 result, fail hard for now to
235  // wake us up when something changes.
236  op.emitError("NYI: operation has more than 1 result");
237  return false;
238  }
239 
240  // Get the ratio.
241  auto ratio =
242  computeShapeRatio(superVectorType.getShape(), subVectorType.getShape());
243 
244  // Sanity check.
245  assert((ratio || !mustDivide) &&
246  "vector.transfer operation in which super-vector size is not an"
247  " integer multiple of sub-vector size");
248 
249  // This catches cases that are not strictly necessary to have multiplicity but
250  // still aren't divisible by the sub-vector shape.
251  // This could be useful information if we wanted to reshape at the level of
252  // the vector type (but we would have to look at the compute and distinguish
253  // between parallel, reduction and possibly other cases.
254  return ratio.has_value();
255 }
256 
257 bool vector::isContiguousSlice(MemRefType memrefType, VectorType vectorType) {
258  if (vectorType.isScalable())
259  return false;
260 
261  ArrayRef<int64_t> vectorShape = vectorType.getShape();
262  auto vecRank = vectorType.getRank();
263 
264  if (!trailingNDimsContiguous(memrefType, vecRank))
265  return false;
266 
267  // Extract the trailing dims and strides of the input memref
268  auto memrefShape = memrefType.getShape().take_back(vecRank);
269 
270  // Compare the dims of `vectorType` against `memrefType` (in reverse).
271  // In the most basic case, all dims will match.
272  auto firstNonMatchingDim =
273  std::mismatch(vectorShape.rbegin(), vectorShape.rend(),
274  memrefShape.rbegin(), memrefShape.rend());
275  if (firstNonMatchingDim.first == vectorShape.rend())
276  return true;
277 
278  // One non-matching dim is still fine, however the remaining leading dims of
279  // `vectorType` need to be 1.
280  SmallVector<int64_t> leadingDims(++firstNonMatchingDim.first,
281  vectorShape.rend());
282 
283  return llvm::all_of(leadingDims, [](auto x) { return x == 1; });
284 }
285 
286 std::optional<StaticTileOffsetRange>
287 vector::createUnrollIterator(VectorType vType, int64_t targetRank) {
288  if (vType.getRank() <= targetRank)
289  return {};
290  // Attempt to unroll until targetRank or the first scalable dimension (which
291  // cannot be unrolled).
292  auto shapeToUnroll = vType.getShape().drop_back(targetRank);
293  auto scalableDimsToUnroll = vType.getScalableDims().drop_back(targetRank);
294  auto it =
295  std::find(scalableDimsToUnroll.begin(), scalableDimsToUnroll.end(), true);
296  auto firstScalableDim = it - scalableDimsToUnroll.begin();
297  if (firstScalableDim == 0)
298  return {};
299  // All scalable dimensions should be removed now.
300  scalableDimsToUnroll = scalableDimsToUnroll.slice(0, firstScalableDim);
301  assert(!llvm::is_contained(scalableDimsToUnroll, true) &&
302  "unexpected leading scalable dimension");
303  // Create an unroll iterator for leading dimensions.
304  shapeToUnroll = shapeToUnroll.slice(0, firstScalableDim);
305  return StaticTileOffsetRange(shapeToUnroll, /*unrollStep=*/1);
306 }
307 
309  Operation *xfer,
310  RewriterBase &rewriter) {
311  auto loc = xfer->getLoc();
312 
314  .Case<vector::TransferReadOp>(
315  [&](auto readOp) { return readOp.getSource(); })
316  .Case<vector::TransferWriteOp>(
317  [&](auto writeOp) { return writeOp.getOperand(1); });
318 
319  SmallVector<OpFoldResult> mixedSourceDims =
320  hasTensorSemantics ? tensor::getMixedSizes(rewriter, loc, base)
321  : memref::getMixedSizes(rewriter, loc, base);
322  return mixedSourceDims;
323 }
324 
325 bool vector::isLinearizableVector(VectorType type) {
326  return (type.getRank() > 1) && (type.getNumScalableDims() <= 1);
327 }
328 
330  Value source, ArrayRef<int64_t> readShape,
331  Value padValue,
332  bool useInBoundsInsteadOfMasking) {
333  assert(llvm::none_of(readShape,
334  [](int64_t s) { return s == ShapedType::kDynamic; }) &&
335  "expected static shape");
336  auto sourceShapedType = cast<ShapedType>(source.getType());
337  auto sourceShape = sourceShapedType.getShape();
338  assert(sourceShape.size() == readShape.size() && "expected same ranks.");
339  auto maskType = VectorType::get(readShape, builder.getI1Type());
340  auto vectorType = VectorType::get(readShape, padValue.getType());
341  assert(padValue.getType() == sourceShapedType.getElementType() &&
342  "expected same pad element type to match source element type");
343  int64_t readRank = readShape.size();
344  auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
345  SmallVector<bool> inBoundsVal(readRank, true);
346  if (useInBoundsInsteadOfMasking) {
347  // Update the inBounds attribute.
348  for (unsigned i = 0; i < readRank; i++)
349  inBoundsVal[i] = (sourceShape[i] == readShape[i]) &&
350  !ShapedType::isDynamic(sourceShape[i]);
351  }
352  auto transferReadOp = builder.create<vector::TransferReadOp>(
353  loc,
354  /*vectorType=*/vectorType,
355  /*source=*/source,
356  /*indices=*/SmallVector<Value>(readRank, zero),
357  /*padding=*/padValue,
358  /*inBounds=*/inBoundsVal);
359 
360  if (llvm::equal(readShape, sourceShape) || useInBoundsInsteadOfMasking)
361  return transferReadOp;
362  SmallVector<OpFoldResult> mixedSourceDims =
363  tensor::getMixedSizes(builder, loc, source);
364  Value mask =
365  builder.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
366  return mlir::vector::maskOperation(builder, transferReadOp, mask)
367  ->getResult(0);
368 }
369 
370 LogicalResult
372  ArrayRef<int64_t> inputVectorSizes) {
373  LDBG("Iteration space static sizes:");
374  LLVM_DEBUG(llvm::interleaveComma(shape, llvm::dbgs()));
375  LLVM_DEBUG(llvm::dbgs() << "\n");
376 
377  if (inputVectorSizes.size() != shape.size()) {
378  LDBG("Input vector sizes don't match the number of loops");
379  return failure();
380  }
381  if (ShapedType::isDynamicShape(inputVectorSizes)) {
382  LDBG("Input vector sizes can't have dynamic dimensions");
383  return failure();
384  }
385  if (!llvm::all_of(llvm::zip(shape, inputVectorSizes),
386  [](std::tuple<int64_t, int64_t> sizePair) {
387  int64_t staticSize = std::get<0>(sizePair);
388  int64_t inputSize = std::get<1>(sizePair);
389  return ShapedType::isDynamic(staticSize) ||
390  staticSize <= inputSize;
391  })) {
392  LDBG("Input vector sizes must be greater than or equal to iteration space "
393  "static sizes");
394  return failure();
395  }
396  return success();
397 }
static VectorShape vectorShape(Type type)
static bool areDimsTransposedIn2DSlice(int64_t dim0, int64_t dim1, ArrayRef< int64_t > transp)
Given the n-D transpose pattern 'transp', return true if 'dim0' and 'dim1' should be transposed with ...
Definition: VectorUtils.cpp:68
static SetVector< Operation * > getEnclosingforOps(Block *block)
Returns the enclosing AffineForOp, from closest to farthest.
static AffineMap makePermutationMap(ArrayRef< Value > indices, const DenseMap< Operation *, unsigned > &enclosingLoopToVectorDim)
Constructs a permutation map from memref indices to vector dimension.
static SetVector< Operation * > getParentsOfType(Block *block)
Implementation detail that walks up the parents and records the ones with the specified type.
#define LDBG(X)
Definition: VectorUtils.cpp:35
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
Block represents an ordered list of Operations.
Definition: Block.h:31
Operation * getParentOp()
Returns the closest surrounding operation that contains this block.
Definition: Block.cpp:30
IntegerType getI1Type()
Definition: Builders.cpp:85
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:63
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class helps build Operations.
Definition: Builders.h:212
void createOrFold(SmallVectorImpl< Value > &results, Location location, Args &&...args)
Create an operation of specific op type at the current insertion point, and immediately try to fold i...
Definition: Builders.h:525
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:476
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Definition: Operation.h:402
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
Block * getBlock()
Returns the operation block that contains this operation.
Definition: Operation.h:213
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:399
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:400
A range-style iterator that allows for iterating over the offsets of all potential tiles of size tile...
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
Specialization of arith.constant op that returns an integer of index type.
Definition: Arith.h:93
DenseSet< Value, DenseMapInfo< Value > > getInvariantAccesses(Value iv, ArrayRef< Value > indices)
Given an induction variable iv of type AffineForOp and indices of type IndexType, returns the set of ...
bool hasTensorSemantics(Operation *op)
Return "true" if the given op has tensor semantics and should be bufferized.
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
SmallVector< OpFoldResult > getMixedSizes(OpBuilder &builder, Location loc, Value value)
Return the dimensions of the given memref value.
Definition: MemRefOps.cpp:77
SmallVector< OpFoldResult > getMixedSizes(OpBuilder &builder, Location loc, Value value)
Return the dimensions of the given tensor value.
Definition: TensorOps.cpp:65
bool isContiguousSlice(MemRefType memrefType, VectorType vectorType)
Return true if vectorType is a contiguous slice of memrefType.
LogicalResult isValidMaskedInputVector(ArrayRef< int64_t > shape, ArrayRef< int64_t > inputVectorSizes)
Returns success if inputVectorSizes is a valid masking configuraion for given shape,...
Operation * maskOperation(OpBuilder &builder, Operation *maskableOp, Value mask, Value passthru=Value())
Creates a vector.mask operation around a maskable operation.
FailureOr< std::pair< int, int > > isTranspose2DSlice(vector::TransposeOp op)
Returns two dims that are greater than one if the transposition is applied on a 2D slice.
Definition: VectorUtils.cpp:84
std::optional< StaticTileOffsetRange > createUnrollIterator(VectorType vType, int64_t targetRank=1)
Returns an iterator for all positions in the leading dimensions of vType up to the targetRank.
Value createOrFoldDimOp(OpBuilder &b, Location loc, Value source, int64_t dim)
Helper function that creates a memref::DimOp or tensor::DimOp depending on the type of source.
Definition: VectorUtils.cpp:41
bool isLinearizableVector(VectorType type)
Returns true if the input Vector type can be linearized.
Value createReadOrMaskedRead(OpBuilder &builder, Location loc, Value source, ArrayRef< int64_t > readShape, Value padValue, bool useInBoundsInsteadOfMasking)
Create a TransferReadOp from source with static shape readShape.
SmallVector< OpFoldResult > getMixedSizesXfer(bool hasTensorSemantics, Operation *xfer, RewriterBase &rewriter)
A wrapper for getMixedSizes for vector.transfer_read and vector.transfer_write Ops (for source and de...
Include the generated interface declarations.
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
Definition: AffineExpr.cpp:631
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
std::optional< SmallVector< int64_t > > computeShapeRatio(ArrayRef< int64_t > shape, ArrayRef< int64_t > subShape)
Return the multi-dimensional integral ratio of subShape to the trailing dimensions of shape.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
Definition: AffineExpr.cpp:607
bool trailingNDimsContiguous(MemRefType type, int64_t n)
Return "true" if the last N dimensions of the given type are contiguous.