MLIR  20.0.0git
ExpandPatterns.cpp
Go to the documentation of this file.
1 //===- ExpandPatterns.cpp - Code to expand various math operations. -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements expansion of various math operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
18 #include "mlir/IR/Builders.h"
20 #include "mlir/IR/TypeUtilities.h"
22 
23 using namespace mlir;
24 
25 /// Create a float constant.
26 static Value createFloatConst(Location loc, Type type, APFloat value,
27  OpBuilder &b) {
28  bool losesInfo = false;
29  auto eltType = getElementTypeOrSelf(type);
30  // Convert double to the given `FloatType` with round-to-nearest-ties-to-even.
31  value.convert(cast<FloatType>(eltType).getFloatSemantics(),
32  APFloat::rmNearestTiesToEven, &losesInfo);
33  auto attr = b.getFloatAttr(eltType, value);
34  if (auto shapedTy = dyn_cast<ShapedType>(type)) {
35  return b.create<arith::ConstantOp>(loc,
36  DenseElementsAttr::get(shapedTy, attr));
37  }
38 
39  return b.create<arith::ConstantOp>(loc, attr);
40 }
41 
42 static Value createFloatConst(Location loc, Type type, double value,
43  OpBuilder &b) {
44  return createFloatConst(loc, type, APFloat(value), b);
45 }
46 
47 /// Create an integer constant.
48 static Value createIntConst(Location loc, Type type, int64_t value,
49  OpBuilder &b) {
50  auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value);
51  if (auto shapedTy = dyn_cast<ShapedType>(type)) {
52  return b.create<arith::ConstantOp>(loc,
53  DenseElementsAttr::get(shapedTy, attr));
54  }
55 
56  return b.create<arith::ConstantOp>(loc, attr);
57 }
58 
60  Type opType = operand.getType();
61  Type i64Ty = b.getI64Type();
62  if (auto shapedTy = dyn_cast<ShapedType>(opType))
63  i64Ty = shapedTy.clone(i64Ty);
64  Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand);
65  Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert);
66  // The truncation does not preserve the sign when the truncated
67  // value is -0. So here the sign is copied again.
68  return b.create<math::CopySignOp>(fpFixedConvert, operand);
69 }
70 
71 // sinhf(float x) -> (exp(x) - exp(-x)) / 2
72 static LogicalResult convertSinhOp(math::SinhOp op, PatternRewriter &rewriter) {
73  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
74  Value operand = op.getOperand();
75  Type opType = operand.getType();
76 
77  Value exp = b.create<math::ExpOp>(operand);
78  Value neg = b.create<arith::NegFOp>(operand);
79  Value nexp = b.create<math::ExpOp>(neg);
80  Value sub = b.create<arith::SubFOp>(exp, nexp);
81  Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter);
82  Value res = b.create<arith::MulFOp>(sub, half);
83  rewriter.replaceOp(op, res);
84  return success();
85 }
86 
87 // coshf(float x) -> (exp(x) + exp(-x)) / 2
88 static LogicalResult convertCoshOp(math::CoshOp op, PatternRewriter &rewriter) {
89  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
90  Value operand = op.getOperand();
91  Type opType = operand.getType();
92 
93  Value exp = b.create<math::ExpOp>(operand);
94  Value neg = b.create<arith::NegFOp>(operand);
95  Value nexp = b.create<math::ExpOp>(neg);
96  Value add = b.create<arith::AddFOp>(exp, nexp);
97  Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter);
98  Value res = b.create<arith::MulFOp>(add, half);
99  rewriter.replaceOp(op, res);
100  return success();
101 }
102 
103 /// Expands tanh op into
104 /// 1-exp^{-2x} / 1+exp^{-2x}
105 /// To avoid overflow we exploit the reflection symmetry `tanh(-x) = -tanh(x)`.
106 /// We compute a "signs" value which is -1 if input is negative and +1 if input
107 /// is positive. Then multiply the input by this value, guaranteeing that the
108 /// result is positive, which also guarantees `exp^{-2x * sign(x)}` is in (0,
109 /// 1]. Expand the computation on the input `x * sign(x)`, then multiply the
110 /// result by `sign(x)` to retain sign of the real result.
111 static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) {
112  auto floatType = op.getOperand().getType();
113  Location loc = op.getLoc();
114  Value zero = createFloatConst(loc, floatType, 0.0, rewriter);
115  Value one = createFloatConst(loc, floatType, 1.0, rewriter);
116  Value negTwo = createFloatConst(loc, floatType, -2.0, rewriter);
117 
118  // Compute sign(x) = cast<float_type>(x < 0) * (-2) + 1
119  Value isNegative = rewriter.create<arith::CmpFOp>(
120  loc, arith::CmpFPredicate::OLT, op.getOperand(), zero);
121  Value isNegativeFloat =
122  rewriter.create<arith::UIToFPOp>(loc, floatType, isNegative);
123  Value isNegativeTimesNegTwo =
124  rewriter.create<arith::MulFOp>(loc, isNegativeFloat, negTwo);
125  Value sign = rewriter.create<arith::AddFOp>(loc, isNegativeTimesNegTwo, one);
126 
127  // Normalize input to positive value: y = sign(x) * x
128  Value positiveX = rewriter.create<arith::MulFOp>(loc, sign, op.getOperand());
129 
130  // Decompose on normalized input
131  Value negDoubledX = rewriter.create<arith::MulFOp>(loc, negTwo, positiveX);
132  Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX);
133  Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x);
134  Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x);
135  Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
136 
137  // Multiply result by sign(x) to retain signs from negative inputs
138  rewriter.replaceOpWithNewOp<arith::MulFOp>(op, sign, positiveRes);
139 
140  return success();
141 }
142 
143 // Converts math.tan to math.sin, math.cos, and arith.divf.
144 static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) {
145  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
146  Value operand = op.getOperand();
147  Type type = operand.getType();
148  Value sin = b.create<math::SinOp>(type, operand);
149  Value cos = b.create<math::CosOp>(type, operand);
150  Value div = b.create<arith::DivFOp>(type, sin, cos);
151  rewriter.replaceOp(op, div);
152  return success();
153 }
154 
155 // asinh(float x) -> log(x + sqrt(x**2 + 1))
156 static LogicalResult convertAsinhOp(math::AsinhOp op,
157  PatternRewriter &rewriter) {
158  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
159  Value operand = op.getOperand();
160  Type opType = operand.getType();
161 
162  Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter);
163  Value fma = b.create<math::FmaOp>(operand, operand, one);
164  Value sqrt = b.create<math::SqrtOp>(fma);
165  Value add = b.create<arith::AddFOp>(operand, sqrt);
166  Value res = b.create<math::LogOp>(add);
167  rewriter.replaceOp(op, res);
168  return success();
169 }
170 
171 // acosh(float x) -> log(x + sqrt(x**2 - 1))
172 static LogicalResult convertAcoshOp(math::AcoshOp op,
173  PatternRewriter &rewriter) {
174  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
175  Value operand = op.getOperand();
176  Type opType = operand.getType();
177 
178  Value negOne = createFloatConst(op->getLoc(), opType, -1.0, rewriter);
179  Value fma = b.create<math::FmaOp>(operand, operand, negOne);
180  Value sqrt = b.create<math::SqrtOp>(fma);
181  Value add = b.create<arith::AddFOp>(operand, sqrt);
182  Value res = b.create<math::LogOp>(add);
183  rewriter.replaceOp(op, res);
184  return success();
185 }
186 
187 // atanh(float x) -> log((1 + x) / (1 - x)) / 2
188 static LogicalResult convertAtanhOp(math::AtanhOp op,
189  PatternRewriter &rewriter) {
190  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
191  Value operand = op.getOperand();
192  Type opType = operand.getType();
193 
194  Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter);
195  Value add = b.create<arith::AddFOp>(operand, one);
196  Value neg = b.create<arith::NegFOp>(operand);
197  Value sub = b.create<arith::AddFOp>(neg, one);
198  Value div = b.create<arith::DivFOp>(add, sub);
199  Value log = b.create<math::LogOp>(div);
200  Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter);
201  Value res = b.create<arith::MulFOp>(log, half);
202  rewriter.replaceOp(op, res);
203  return success();
204 }
205 
206 static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) {
207  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
208  Value operandA = op.getOperand(0);
209  Value operandB = op.getOperand(1);
210  Value operandC = op.getOperand(2);
211  Type type = op.getType();
212  Value mult = b.create<arith::MulFOp>(type, operandA, operandB);
213  Value add = b.create<arith::AddFOp>(type, mult, operandC);
214  rewriter.replaceOp(op, add);
215  return success();
216 }
217 
218 // Converts a floorf() function to the following:
219 // floorf(float x) ->
220 // y = (float)(int) x
221 // if (x < 0) then incr = -1 else incr = 0
222 // y = y + incr <= replace this op with the floorf op.
223 static LogicalResult convertFloorOp(math::FloorOp op,
224  PatternRewriter &rewriter) {
225  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
226  Value operand = op.getOperand();
227  Type opType = operand.getType();
228  Value fpFixedConvert = createTruncatedFPValue(operand, b);
229 
230  // Creating constants for later use.
231  Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
232  Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
233 
234  Value negCheck =
235  b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
236  Value incrValue =
237  b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero);
238  Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
239  rewriter.replaceOp(op, ret);
240  return success();
241 }
242 
243 // Converts a ceilf() function to the following:
244 // ceilf(float x) ->
245 // y = (float)(int) x
246 // if (x > y) then incr = 1 else incr = 0
247 // y = y + incr <= replace this op with the ceilf op.
248 static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) {
249  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
250  Value operand = op.getOperand();
251  Type opType = operand.getType();
252  Value fpFixedConvert = createTruncatedFPValue(operand, b);
253 
254  // Creating constants for later use.
255  Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
256  Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter);
257 
258  Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand,
259  fpFixedConvert);
260  Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero);
261 
262  Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
263  rewriter.replaceOp(op, ret);
264  return success();
265 }
266 
267 // Convert `math.fpowi` to a series of `arith.mulf` operations.
268 // If the power is negative, we divide one by the result.
269 // If both the base and power are zero, the result is 1.
270 // In the case of non constant power, we convert the operation to `math.powf`.
271 static LogicalResult convertFPowIOp(math::FPowIOp op,
272  PatternRewriter &rewriter) {
273  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
274  Value base = op.getOperand(0);
275  Value power = op.getOperand(1);
276  Type baseType = base.getType();
277 
278  auto convertFPowItoPowf = [&]() -> LogicalResult {
279  Value castPowerToFp =
280  rewriter.create<arith::SIToFPOp>(op.getLoc(), baseType, power);
281  Value res = rewriter.create<math::PowFOp>(op.getLoc(), baseType, base,
282  castPowerToFp);
283  rewriter.replaceOp(op, res);
284  return success();
285  };
286 
287  Attribute cstAttr;
288  if (!matchPattern(power, m_Constant(&cstAttr)))
289  return convertFPowItoPowf();
290 
291  APInt value;
292  if (!matchPattern(cstAttr, m_ConstantInt(&value)))
293  return convertFPowItoPowf();
294 
295  int64_t powerInt = value.getSExtValue();
296  bool isNegative = powerInt < 0;
297  int64_t absPower = std::abs(powerInt);
298  Value one = createFloatConst(op->getLoc(), baseType, 1.00, rewriter);
299  Value res = createFloatConst(op->getLoc(), baseType, 1.00, rewriter);
300 
301  while (absPower > 0) {
302  if (absPower & 1)
303  res = b.create<arith::MulFOp>(baseType, base, res);
304  absPower >>= 1;
305  base = b.create<arith::MulFOp>(baseType, base, base);
306  }
307 
308  // Make sure not to introduce UB in case of negative power.
309  if (isNegative) {
310  auto &sem = dyn_cast<mlir::FloatType>(getElementTypeOrSelf(baseType))
311  .getFloatSemantics();
312  Value zero =
313  createFloatConst(op->getLoc(), baseType,
314  APFloat::getZero(sem, /*Negative=*/false), rewriter);
315  Value negZero =
316  createFloatConst(op->getLoc(), baseType,
317  APFloat::getZero(sem, /*Negative=*/true), rewriter);
318  Value posInfinity =
319  createFloatConst(op->getLoc(), baseType,
320  APFloat::getInf(sem, /*Negative=*/false), rewriter);
321  Value negInfinity =
322  createFloatConst(op->getLoc(), baseType,
323  APFloat::getInf(sem, /*Negative=*/true), rewriter);
324  Value zeroEqCheck =
325  b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, zero);
326  Value negZeroEqCheck =
327  b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, negZero);
328  res = b.create<arith::DivFOp>(baseType, one, res);
329  res =
330  b.create<arith::SelectOp>(op->getLoc(), zeroEqCheck, posInfinity, res);
331  res = b.create<arith::SelectOp>(op->getLoc(), negZeroEqCheck, negInfinity,
332  res);
333  }
334 
335  rewriter.replaceOp(op, res);
336  return success();
337 }
338 
339 // Converts Powf(float a, float b) (meaning a^b) to exp^(b * ln(a))
340 static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) {
341  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
342  Value operandA = op.getOperand(0);
343  Value operandB = op.getOperand(1);
344  Type opType = operandA.getType();
345  Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
346  Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter);
347  Value two = createFloatConst(op->getLoc(), opType, 2.00, rewriter);
348  Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
349  Value opASquared = b.create<arith::MulFOp>(opType, operandA, operandA);
350  Value opBHalf = b.create<arith::DivFOp>(opType, operandB, two);
351 
352  Value logA = b.create<math::LogOp>(opType, opASquared);
353  Value mult = b.create<arith::MulFOp>(opType, opBHalf, logA);
354  Value expResult = b.create<math::ExpOp>(opType, mult);
355  Value negExpResult = b.create<arith::MulFOp>(opType, expResult, negOne);
356  Value remainder = b.create<arith::RemFOp>(opType, operandB, two);
357  Value negCheck =
358  b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operandA, zero);
359  Value oddPower =
360  b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, remainder, zero);
361  Value oddAndNeg = b.create<arith::AndIOp>(op->getLoc(), oddPower, negCheck);
362 
363  // First, we select between the exp value and the adjusted value for odd
364  // powers of negatives. Then, we ensure that one is produced if `b` is zero.
365  // This corresponds to `libm` behavior, even for `0^0`. Without this check,
366  // `exp(0 * ln(0)) = exp(0 *-inf) = exp(-nan) = -nan`.
367  Value zeroCheck =
368  b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, operandB, zero);
369  Value res = b.create<arith::SelectOp>(op->getLoc(), oddAndNeg, negExpResult,
370  expResult);
371  res = b.create<arith::SelectOp>(op->getLoc(), zeroCheck, one, res);
372  rewriter.replaceOp(op, res);
373  return success();
374 }
375 
376 // exp2f(float x) -> exp(x * ln(2))
377 // Proof: Let's say 2^x = y
378 // ln(2^x) = ln(y)
379 // x * ln(2) = ln(y) => e ^(x*ln(2)) = y
380 static LogicalResult convertExp2fOp(math::Exp2Op op,
381  PatternRewriter &rewriter) {
382  ImplicitLocOpBuilder b(op->getLoc(), rewriter);
383  Value operand = op.getOperand();
384  Type opType = operand.getType();
385  Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b);
386  Value mult = b.create<arith::MulFOp>(opType, operand, ln2);
387  Value exp = b.create<math::ExpOp>(op->getLoc(), mult);
388  rewriter.replaceOp(op, exp);
389  return success();
390 }
391 
392 static LogicalResult convertRoundOp(math::RoundOp op,
393  PatternRewriter &rewriter) {
394  Location loc = op.getLoc();
395  ImplicitLocOpBuilder b(loc, rewriter);
396  Value operand = op.getOperand();
397  Type opType = operand.getType();
398  Type opEType = getElementTypeOrSelf(opType);
399 
400  if (!opEType.isF32()) {
401  return rewriter.notifyMatchFailure(op, "not a round of f32.");
402  }
403 
404  Type i32Ty = b.getI32Type();
405  if (auto shapedTy = dyn_cast<ShapedType>(opType))
406  i32Ty = shapedTy.clone(i32Ty);
407 
408  Value half = createFloatConst(loc, opType, 0.5, b);
409  Value c23 = createIntConst(loc, i32Ty, 23, b);
410  Value c127 = createIntConst(loc, i32Ty, 127, b);
411  Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b);
412 
413  Value incrValue = b.create<math::CopySignOp>(half, operand);
414  Value add = b.create<arith::AddFOp>(opType, operand, incrValue);
415  Value fpFixedConvert = createTruncatedFPValue(add, b);
416 
417  // There are three cases where adding 0.5 to the value and truncating by
418  // converting to an i64 does not result in the correct behavior:
419  //
420  // 1. Special values: +-inf and +-nan
421  // Casting these special values to i64 has undefined behavior. To identify
422  // these values, we use the fact that these values are the only float
423  // values with the maximum possible biased exponent.
424  //
425  // 2. Large values: 2^23 <= |x| <= INT_64_MAX
426  // Adding 0.5 to a float larger than or equal to 2^23 results in precision
427  // errors that sometimes round the value up and sometimes round the value
428  // down. For example:
429  // 8388608.0 + 0.5 = 8388608.0
430  // 8388609.0 + 0.5 = 8388610.0
431  //
432  // 3. Very large values: |x| > INT_64_MAX
433  // Casting to i64 a value greater than the max i64 value will overflow the
434  // i64 leading to wrong outputs.
435  //
436  // All three cases satisfy the property `biasedExp >= 23`.
437  Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand);
438  Value operandExp = b.create<arith::AndIOp>(
439  b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
440  Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
441  Value isSpecialValOrLargeVal =
442  b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23);
443 
444  Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand,
445  fpFixedConvert);
446  rewriter.replaceOp(op, result);
447  return success();
448 }
449 
450 // Converts math.ctlz to scf and arith operations. This is done
451 // by performing a binary search on the bits.
452 static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op,
453  PatternRewriter &rewriter) {
454  auto operand = op.getOperand();
455  auto operandTy = operand.getType();
456  auto eTy = getElementTypeOrSelf(operandTy);
457  Location loc = op.getLoc();
458 
459  int32_t bitwidth = eTy.getIntOrFloatBitWidth();
460  if (bitwidth > 64)
461  return failure();
462 
463  uint64_t allbits = -1;
464  if (bitwidth < 64) {
465  allbits = allbits >> (64 - bitwidth);
466  }
467 
468  Value x = operand;
469  Value count = createIntConst(loc, operandTy, 0, rewriter);
470  for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) {
471  auto half = bw / 2;
472  auto bits = createIntConst(loc, operandTy, half, rewriter);
473  auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter);
474 
475  Value pred =
476  rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask);
477  Value add = rewriter.create<arith::AddIOp>(loc, count, bits);
478  Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits);
479 
480  x = rewriter.create<arith::SelectOp>(loc, pred, shift, x);
481  count = rewriter.create<arith::SelectOp>(loc, pred, add, count);
482  }
483 
484  Value zero = createIntConst(loc, operandTy, 0, rewriter);
485  Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
486  operand, zero);
487 
488  Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter);
489  Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count);
490  rewriter.replaceOp(op, sel);
491  return success();
492 }
493 
494 // Convert `math.roundeven` into `math.round` + arith ops
495 static LogicalResult convertRoundEvenOp(math::RoundEvenOp op,
496  PatternRewriter &rewriter) {
497  Location loc = op.getLoc();
498  ImplicitLocOpBuilder b(loc, rewriter);
499  auto operand = op.getOperand();
500  Type operandTy = operand.getType();
501  Type resultTy = op.getType();
502  Type operandETy = getElementTypeOrSelf(operandTy);
503  Type resultETy = getElementTypeOrSelf(resultTy);
504 
505  if (!isa<FloatType>(operandETy) || !isa<FloatType>(resultETy)) {
506  return rewriter.notifyMatchFailure(op, "not a roundeven of f16 or f32.");
507  }
508 
509  Type fTy = operandTy;
510  Type iTy = rewriter.getIntegerType(operandETy.getIntOrFloatBitWidth());
511  if (auto shapedTy = dyn_cast<ShapedType>(fTy)) {
512  iTy = shapedTy.clone(iTy);
513  }
514 
515  unsigned bitWidth = operandETy.getIntOrFloatBitWidth();
516  // The width returned by getFPMantissaWidth includes the integer bit.
517  unsigned mantissaWidth =
518  llvm::cast<FloatType>(operandETy).getFPMantissaWidth() - 1;
519  unsigned exponentWidth = bitWidth - mantissaWidth - 1;
520 
521  // The names of the variables correspond to f32.
522  // f64: 1 bit sign | 11 bits exponent | 52 bits mantissa.
523  // f32: 1 bit sign | 8 bits exponent | 23 bits mantissa.
524  // f16: 1 bit sign | 5 bits exponent | 10 bits mantissa.
525  Value c1Float = createFloatConst(loc, fTy, 1.0, b);
526  Value c0 = createIntConst(loc, iTy, 0, b);
527  Value c1 = createIntConst(loc, iTy, 1, b);
528  Value cNeg1 = createIntConst(loc, iTy, -1, b);
529  Value c23 = createIntConst(loc, iTy, mantissaWidth, b);
530  Value c31 = createIntConst(loc, iTy, bitWidth - 1, b);
531  Value c127 = createIntConst(loc, iTy, (1ull << (exponentWidth - 1)) - 1, b);
532  Value c2To22 = createIntConst(loc, iTy, 1ull << (mantissaWidth - 1), b);
533  Value c23Mask = createIntConst(loc, iTy, (1ull << mantissaWidth) - 1, b);
534  Value expMask = createIntConst(loc, iTy, (1ull << exponentWidth) - 1, b);
535 
536  Value operandBitcast = b.create<arith::BitcastOp>(iTy, operand);
537  Value round = b.create<math::RoundOp>(operand);
538  Value roundBitcast = b.create<arith::BitcastOp>(iTy, round);
539 
540  // Get biased exponents for operand and round(operand)
541  Value operandExp = b.create<arith::AndIOp>(
542  b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
543  Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
544  Value roundExp = b.create<arith::AndIOp>(
545  b.create<arith::ShRUIOp>(roundBitcast, c23), expMask);
546  Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127);
547 
548  auto safeShiftRight = [&](Value x, Value shift) -> Value {
549  // Clamp shift to valid range [0, bitwidth - 1] to avoid undefined behavior
550  Value clampedShift = b.create<arith::MaxSIOp>(shift, c0);
551  clampedShift = b.create<arith::MinSIOp>(clampedShift, c31);
552  return b.create<arith::ShRUIOp>(x, clampedShift);
553  };
554 
555  auto maskMantissa = [&](Value mantissa,
556  Value mantissaMaskRightShift) -> Value {
557  Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift);
558  return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask);
559  };
560 
561  // A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring
562  // the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers
563  // with `biasedExp > 23` (numbers where there is not enough precision to store
564  // decimals) are always even, and they satisfy the even condition trivially
565  // since the mantissa without all its bits is zero. The even condition
566  // is also true for +-0, since they have `biasedExp = -127` and the entire
567  // mantissa is zero. The case of +-1 has to be handled separately. Here
568  // we identify these values by noting that +-1 are the only whole numbers with
569  // `biasedExp == 0`.
570  //
571  // The special values +-inf and +-nan also satisfy the same property that
572  // whole non-unit even numbers satisfy. In particular, the special values have
573  // `biasedExp > 23`, so they get treated as large numbers with no room for
574  // decimals, which are always even.
575  Value roundBiasedExpEq0 =
576  b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0);
577  Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1);
578  Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1);
579  Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>(
580  arith::CmpIPredicate::ne, roundMaskedMantissa, c0);
581  roundIsNotEvenOrSpecialVal =
582  b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0);
583 
584  // A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive
585  // integers if the bit at index `biasedExp` starting from the left in the
586  // mantissa is 1 and all the bits to the right are zero. Values with
587  // `biasedExp >= 23` don't have decimals, so they are never halfway. The
588  // values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`,
589  // so these are handled separately. In particular, if `biasedExp == -1`, the
590  // value is halfway if the entire mantissa is zero.
591  Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>(
592  arith::CmpIPredicate::eq, operandBiasedExp, cNeg1);
593  Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>(
594  operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp));
595  Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp);
596  Value operandIsHalfway =
597  b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa,
598  expectedOperandMaskedMantissa);
599  // Ensure `biasedExp` is in the valid range for half values.
600  Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>(
601  arith::CmpIPredicate::sge, operandBiasedExp, cNeg1);
602  Value operandBiasedExpLt23 =
603  b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23);
604  operandIsHalfway =
605  b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23);
606  operandIsHalfway =
607  b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1);
608 
609  // Adjust rounded operand with `round(operand) - sign(operand)` to correct the
610  // case where `round` rounded in the opposite direction of `roundeven`.
611  Value sign = b.create<math::CopySignOp>(c1Float, operand);
612  Value roundShifted = b.create<arith::SubFOp>(round, sign);
613  // If the rounded value is even or a special value, we default to the behavior
614  // of `math.round`.
615  Value needsShift =
616  b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway);
617  Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round);
618  // The `x - sign` adjustment does not preserve the sign when we are adjusting
619  // the value -1 to -0. So here the sign is copied again to ensure that -0.5 is
620  // rounded to -0.0.
621  result = b.create<math::CopySignOp>(result, operand);
622  rewriter.replaceOp(op, result);
623  return success();
624 }
625 
626 // Convert `math.rsqrt` into `arith.divf` + `math.sqrt`
627 static LogicalResult convertRsqrtOp(math::RsqrtOp op,
628  PatternRewriter &rewriter) {
629 
630  auto operand = op.getOperand();
631  auto operandTy = operand.getType();
632  auto eTy = getElementTypeOrSelf(operandTy);
633  if (!isa<FloatType>(eTy))
634  return failure();
635 
636  Location loc = op->getLoc();
637  auto constOneFloat = createFloatConst(loc, operandTy, 1.0, rewriter);
638  auto sqrtOp = rewriter.create<math::SqrtOp>(loc, operand);
639  rewriter.replaceOpWithNewOp<arith::DivFOp>(op, constOneFloat, sqrtOp);
640  return success();
641 }
642 
644  patterns.add(convertCtlzOp);
645 }
646 
648  patterns.add(convertSinhOp);
649 }
650 
652  patterns.add(convertCoshOp);
653 }
654 
656  patterns.add(convertTanOp);
657 }
658 
660  patterns.add(convertTanhOp);
661 }
662 
665 }
666 
669 }
670 
673 }
674 
676  patterns.add(convertFmaFOp);
677 }
678 
680  patterns.add(convertCeilOp);
681 }
682 
685 }
686 
688  patterns.add(convertPowfOp);
689 }
690 
693 }
694 
697 }
698 
701 }
702 
705 }
706 
709 }
static Value getZero(OpBuilder &b, Location loc, Type elementType)
Get zero value for an element type.
static LogicalResult convertRsqrtOp(math::RsqrtOp op, PatternRewriter &rewriter)
static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b)
static LogicalResult convertFPowIOp(math::FPowIOp op, PatternRewriter &rewriter)
static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter)
static LogicalResult convertRoundOp(math::RoundOp op, PatternRewriter &rewriter)
static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter)
static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op, PatternRewriter &rewriter)
static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter)
static LogicalResult convertFloorOp(math::FloorOp op, PatternRewriter &rewriter)
static LogicalResult convertAtanhOp(math::AtanhOp op, PatternRewriter &rewriter)
static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter)
static LogicalResult convertRoundEvenOp(math::RoundEvenOp op, PatternRewriter &rewriter)
static LogicalResult convertCoshOp(math::CoshOp op, PatternRewriter &rewriter)
static LogicalResult convertSinhOp(math::SinhOp op, PatternRewriter &rewriter)
static Value createFloatConst(Location loc, Type type, APFloat value, OpBuilder &b)
Create a float constant.
static LogicalResult convertAsinhOp(math::AsinhOp op, PatternRewriter &rewriter)
static Value createIntConst(Location loc, Type type, int64_t value, OpBuilder &b)
Create an integer constant.
static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter)
Expands tanh op into 1-exp^{-2x} / 1+exp^{-2x} To avoid overflow we exploit the reflection symmetry t...
static LogicalResult convertAcoshOp(math::AcoshOp op, PatternRewriter &rewriter)
static LogicalResult convertExp2fOp(math::Exp2Op op, PatternRewriter &rewriter)
Attributes are known-constant values of operations.
Definition: Attributes.h:25
IntegerAttr getIntegerAttr(Type type, int64_t value)
Definition: Builders.cpp:268
FloatAttr getFloatAttr(Type type, double value)
Definition: Builders.cpp:294
IntegerType getI64Type()
Definition: Builders.cpp:109
IntegerType getI32Type()
Definition: Builders.cpp:107
IntegerType getIntegerType(unsigned width)
Definition: Builders.cpp:111
static DenseElementsAttr get(ShapedType type, ArrayRef< Attribute > values)
Constructs a dense elements attribute from an array of element values.
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
OpTy create(Args &&...args)
Create an operation of specific op type at the current insertion point and location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
This class helps build Operations.
Definition: Builders.h:216
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:497
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:791
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:724
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:542
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
bool isF32() const
Definition: Types.cpp:59
unsigned getIntOrFloatBitWidth() const
Return the bit width of an integer or a float type, assert failure on other types.
Definition: Types.cpp:133
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
DynamicAPInt round(const Fraction &f)
Definition: Fraction.h:136
Fraction abs(const Fraction &f)
Definition: Fraction.h:107
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition: Matchers.h:490
void populateExpandSinhPattern(RewritePatternSet &patterns)
detail::constant_int_value_binder m_ConstantInt(IntegerAttr::ValueType *bind_value)
Matches a constant holding a scalar/vector/tensor integer (splat) and writes the integer value to bin...
Definition: Matchers.h:527
void populateExpandRsqrtPattern(RewritePatternSet &patterns)
void populateExpandTanhPattern(RewritePatternSet &patterns)
void populateExpandFmaFPattern(RewritePatternSet &patterns)
void populateExpandAcoshPattern(RewritePatternSet &patterns)
void populateExpandFPowIPattern(RewritePatternSet &patterns)
void populateExpandPowFPattern(RewritePatternSet &patterns)
Type getElementTypeOrSelf(Type type)
Return the element type or return the type itself.
void populateExpandTanPattern(RewritePatternSet &patterns)
const FrozenRewritePatternSet & patterns
void populateExpandCoshPattern(RewritePatternSet &patterns)
void populateExpandRoundFPattern(RewritePatternSet &patterns)
void populateExpandExp2FPattern(RewritePatternSet &patterns)
void populateExpandCeilFPattern(RewritePatternSet &patterns)
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
Definition: Matchers.h:369
void populateExpandCtlzPattern(RewritePatternSet &patterns)
void populateExpandAsinhPattern(RewritePatternSet &patterns)
void populateExpandRoundEvenPattern(RewritePatternSet &patterns)
void populateExpandAtanhPattern(RewritePatternSet &patterns)
void populateExpandFloorFPattern(RewritePatternSet &patterns)