MLIR  20.0.0git
SparseAnalysis.h
Go to the documentation of this file.
1 //===- SparseAnalysis.h - Sparse data-flow analysis -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sparse data-flow analysis using the data-flow analysis
10 // framework. The analysis is forward and conditional and uses the results of
11 // dead code analysis to prune dead code during the analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef MLIR_ANALYSIS_DATAFLOW_SPARSEANALYSIS_H
16 #define MLIR_ANALYSIS_DATAFLOW_SPARSEANALYSIS_H
17 
19 #include "mlir/IR/SymbolTable.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 
24 namespace mlir {
25 namespace dataflow {
26 
27 //===----------------------------------------------------------------------===//
28 // AbstractSparseLattice
29 //===----------------------------------------------------------------------===//
30 
31 /// This class represents an abstract lattice. A lattice contains information
32 /// about an SSA value and is what's propagated across the IR by sparse
33 /// data-flow analysis.
35 public:
36  /// Lattices can only be created for values.
38 
39  /// Return the value this lattice is located at.
40  Value getAnchor() const { return AnalysisState::getAnchor().get<Value>(); }
41 
42  /// Join the information contained in 'rhs' into this lattice. Returns
43  /// if the value of the lattice changed.
44  virtual ChangeResult join(const AbstractSparseLattice &rhs) {
46  }
47 
48  /// Meet (intersect) the information in this lattice with 'rhs'. Returns
49  /// if the value of the lattice changed.
50  virtual ChangeResult meet(const AbstractSparseLattice &rhs) {
52  }
53 
54  /// When the lattice gets updated, propagate an update to users of the value
55  /// using its use-def chain to subscribed analyses.
56  void onUpdate(DataFlowSolver *solver) const override;
57 
58  /// Subscribe an analysis to updates of the lattice. When the lattice changes,
59  /// subscribed analyses are re-invoked on all users of the value. This is
60  /// more efficient than relying on the dependency map.
62  useDefSubscribers.insert(analysis);
63  }
64 
65 private:
66  /// A set of analyses that should be updated when this lattice changes.
69  useDefSubscribers;
70 };
71 
72 //===----------------------------------------------------------------------===//
73 // Lattice
74 //===----------------------------------------------------------------------===//
75 
76 /// This class represents a lattice holding a specific value of type `ValueT`.
77 /// Lattice values (`ValueT`) are required to adhere to the following:
78 ///
79 /// * static ValueT join(const ValueT &lhs, const ValueT &rhs);
80 /// - This method conservatively joins the information held by `lhs`
81 /// and `rhs` into a new value. This method is required to be monotonic.
82 /// * bool operator==(const ValueT &rhs) const;
83 ///
84 template <typename ValueT>
86 public:
88 
89  /// Return the value this lattice is located at.
90  Value getAnchor() const { return cast<Value>(anchor); }
91 
92  /// Return the value held by this lattice. This requires that the value is
93  /// initialized.
94  ValueT &getValue() { return value; }
95  const ValueT &getValue() const {
96  return const_cast<Lattice<ValueT> *>(this)->getValue();
97  }
98 
100 
101  /// Join the information contained in the 'rhs' lattice into this
102  /// lattice. Returns if the state of the current lattice changed.
103  ChangeResult join(const AbstractSparseLattice &rhs) override {
104  return join(static_cast<const LatticeT &>(rhs).getValue());
105  }
106 
107  /// Meet (intersect) the information contained in the 'rhs' lattice with
108  /// this lattice. Returns if the state of the current lattice changed.
109  ChangeResult meet(const AbstractSparseLattice &rhs) override {
110  return meet(static_cast<const LatticeT &>(rhs).getValue());
111  }
112 
113  /// Join the information contained in the 'rhs' value into this
114  /// lattice. Returns if the state of the current lattice changed.
115  ChangeResult join(const ValueT &rhs) {
116  // Otherwise, join rhs with the current optimistic value.
117  ValueT newValue = ValueT::join(value, rhs);
118  assert(ValueT::join(newValue, value) == newValue &&
119  "expected `join` to be monotonic");
120  assert(ValueT::join(newValue, rhs) == newValue &&
121  "expected `join` to be monotonic");
122 
123  // Update the current optimistic value if something changed.
124  if (newValue == value)
125  return ChangeResult::NoChange;
126 
127  value = newValue;
128  return ChangeResult::Change;
129  }
130 
131  /// Trait to check if `T` provides a `meet` method. Needed since for forward
132  /// analysis, lattices will only have a `join`, no `meet`, but we want to use
133  /// the same `Lattice` class for both directions.
134  template <typename T, typename... Args>
135  using has_meet = decltype(&T::meet);
136  template <typename T>
137  using lattice_has_meet = llvm::is_detected<has_meet, T>;
138 
139  /// Meet (intersect) the information contained in the 'rhs' value with this
140  /// lattice. Returns if the state of the current lattice changed. If the
141  /// lattice elements don't have a `meet` method, this is a no-op (see below.)
142  template <typename VT,
143  std::enable_if_t<lattice_has_meet<VT>::value> * = nullptr>
144  ChangeResult meet(const VT &rhs) {
145  ValueT newValue = ValueT::meet(value, rhs);
146  assert(ValueT::meet(newValue, value) == newValue &&
147  "expected `meet` to be monotonic");
148  assert(ValueT::meet(newValue, rhs) == newValue &&
149  "expected `meet` to be monotonic");
150 
151  // Update the current optimistic value if something changed.
152  if (newValue == value)
153  return ChangeResult::NoChange;
154 
155  value = newValue;
156  return ChangeResult::Change;
157  }
158 
159  template <typename VT,
160  std::enable_if_t<!lattice_has_meet<VT>::value> * = nullptr>
161  ChangeResult meet(const VT &rhs) {
162  return ChangeResult::NoChange;
163  }
164 
165  /// Print the lattice element.
166  void print(raw_ostream &os) const override { value.print(os); }
167 
168 private:
169  /// The currently computed value that is optimistically assumed to be true.
170  ValueT value;
171 };
172 
173 //===----------------------------------------------------------------------===//
174 // AbstractSparseForwardDataFlowAnalysis
175 //===----------------------------------------------------------------------===//
176 
177 /// Base class for sparse forward data-flow analyses. A sparse analysis
178 /// implements a transfer function on operations from the lattices of the
179 /// operands to the lattices of the results. This analysis will propagate
180 /// lattices across control-flow edges and the callgraph using liveness
181 /// information.
182 ///
183 /// Visit a program point in sparse forward data-flow analysis will invoke the
184 /// transfer function of the operation preceding the program point iterator.
185 /// Visit a program point at the begining of block will visit the block itself.
187 public:
188  /// Initialize the analysis by visiting every owner of an SSA value: all
189  /// operations and blocks.
190  LogicalResult initialize(Operation *top) override;
191 
192  /// Visit a program point. If this is at beginning of block and all
193  /// control-flow predecessors or callsites are known, then the arguments
194  /// lattices are propagated from them. If this is after call operation or an
195  /// operation with region control-flow, then its result lattices are set
196  /// accordingly. Otherwise, the operation transfer function is invoked.
197  LogicalResult visit(ProgramPoint *point) override;
198 
199 protected:
201 
202  /// The operation transfer function. Given the operand lattices, this
203  /// function is expected to set the result lattices.
204  virtual LogicalResult
207  ArrayRef<AbstractSparseLattice *> resultLattices) = 0;
208 
209  /// The transfer function for calls to external functions.
210  virtual void visitExternalCallImpl(
211  CallOpInterface call,
213  ArrayRef<AbstractSparseLattice *> resultLattices) = 0;
214 
215  /// Given an operation with region control-flow, the lattices of the operands,
216  /// and a region successor, compute the lattice values for block arguments
217  /// that are not accounted for by the branching control flow (ex. the bounds
218  /// of loops).
220  Operation *op, const RegionSuccessor &successor,
221  ArrayRef<AbstractSparseLattice *> argLattices, unsigned firstIndex) = 0;
222 
223  /// Get the lattice element of a value.
225 
226  /// Get a read-only lattice element for a value and add it as a dependency to
227  /// a program point.
229  Value value);
230 
231  /// Set the given lattice element(s) at control flow entry point(s).
232  virtual void setToEntryState(AbstractSparseLattice *lattice) = 0;
234 
235  /// Join the lattice element and propagate and update if it changed.
236  void join(AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs);
237 
238 private:
239  /// Recursively initialize the analysis on nested operations and blocks.
240  LogicalResult initializeRecursively(Operation *op);
241 
242  /// Visit an operation. If this is a call operation or an operation with
243  /// region control-flow, then its result lattices are set accordingly.
244  /// Otherwise, the operation transfer function is invoked.
245  LogicalResult visitOperation(Operation *op);
246 
247  /// Visit a block to compute the lattice values of its arguments. If this is
248  /// an entry block, then the argument values are determined from the block's
249  /// "predecessors" as set by `PredecessorState`. The predecessors can be
250  /// region terminators or callable callsites. Otherwise, the values are
251  /// determined from block predecessors.
252  void visitBlock(Block *block);
253 
254  /// Visit a program point `point` with predecessors within a region branch
255  /// operation `branch`, which can either be the entry block of one of the
256  /// regions or the parent operation itself, and set either the argument or
257  /// parent result lattices.
258  void visitRegionSuccessors(ProgramPoint *point,
259  RegionBranchOpInterface branch,
260  RegionBranchPoint successor,
262 };
263 
264 //===----------------------------------------------------------------------===//
265 // SparseForwardDataFlowAnalysis
266 //===----------------------------------------------------------------------===//
267 
268 /// A sparse forward data-flow analysis for propagating SSA value lattices
269 /// across the IR by implementing transfer functions for operations.
270 ///
271 /// `StateT` is expected to be a subclass of `AbstractSparseLattice`.
272 template <typename StateT>
275  static_assert(
276  std::is_base_of<AbstractSparseLattice, StateT>::value,
277  "analysis state class expected to subclass AbstractSparseLattice");
278 
279 public:
282 
283  /// Visit an operation with the lattices of its operands. This function is
284  /// expected to set the lattices of the operation's results.
285  virtual LogicalResult visitOperation(Operation *op,
286  ArrayRef<const StateT *> operands,
287  ArrayRef<StateT *> results) = 0;
288 
289  /// Visit a call operation to an externally defined function given the
290  /// lattices of its arguments.
291  virtual void visitExternalCall(CallOpInterface call,
292  ArrayRef<const StateT *> argumentLattices,
293  ArrayRef<StateT *> resultLattices) {
294  setAllToEntryStates(resultLattices);
295  }
296 
297  /// Given an operation with possible region control-flow, the lattices of the
298  /// operands, and a region successor, compute the lattice values for block
299  /// arguments that are not accounted for by the branching control flow (ex.
300  /// the bounds of loops). By default, this method marks all such lattice
301  /// elements as having reached a pessimistic fixpoint. `firstIndex` is the
302  /// index of the first element of `argLattices` that is set by control-flow.
304  const RegionSuccessor &successor,
305  ArrayRef<StateT *> argLattices,
306  unsigned firstIndex) {
307  setAllToEntryStates(argLattices.take_front(firstIndex));
308  setAllToEntryStates(argLattices.drop_front(
309  firstIndex + successor.getSuccessorInputs().size()));
310  }
311 
312 protected:
313  /// Get the lattice element for a value.
314  StateT *getLatticeElement(Value value) override {
315  return getOrCreate<StateT>(value);
316  }
317 
318  /// Get the lattice element for a value and create a dependency on the
319  /// provided program point.
320  const StateT *getLatticeElementFor(ProgramPoint *point, Value value) {
321  return static_cast<const StateT *>(
323  value));
324  }
325 
326  /// Set the given lattice element(s) at control flow entry point(s).
327  virtual void setToEntryState(StateT *lattice) = 0;
330  {reinterpret_cast<AbstractSparseLattice *const *>(lattices.begin()),
331  lattices.size()});
332  }
333 
334 private:
335  /// Type-erased wrappers that convert the abstract lattice operands to derived
336  /// lattices and invoke the virtual hooks operating on the derived lattices.
337  LogicalResult visitOperationImpl(
339  ArrayRef<AbstractSparseLattice *> resultLattices) override {
340  return visitOperation(
341  op,
342  {reinterpret_cast<const StateT *const *>(operandLattices.begin()),
343  operandLattices.size()},
344  {reinterpret_cast<StateT *const *>(resultLattices.begin()),
345  resultLattices.size()});
346  }
347  void visitExternalCallImpl(
348  CallOpInterface call,
349  ArrayRef<const AbstractSparseLattice *> argumentLattices,
350  ArrayRef<AbstractSparseLattice *> resultLattices) override {
352  call,
353  {reinterpret_cast<const StateT *const *>(argumentLattices.begin()),
354  argumentLattices.size()},
355  {reinterpret_cast<StateT *const *>(resultLattices.begin()),
356  resultLattices.size()});
357  }
358  void visitNonControlFlowArgumentsImpl(
359  Operation *op, const RegionSuccessor &successor,
360  ArrayRef<AbstractSparseLattice *> argLattices,
361  unsigned firstIndex) override {
363  op, successor,
364  {reinterpret_cast<StateT *const *>(argLattices.begin()),
365  argLattices.size()},
366  firstIndex);
367  }
368  void setToEntryState(AbstractSparseLattice *lattice) override {
369  return setToEntryState(reinterpret_cast<StateT *>(lattice));
370  }
371 };
372 
373 //===----------------------------------------------------------------------===//
374 // AbstractSparseBackwardDataFlowAnalysis
375 //===----------------------------------------------------------------------===//
376 
377 /// Base class for sparse backward data-flow analyses. Similar to
378 /// AbstractSparseForwardDataFlowAnalysis, but walks bottom to top.
380 public:
381  /// Initialize the analysis by visiting the operation and everything nested
382  /// under it.
383  LogicalResult initialize(Operation *top) override;
384 
385  /// Visit a program point. If it is after call operation or an operation with
386  /// block or region control-flow, then operand lattices are set accordingly.
387  /// Otherwise, invokes the operation transfer function (`visitOperationImpl`).
388  LogicalResult visit(ProgramPoint *point) override;
389 
390 protected:
392  DataFlowSolver &solver, SymbolTableCollection &symbolTable);
393 
394  /// The operation transfer function. Given the result lattices, this
395  /// function is expected to set the operand lattices.
396  virtual LogicalResult visitOperationImpl(
397  Operation *op, ArrayRef<AbstractSparseLattice *> operandLattices,
398  ArrayRef<const AbstractSparseLattice *> resultLattices) = 0;
399 
400  /// The transfer function for calls to external functions.
401  virtual void visitExternalCallImpl(
402  CallOpInterface call, ArrayRef<AbstractSparseLattice *> operandLattices,
403  ArrayRef<const AbstractSparseLattice *> resultLattices) = 0;
404 
405  // Visit operands on branch instructions that are not forwarded.
406  virtual void visitBranchOperand(OpOperand &operand) = 0;
407 
408  // Visit operands on call instructions that are not forwarded.
409  virtual void visitCallOperand(OpOperand &operand) = 0;
410 
411  /// Set the given lattice element(s) at control flow exit point(s).
412  virtual void setToExitState(AbstractSparseLattice *lattice) = 0;
413 
414  /// Set the given lattice element(s) at control flow exit point(s).
416 
417  /// Get the lattice element for a value.
419 
420  /// Get the lattice elements for a range of values.
422 
423  /// Join the lattice element and propagate and update if it changed.
424  void meet(AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs);
425 
426 private:
427  /// Recursively initialize the analysis on nested operations and blocks.
428  LogicalResult initializeRecursively(Operation *op);
429 
430  /// Visit an operation. If this is a call operation or an operation with
431  /// region control-flow, then its operand lattices are set accordingly.
432  /// Otherwise, the operation transfer function is invoked.
433  LogicalResult visitOperation(Operation *op);
434 
435  /// Visit a block.
436  void visitBlock(Block *block);
437 
438  /// Visit an op with regions (like e.g. `scf.while`)
439  void visitRegionSuccessors(RegionBranchOpInterface branch,
441 
442  /// Visit a `RegionBranchTerminatorOpInterface` to compute the lattice values
443  /// of its operands, given its parent op `branch`. The lattice value of an
444  /// operand is determined based on the corresponding arguments in
445  /// `terminator`'s region successor(s).
446  void visitRegionSuccessorsFromTerminator(
447  RegionBranchTerminatorOpInterface terminator,
448  RegionBranchOpInterface branch);
449 
450  /// Get the lattice element for a value, and also set up
451  /// dependencies so that the analysis on the given ProgramPoint is re-invoked
452  /// if the value changes.
453  const AbstractSparseLattice *getLatticeElementFor(ProgramPoint *point,
454  Value value);
455 
456  /// Get the lattice elements for a range of values, and also set up
457  /// dependencies so that the analysis on the given ProgramPoint is re-invoked
458  /// if any of the values change.
460  getLatticeElementsFor(ProgramPoint *point, ValueRange values);
461 
462  SymbolTableCollection &symbolTable;
463 };
464 
465 //===----------------------------------------------------------------------===//
466 // SparseBackwardDataFlowAnalysis
467 //===----------------------------------------------------------------------===//
468 
469 /// A sparse (backward) data-flow analysis for propagating SSA value lattices
470 /// backwards across the IR by implementing transfer functions for operations.
471 ///
472 /// `StateT` is expected to be a subclass of `AbstractSparseLattice`.
473 ///
474 /// Visit a program point in sparse backward data-flow analysis will invoke the
475 /// transfer function of the operation preceding the program point iterator.
476 /// Visit a program point at the begining of block will visit the block itself.
477 template <typename StateT>
480 public:
482  SymbolTableCollection &symbolTable)
483  : AbstractSparseBackwardDataFlowAnalysis(solver, symbolTable) {}
484 
485  /// Visit an operation with the lattices of its results. This function is
486  /// expected to set the lattices of the operation's operands.
487  virtual LogicalResult visitOperation(Operation *op,
488  ArrayRef<StateT *> operands,
489  ArrayRef<const StateT *> results) = 0;
490 
491  /// Visit a call to an external function. This function is expected to set
492  /// lattice values of the call operands. By default, calls `visitCallOperand`
493  /// for all operands.
494  virtual void visitExternalCall(CallOpInterface call,
495  ArrayRef<StateT *> argumentLattices,
496  ArrayRef<const StateT *> resultLattices) {
497  (void)argumentLattices;
498  (void)resultLattices;
499  for (OpOperand &operand : call->getOpOperands()) {
500  visitCallOperand(operand);
501  }
502  };
503 
504 protected:
505  /// Get the lattice element for a value.
506  StateT *getLatticeElement(Value value) override {
507  return getOrCreate<StateT>(value);
508  }
509 
510  /// Set the given lattice element(s) at control flow exit point(s).
511  virtual void setToExitState(StateT *lattice) = 0;
512  void setToExitState(AbstractSparseLattice *lattice) override {
513  return setToExitState(reinterpret_cast<StateT *>(lattice));
514  }
517  {reinterpret_cast<AbstractSparseLattice *const *>(lattices.begin()),
518  lattices.size()});
519  }
520 
521 private:
522  /// Type-erased wrappers that convert the abstract lattice operands to derived
523  /// lattices and invoke the virtual hooks operating on the derived lattices.
524  LogicalResult visitOperationImpl(
525  Operation *op, ArrayRef<AbstractSparseLattice *> operandLattices,
526  ArrayRef<const AbstractSparseLattice *> resultLattices) override {
527  return visitOperation(
528  op,
529  {reinterpret_cast<StateT *const *>(operandLattices.begin()),
530  operandLattices.size()},
531  {reinterpret_cast<const StateT *const *>(resultLattices.begin()),
532  resultLattices.size()});
533  }
534 
535  void visitExternalCallImpl(
536  CallOpInterface call, ArrayRef<AbstractSparseLattice *> operandLattices,
537  ArrayRef<const AbstractSparseLattice *> resultLattices) override {
539  call,
540  {reinterpret_cast<StateT *const *>(operandLattices.begin()),
541  operandLattices.size()},
542  {reinterpret_cast<const StateT *const *>(resultLattices.begin()),
543  resultLattices.size()});
544  }
545 };
546 
547 } // end namespace dataflow
548 } // end namespace mlir
549 
550 #endif // MLIR_ANALYSIS_DATAFLOW_SPARSEANALYSIS_H
Base class for generic analysis states.
LatticeAnchor getAnchor() const
Returns the lattice anchor this state is located at.
LatticeAnchor anchor
The lattice anchor to which the state belongs.
Block represents an ordered list of Operations.
Definition: Block.h:33
Base class for all data-flow analyses.
The general data-flow analysis solver.
This class represents an operand of an operation.
Definition: Value.h:267
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
This class represents a point being branched from in the methods of the RegionBranchOpInterface.
This class represents a successor of a region.
ValueRange getSuccessorInputs() const
Return the inputs to the successor that are remapped by the exit values of the current region.
This class represents a collection of SymbolTables.
Definition: SymbolTable.h:283
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Base class for sparse backward data-flow analyses.
virtual void setToExitState(AbstractSparseLattice *lattice)=0
Set the given lattice element(s) at control flow exit point(s).
SmallVector< AbstractSparseLattice * > getLatticeElements(ValueRange values)
Get the lattice elements for a range of values.
AbstractSparseBackwardDataFlowAnalysis(DataFlowSolver &solver, SymbolTableCollection &symbolTable)
virtual void visitBranchOperand(OpOperand &operand)=0
virtual void visitCallOperand(OpOperand &operand)=0
LogicalResult visit(ProgramPoint *point) override
Visit a program point.
void meet(AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs)
Join the lattice element and propagate and update if it changed.
virtual void visitExternalCallImpl(CallOpInterface call, ArrayRef< AbstractSparseLattice * > operandLattices, ArrayRef< const AbstractSparseLattice * > resultLattices)=0
The transfer function for calls to external functions.
virtual AbstractSparseLattice * getLatticeElement(Value value)=0
Get the lattice element for a value.
LogicalResult initialize(Operation *top) override
Initialize the analysis by visiting the operation and everything nested under it.
void setAllToExitStates(ArrayRef< AbstractSparseLattice * > lattices)
Set the given lattice element(s) at control flow exit point(s).
virtual LogicalResult visitOperationImpl(Operation *op, ArrayRef< AbstractSparseLattice * > operandLattices, ArrayRef< const AbstractSparseLattice * > resultLattices)=0
The operation transfer function.
Base class for sparse forward data-flow analyses.
LogicalResult visit(ProgramPoint *point) override
Visit a program point.
LogicalResult initialize(Operation *top) override
Initialize the analysis by visiting every owner of an SSA value: all operations and blocks.
virtual AbstractSparseLattice * getLatticeElement(Value value)=0
Get the lattice element of a value.
virtual void visitExternalCallImpl(CallOpInterface call, ArrayRef< const AbstractSparseLattice * > argumentLattices, ArrayRef< AbstractSparseLattice * > resultLattices)=0
The transfer function for calls to external functions.
void setAllToEntryStates(ArrayRef< AbstractSparseLattice * > lattices)
virtual void setToEntryState(AbstractSparseLattice *lattice)=0
Set the given lattice element(s) at control flow entry point(s).
const AbstractSparseLattice * getLatticeElementFor(ProgramPoint *point, Value value)
Get a read-only lattice element for a value and add it as a dependency to a program point.
virtual void visitNonControlFlowArgumentsImpl(Operation *op, const RegionSuccessor &successor, ArrayRef< AbstractSparseLattice * > argLattices, unsigned firstIndex)=0
Given an operation with region control-flow, the lattices of the operands, and a region successor,...
virtual LogicalResult visitOperationImpl(Operation *op, ArrayRef< const AbstractSparseLattice * > operandLattices, ArrayRef< AbstractSparseLattice * > resultLattices)=0
The operation transfer function.
void join(AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs)
Join the lattice element and propagate and update if it changed.
This class represents an abstract lattice.
void onUpdate(DataFlowSolver *solver) const override
When the lattice gets updated, propagate an update to users of the value using its use-def chain to s...
virtual ChangeResult join(const AbstractSparseLattice &rhs)
Join the information contained in 'rhs' into this lattice.
virtual ChangeResult meet(const AbstractSparseLattice &rhs)
Meet (intersect) the information in this lattice with 'rhs'.
Value getAnchor() const
Return the value this lattice is located at.
void useDefSubscribe(DataFlowAnalysis *analysis)
Subscribe an analysis to updates of the lattice.
AbstractSparseLattice(Value value)
Lattices can only be created for values.
This class represents a lattice holding a specific value of type ValueT.
ChangeResult join(const ValueT &rhs)
Join the information contained in the 'rhs' value into this lattice.
Value getAnchor() const
Return the value this lattice is located at.
void print(raw_ostream &os) const override
Print the lattice element.
ChangeResult meet(const VT &rhs)
Meet (intersect) the information contained in the 'rhs' value with this lattice.
decltype(&T::meet) has_meet
Trait to check if T provides a meet method.
const ValueT & getValue() const
ValueT & getValue()
Return the value held by this lattice.
llvm::is_detected< has_meet, T > lattice_has_meet
ChangeResult join(const AbstractSparseLattice &rhs) override
Join the information contained in the 'rhs' lattice into this lattice.
ChangeResult meet(const AbstractSparseLattice &rhs) override
Meet (intersect) the information contained in the 'rhs' lattice with this lattice.
A sparse (backward) data-flow analysis for propagating SSA value lattices backwards across the IR by ...
StateT * getLatticeElement(Value value) override
Get the lattice element for a value.
void setAllToExitStates(ArrayRef< StateT * > lattices)
virtual void visitExternalCall(CallOpInterface call, ArrayRef< StateT * > argumentLattices, ArrayRef< const StateT * > resultLattices)
Visit a call to an external function.
void setToExitState(AbstractSparseLattice *lattice) override
Set the given lattice element(s) at control flow exit point(s).
SparseBackwardDataFlowAnalysis(DataFlowSolver &solver, SymbolTableCollection &symbolTable)
virtual void setToExitState(StateT *lattice)=0
Set the given lattice element(s) at control flow exit point(s).
virtual LogicalResult visitOperation(Operation *op, ArrayRef< StateT * > operands, ArrayRef< const StateT * > results)=0
Visit an operation with the lattices of its results.
A sparse forward data-flow analysis for propagating SSA value lattices across the IR by implementing ...
const StateT * getLatticeElementFor(ProgramPoint *point, Value value)
Get the lattice element for a value and create a dependency on the provided program point.
virtual LogicalResult visitOperation(Operation *op, ArrayRef< const StateT * > operands, ArrayRef< StateT * > results)=0
Visit an operation with the lattices of its operands.
virtual void visitExternalCall(CallOpInterface call, ArrayRef< const StateT * > argumentLattices, ArrayRef< StateT * > resultLattices)
Visit a call operation to an externally defined function given the lattices of its arguments.
StateT * getLatticeElement(Value value) override
Get the lattice element for a value.
virtual void setToEntryState(StateT *lattice)=0
Set the given lattice element(s) at control flow entry point(s).
void setAllToEntryStates(ArrayRef< StateT * > lattices)
virtual void visitNonControlFlowArguments(Operation *op, const RegionSuccessor &successor, ArrayRef< StateT * > argLattices, unsigned firstIndex)
Given an operation with possible region control-flow, the lattices of the operands,...
SparseForwardDataFlowAnalysis(DataFlowSolver &solver)
Include the generated interface declarations.
ChangeResult
A result type used to indicate if a change happened.
Program point represents a specific location in the execution of a program.