MLIR 22.0.0git
Serializer.h
Go to the documentation of this file.
1//===- Serializer.h - MLIR SPIR-V Serializer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the MLIR SPIR-V module to SPIR-V binary serializer.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
14#define MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
15
17#include "mlir/IR/Builders.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/Support/raw_ostream.h"
22
23namespace mlir {
24namespace spirv {
25
26void encodeInstructionInto(SmallVectorImpl<uint32_t> &binary, spirv::Opcode op,
27 ArrayRef<uint32_t> operands);
28
29/// A SPIR-V module serializer.
30///
31/// A SPIR-V binary module is a single linear stream of instructions; each
32/// instruction is composed of 32-bit words with the layout:
33///
34/// | <word-count>|<opcode> | <operand> | <operand> | ... |
35/// | <------ word -------> | <-- word --> | <-- word --> | ... |
36///
37/// For the first word, the 16 high-order bits are the word count of the
38/// instruction, the 16 low-order bits are the opcode enumerant. The
39/// instructions then belong to different sections, which must be laid out in
40/// the particular order as specified in "2.4 Logical Layout of a Module" of
41/// the SPIR-V spec.
43public:
44 /// Creates a serializer for the given SPIR-V `module`.
45 explicit Serializer(spirv::ModuleOp module,
46 const SerializationOptions &options);
47
48 /// Serializes the remembered SPIR-V module.
49 LogicalResult serialize();
50
51 /// Collects the final SPIR-V `binary`.
53
54#ifndef NDEBUG
55 /// (For debugging) prints each value and its corresponding result <id>.
57#endif
58
59private:
60 // Note that there are two main categories of methods in this class:
61 // * process*() methods are meant to fully serialize a SPIR-V module entity
62 // (header, type, op, etc.). They update internal vectors containing
63 // different binary sections. They are not meant to be called except the
64 // top-level serialization loop.
65 // * prepare*() methods are meant to be helpers that prepare for serializing
66 // certain entity. They may or may not update internal vectors containing
67 // different binary sections. They are meant to be called among themselves
68 // or by other process*() methods for subtasks.
69
70 //===--------------------------------------------------------------------===//
71 // <id>
72 //===--------------------------------------------------------------------===//
73
74 // Note that it is illegal to use id <0> in SPIR-V binary module. Various
75 // methods in this class, if using SPIR-V word (uint32_t) as interface,
76 // check or return id <0> to indicate error in processing.
77
78 /// Consumes the next unused <id>. This method will never return 0.
79 uint32_t getNextID() { return nextID++; }
80
81 //===--------------------------------------------------------------------===//
82 // Module structure
83 //===--------------------------------------------------------------------===//
84
85 uint32_t getSpecConstID(StringRef constName) const {
86 return specConstIDMap.lookup(constName);
87 }
88
89 uint32_t getVariableID(StringRef varName) const {
90 return globalVarIDMap.lookup(varName);
91 }
92
93 uint32_t getFunctionID(StringRef fnName) const {
94 return funcIDMap.lookup(fnName);
95 }
96
97 /// Gets the <id> for the function with the given name. Assigns the next
98 /// available <id> if the function haven't been deserialized.
99 uint32_t getOrCreateFunctionID(StringRef fnName);
100
101 void processCapability();
102
103 void processDebugInfo();
104
105 LogicalResult processExtension();
106
107 void processMemoryModel();
108
109 LogicalResult processConstantOp(spirv::ConstantOp op);
110
111 LogicalResult processConstantCompositeReplicateOp(
112 spirv::EXTConstantCompositeReplicateOp op);
113
114 LogicalResult processSpecConstantOp(spirv::SpecConstantOp op);
115
116 LogicalResult
117 processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op);
118
119 LogicalResult processSpecConstantCompositeReplicateOp(
120 spirv::EXTSpecConstantCompositeReplicateOp op);
121
122 LogicalResult
123 processSpecConstantOperationOp(spirv::SpecConstantOperationOp op);
124
125 LogicalResult processGraphConstantARMOp(spirv::GraphConstantARMOp op);
126
127 /// SPIR-V dialect supports OpUndef using spirv.UndefOp that produces a SSA
128 /// value to use with other operations. The SPIR-V spec recommends that
129 /// OpUndef be generated at module level. The serialization generates an
130 /// OpUndef for each type needed at module level.
131 LogicalResult processUndefOp(spirv::UndefOp op);
132
133 /// Emit OpName for the given `resultID`.
134 LogicalResult processName(uint32_t resultID, StringRef name);
135
136 /// Processes a SPIR-V function op.
137 LogicalResult processFuncOp(spirv::FuncOp op);
138 LogicalResult processFuncParameter(spirv::FuncOp op);
139
140 /// Processes a SPIR-V GraphARM op.
141 LogicalResult processGraphARMOp(spirv::GraphARMOp op);
142
143 /// Processes a SPIR-V GraphEntryPointARM op.
144 LogicalResult processGraphEntryPointARMOp(spirv::GraphEntryPointARMOp op);
145
146 /// Processes a SPIR-V GraphOutputsARMOp op.
147 LogicalResult processGraphOutputsARMOp(spirv::GraphOutputsARMOp op);
148
149 LogicalResult processVariableOp(spirv::VariableOp op);
150
151 /// Process a SPIR-V GlobalVariableOp
152 LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp);
153
154 /// Process attributes that translate to decorations on the result <id>
155 LogicalResult processDecorationAttr(Location loc, uint32_t resultID,
156 Decoration decoration, Attribute attr);
157 LogicalResult processDecoration(Location loc, uint32_t resultID,
158 NamedAttribute attr);
159
160 template <typename DType>
161 LogicalResult processTypeDecoration(Location loc, DType type,
162 uint32_t resultId) {
163 return emitError(loc, "unhandled decoration for type:") << type;
164 }
165
166 /// Process member decoration
167 LogicalResult processMemberDecoration(
168 uint32_t structID,
169 const spirv::StructType::MemberDecorationInfo &memberDecorationInfo);
170
171 //===--------------------------------------------------------------------===//
172 // Types
173 //===--------------------------------------------------------------------===//
174
175 uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); }
176
177 Type getVoidType() { return mlirBuilder.getNoneType(); }
178
179 bool isVoidType(Type type) const { return isa<NoneType>(type); }
180
181 /// Returns true if the given type is a pointer type to a struct in some
182 /// interface storage class.
183 bool isInterfaceStructPtrType(Type type) const;
184
185 /// Main dispatch method for serializing a type. The result <id> of the
186 /// serialized type will be returned as `typeID`.
187 LogicalResult processType(Location loc, Type type, uint32_t &typeID);
188 LogicalResult processTypeImpl(Location loc, Type type, uint32_t &typeID,
189 SetVector<StringRef> &serializationCtx);
190
191 /// Method for preparing basic SPIR-V type serialization. Returns the type's
192 /// opcode and operands for the instruction via `typeEnum` and `operands`.
193 LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID,
194 spirv::Opcode &typeEnum,
196 bool &deferSerialization,
197 SetVector<StringRef> &serializationCtx);
198
199 LogicalResult prepareFunctionType(Location loc, FunctionType type,
200 spirv::Opcode &typeEnum,
201 SmallVectorImpl<uint32_t> &operands);
202
203 LogicalResult prepareGraphType(Location loc, GraphType type,
204 spirv::Opcode &typeEnum,
205 SmallVectorImpl<uint32_t> &operands);
206
207 //===--------------------------------------------------------------------===//
208 // Constant
209 //===--------------------------------------------------------------------===//
210
211 uint32_t getConstantID(Attribute value) const {
212 return constIDMap.lookup(value);
213 }
214
215 uint32_t getConstantCompositeReplicateID(
216 std::pair<Attribute, Type> valueTypePair) const {
217 return constCompositeReplicateIDMap.lookup(valueTypePair);
218 }
219
220 /// Main dispatch method for processing a constant with the given `constType`
221 /// and `valueAttr`. `constType` is needed here because we can interpret the
222 /// `valueAttr` as a different type than the type of `valueAttr` itself; for
223 /// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType
224 /// constants.
225 uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr);
226
227 /// Prepares array attribute serialization. This method emits corresponding
228 /// OpConstant* and returns the result <id> associated with it. Returns 0 if
229 /// failed.
230 uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr);
231
232 /// Prepares bool/int/float DenseElementsAttr serialization. This method
233 /// iterates the DenseElementsAttr to construct the constant array, and
234 /// returns the result <id> associated with it. Returns 0 if failed. Note
235 /// that the size of `index` must match the rank.
236 /// TODO: Consider to enhance splat elements cases. For splat cases,
237 /// we don't need to loop over all elements, especially when the splat value
238 /// is zero. We can use OpConstantNull when the value is zero.
239 uint32_t prepareDenseElementsConstant(Location loc, Type constType,
240 DenseElementsAttr valueAttr, int dim,
242
243 /// Prepares scalar attribute serialization. This method emits corresponding
244 /// OpConstant* and returns the result <id> associated with it. Returns 0 if
245 /// the attribute is not for a scalar bool/integer/float value. If `isSpec` is
246 /// true, then the constant will be serialized as a specialization constant.
247 uint32_t prepareConstantScalar(Location loc, Attribute valueAttr,
248 bool isSpec = false);
249
250 uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr,
251 bool isSpec = false);
252
253 uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr,
254 bool isSpec = false);
255
256 uint32_t getGraphConstantARMId(Attribute value) const {
257 return graphConstIDMap.lookup(value);
258 }
259
260 uint32_t prepareGraphConstantId(Location loc, Type graphConstType,
261 IntegerAttr intAttr);
262
263 uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr,
264 bool isSpec = false);
265
266 /// Prepares `spirv.EXTConstantCompositeReplicateOp` serialization. This
267 /// method emits OpConstantCompositeReplicateEXT and returns the result <id>
268 /// associated with it.
269 uint32_t prepareConstantCompositeReplicate(Location loc, Type resultType,
270 Attribute valueAttr);
271
272 //===--------------------------------------------------------------------===//
273 // Control flow
274 //===--------------------------------------------------------------------===//
275
276 /// Returns the result <id> for the given block.
277 uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); }
278
279 /// Returns the result <id> for the given block. If no <id> has been assigned,
280 /// assigns the next available <id>
281 uint32_t getOrCreateBlockID(Block *block);
282
283#ifndef NDEBUG
284 /// (For debugging) prints the block with its result <id>.
285 void printBlock(Block *block, raw_ostream &os);
286#endif
287
288 /// Processes the given `block` and emits SPIR-V instructions for all ops
289 /// inside. Does not emit OpLabel for this block if `omitLabel` is true.
290 /// `emitMerge` is a callback that will be invoked before handling the
291 /// terminator op to inject the Op*Merge instruction if this is a SPIR-V
292 /// selection/loop header block.
293 LogicalResult processBlock(Block *block, bool omitLabel = false,
294 function_ref<LogicalResult()> emitMerge = nullptr);
295
296 /// Emits OpPhi instructions for the given block if it has block arguments.
297 LogicalResult emitPhiForBlockArguments(Block *block);
298
299 LogicalResult processSelectionOp(spirv::SelectionOp selectionOp);
300
301 LogicalResult processLoopOp(spirv::LoopOp loopOp);
302
303 LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp);
304
305 LogicalResult processBranchOp(spirv::BranchOp branchOp);
306
307 LogicalResult processSwitchOp(spirv::SwitchOp switchOp);
308
309 //===--------------------------------------------------------------------===//
310 // Operations
311 //===--------------------------------------------------------------------===//
312
313 LogicalResult encodeExtensionInstruction(Operation *op,
314 StringRef extensionSetName,
315 uint32_t opcode,
316 ArrayRef<uint32_t> operands);
317
318 uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); }
319
320 LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp);
321
322 LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp);
323
324 /// Main dispatch method for serializing an operation.
325 LogicalResult processOperation(Operation *op);
326
327 /// Serializes an operation `op` as core instruction with `opcode` if
328 /// `extInstSet` is empty. Otherwise serializes it as an extended instruction
329 /// with `opcode` from `extInstSet`.
330 /// This method is a generic one for dispatching any SPIR-V ops that has no
331 /// variadic operands and attributes in TableGen definitions.
332 LogicalResult processOpWithoutGrammarAttr(Operation *op, StringRef extInstSet,
333 uint32_t opcode);
334
335 /// Dispatches to the serialization function for an operation in SPIR-V
336 /// dialect that is a mirror of an instruction in the SPIR-V spec. This is
337 /// auto-generated from ODS. Dispatch is handled for all operations in SPIR-V
338 /// dialect that have hasOpcode == 1.
339 LogicalResult dispatchToAutogenSerialization(Operation *op);
340
341 /// Serializes an operation in the SPIR-V dialect that is a mirror of an
342 /// instruction in the SPIR-V spec. This is auto generated if hasOpcode == 1
343 /// and autogenSerialization == 1 in ODS.
344 template <typename OpTy>
345 LogicalResult processOp(OpTy op) {
346 return op.emitError("unsupported op serialization");
347 }
348
349 //===--------------------------------------------------------------------===//
350 // Utilities
351 //===--------------------------------------------------------------------===//
352
353 /// Emits an OpDecorate instruction to decorate the given `target` with the
354 /// given `decoration`.
355 LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration,
356 ArrayRef<uint32_t> params = {});
357
358 /// Emits an OpLine instruction with the given `loc` location information into
359 /// the given `binary` vector.
360 LogicalResult emitDebugLine(SmallVectorImpl<uint32_t> &binary, Location loc);
361
362private:
363 /// The SPIR-V module to be serialized.
364 spirv::ModuleOp module;
365
366 /// An MLIR builder for getting MLIR constructs.
367 mlir::Builder mlirBuilder;
368
369 /// Serialization options.
370 SerializationOptions options;
371
372 /// A flag which indicates if the last processed instruction was a merge
373 /// instruction.
374 /// According to SPIR-V spec: "If a branch merge instruction is used, the last
375 /// OpLine in the block must be before its merge instruction".
376 bool lastProcessedWasMergeInst = false;
377
378 /// The <id> of the OpString instruction, which specifies a file name, for
379 /// use by other debug instructions.
380 uint32_t fileID = 0;
381
382 /// The next available result <id>.
383 uint32_t nextID = 1;
384
385 // The following are for different SPIR-V instruction sections. They follow
386 // the logical layout of a SPIR-V module.
387
388 SmallVector<uint32_t, 4> capabilities;
389 SmallVector<uint32_t, 0> extensions;
390 SmallVector<uint32_t, 0> extendedSets;
391 SmallVector<uint32_t, 3> memoryModel;
392 SmallVector<uint32_t, 0> entryPoints;
393 SmallVector<uint32_t, 4> executionModes;
396 SmallVector<uint32_t, 0> decorations;
397 SmallVector<uint32_t, 0> typesGlobalValues;
398 SmallVector<uint32_t, 0> functions;
400
401 /// Recursive struct references are serialized as OpTypePointer instructions
402 /// to the recursive struct type. However, the OpTypePointer instruction
403 /// cannot be emitted before the recursive struct's OpTypeStruct.
404 /// RecursiveStructPointerInfo stores the data needed to emit such
405 /// OpTypePointer instructions after forward references to such types.
406 struct RecursiveStructPointerInfo {
407 uint32_t pointerTypeID;
408 spirv::StorageClass storageClass;
409 };
410
411 // Maps spirv::StructType to its recursive reference member info.
413 recursiveStructInfos;
414
415 /// `functionHeader` contains all the instructions that must be in the first
416 /// block in the function or graph, and `functionBody` contains the rest.
417 /// After processing FuncOp/GraphARMOp, the encoded instructions of a function
418 /// or graph are appended to `functions` or `graphs` respectively. Examples of
419 /// instructions in `functionHeader` in order:
420 ///
421 /// For a FuncOp:
422 /// OpFunction ...
423 /// OpFunctionParameter ...
424 /// OpFunctionParameter ...
425 /// OpLabel ...
426 /// OpVariable ...
427 /// OpVariable ...
428 ///
429 /// For a GraphARMOp
430 /// OpGraphARM ...
431 /// OpGraphInputARM ...
432 SmallVector<uint32_t, 0> functionHeader;
433 SmallVector<uint32_t, 0> functionBody;
434
435 /// Map from type used in SPIR-V module to their <id>s.
436 DenseMap<Type, uint32_t> typeIDMap;
437
438 /// Map from constant values to their <id>s.
440
441 /// Map from a replicated composite constant's value and type to their <id>s.
442 DenseMap<std::pair<Attribute, Type>, uint32_t> constCompositeReplicateIDMap;
443
444 /// Map from specialization constant names to their <id>s.
445 llvm::StringMap<uint32_t> specConstIDMap;
446
447 /// Map from graph constant ID value to their <id>s.
448 DenseMap<Attribute, uint32_t> graphConstIDMap;
449
450 /// Map from GlobalVariableOps name to <id>s.
451 llvm::StringMap<uint32_t> globalVarIDMap;
452
453 /// Map from FuncOps name to <id>s.
454 llvm::StringMap<uint32_t> funcIDMap;
455
456 /// Map from blocks to their <id>s.
458
459 /// Map from the Type to the <id> that represents undef value of that type.
460 DenseMap<Type, uint32_t> undefValIDMap;
461
462 /// Map from results of normal operations to their <id>s.
463 DenseMap<Value, uint32_t> valueIDMap;
464
465 /// Map from extended instruction set name to <id>s.
466 llvm::StringMap<uint32_t> extendedInstSetIDMap;
467
468 /// Map from values used in OpPhi instructions to their offset in the
469 /// `functions` section.
470 ///
471 /// When processing a block with arguments, we need to emit OpPhi
472 /// instructions to record the predecessor block <id>s and the values they
473 /// send to the block in question. But it's not guaranteed all values are
474 /// visited and thus assigned result <id>s. So we need this list to capture
475 /// the offsets into `functions` where a value is used so that we can fix it
476 /// up later after processing all the blocks in a function.
477 ///
478 /// More concretely, say if we are visiting the following blocks:
479 ///
480 /// ```mlir
481 /// ^phi(%arg0: i32):
482 /// ...
483 /// ^parent1:
484 /// ...
485 /// spirv.Branch ^phi(%val0: i32)
486 /// ^parent2:
487 /// ...
488 /// spirv.Branch ^phi(%val1: i32)
489 /// ```
490 ///
491 /// When we are serializing the `^phi` block, we need to emit at the beginning
492 /// of the block OpPhi instructions which has the following parameters:
493 ///
494 /// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1
495 /// id-for-%val1 id-for-^parent2
496 ///
497 /// But we don't know the <id> for %val0 and %val1 yet. One way is to visit
498 /// all the blocks twice and use the first visit to assign an <id> to each
499 /// value. But it's paying the overheads just for OpPhi emission. Instead,
500 /// we still visit the blocks once for emission. When we emit the OpPhi
501 /// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1.
502 /// At the same time, we record their offsets in the emitted binary (which is
503 /// placed inside `functions`) here. And then after emitting all blocks, we
504 /// replace the dummy <id> 0 with the real result <id> by overwriting
505 /// `functions[offset]`.
507};
508} // namespace spirv
509} // namespace mlir
510
511#endif // MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
ArrayAttr()
Attributes are known-constant values of operations.
Definition Attributes.h:25
Block represents an ordered list of Operations.
Definition Block.h:33
Special case of IntegerAttr to represent boolean integers, i.e., signless i1 integers.
This class is a general helper class for creating context-global objects like types,...
Definition Builders.h:51
An attribute that represents a reference to a dense vector or tensor object.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition Location.h:76
NamedAttribute represents a combination of a name and an Attribute value.
Definition Attributes.h:164
Operation is the basic unit of execution within MLIR.
Definition Operation.h:88
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition Types.h:74
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
void printValueIDMap(raw_ostream &os)
(For debugging) prints each value and its corresponding result <id>.
Serializer(spirv::ModuleOp module, const SerializationOptions &options)
Creates a serializer for the given SPIR-V module.
LogicalResult serialize()
Serializes the remembered SPIR-V module.
void collect(SmallVectorImpl< uint32_t > &binary)
Collects the final SPIR-V binary.
void encodeInstructionInto(SmallVectorImpl< uint32_t > &binary, spirv::Opcode op, ArrayRef< uint32_t > operands)
Encodes an SPIR-V instruction with the given opcode and operands into the given binary vector.
Include the generated interface declarations.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
llvm::SetVector< T, Vector, Set, N > SetVector
Definition LLVM.h:131
llvm::DenseMap< KeyT, ValueT, KeyInfoT, BucketT > DenseMap
Definition LLVM.h:126
llvm::function_ref< Fn > function_ref
Definition LLVM.h:152