MLIR 22.0.0git
Serializer.h
Go to the documentation of this file.
1//===- Serializer.h - MLIR SPIR-V Serializer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the MLIR SPIR-V module to SPIR-V binary serializer.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
14#define MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
15
17#include "mlir/IR/Builders.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/Support/raw_ostream.h"
22
23namespace mlir {
24namespace spirv {
25
26void encodeInstructionInto(SmallVectorImpl<uint32_t> &binary, spirv::Opcode op,
27 ArrayRef<uint32_t> operands);
28
29/// A SPIR-V module serializer.
30///
31/// A SPIR-V binary module is a single linear stream of instructions; each
32/// instruction is composed of 32-bit words with the layout:
33///
34/// | <word-count>|<opcode> | <operand> | <operand> | ... |
35/// | <------ word -------> | <-- word --> | <-- word --> | ... |
36///
37/// For the first word, the 16 high-order bits are the word count of the
38/// instruction, the 16 low-order bits are the opcode enumerant. The
39/// instructions then belong to different sections, which must be laid out in
40/// the particular order as specified in "2.4 Logical Layout of a Module" of
41/// the SPIR-V spec.
43public:
44 /// Creates a serializer for the given SPIR-V `module`.
45 explicit Serializer(spirv::ModuleOp module,
46 const SerializationOptions &options);
47
48 /// Serializes the remembered SPIR-V module.
49 LogicalResult serialize();
50
51 /// Collects the final SPIR-V `binary`.
53
54#ifndef NDEBUG
55 /// (For debugging) prints each value and its corresponding result <id>.
57#endif
58
59private:
60 // Note that there are two main categories of methods in this class:
61 // * process*() methods are meant to fully serialize a SPIR-V module entity
62 // (header, type, op, etc.). They update internal vectors containing
63 // different binary sections. They are not meant to be called except the
64 // top-level serialization loop.
65 // * prepare*() methods are meant to be helpers that prepare for serializing
66 // certain entity. They may or may not update internal vectors containing
67 // different binary sections. They are meant to be called among themselves
68 // or by other process*() methods for subtasks.
69
70 //===--------------------------------------------------------------------===//
71 // <id>
72 //===--------------------------------------------------------------------===//
73
74 // Note that it is illegal to use id <0> in SPIR-V binary module. Various
75 // methods in this class, if using SPIR-V word (uint32_t) as interface,
76 // check or return id <0> to indicate error in processing.
77
78 /// Consumes the next unused <id>. This method will never return 0.
79 uint32_t getNextID() { return nextID++; }
80
81 //===--------------------------------------------------------------------===//
82 // Module structure
83 //===--------------------------------------------------------------------===//
84
85 uint32_t getSpecConstID(StringRef constName) const {
86 return specConstIDMap.lookup(constName);
87 }
88
89 uint32_t getVariableID(StringRef varName) const {
90 return globalVarIDMap.lookup(varName);
91 }
92
93 uint32_t getFunctionID(StringRef fnName) const {
94 return funcIDMap.lookup(fnName);
95 }
96
97 /// Gets the <id> for the function with the given name. Assigns the next
98 /// available <id> if the function haven't been deserialized.
99 uint32_t getOrCreateFunctionID(StringRef fnName);
100
101 void processCapability();
102
103 void processDebugInfo();
104
105 LogicalResult processExtension();
106
107 void processMemoryModel();
108
109 LogicalResult processConstantOp(spirv::ConstantOp op);
110
111 LogicalResult processConstantCompositeReplicateOp(
112 spirv::EXTConstantCompositeReplicateOp op);
113
114 LogicalResult processSpecConstantOp(spirv::SpecConstantOp op);
115
116 LogicalResult
117 processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op);
118
119 LogicalResult processSpecConstantCompositeReplicateOp(
120 spirv::EXTSpecConstantCompositeReplicateOp op);
121
122 LogicalResult
123 processSpecConstantOperationOp(spirv::SpecConstantOperationOp op);
124
125 LogicalResult processGraphConstantARMOp(spirv::GraphConstantARMOp op);
126
127 /// SPIR-V dialect supports OpUndef using spirv.UndefOp that produces a SSA
128 /// value to use with other operations. The SPIR-V spec recommends that
129 /// OpUndef be generated at module level. The serialization generates an
130 /// OpUndef for each type needed at module level.
131 LogicalResult processUndefOp(spirv::UndefOp op);
132
133 /// Emit OpName for the given `resultID`.
134 LogicalResult processName(uint32_t resultID, StringRef name);
135
136 /// Processes a SPIR-V function op.
137 LogicalResult processFuncOp(spirv::FuncOp op);
138 LogicalResult processFuncParameter(spirv::FuncOp op);
139
140 /// Processes a SPIR-V GraphARM op.
141 LogicalResult processGraphARMOp(spirv::GraphARMOp op);
142
143 /// Processes a SPIR-V GraphEntryPointARM op.
144 LogicalResult processGraphEntryPointARMOp(spirv::GraphEntryPointARMOp op);
145
146 /// Processes a SPIR-V GraphOutputsARMOp op.
147 LogicalResult processGraphOutputsARMOp(spirv::GraphOutputsARMOp op);
148
149 LogicalResult processVariableOp(spirv::VariableOp op);
150
151 /// Process a SPIR-V GlobalVariableOp
152 LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp);
153
154 /// Process attributes that translate to decorations on the result <id>
155 LogicalResult processDecorationAttr(Location loc, uint32_t resultID,
156 Decoration decoration, Attribute attr);
157 LogicalResult processDecoration(Location loc, uint32_t resultID,
158 NamedAttribute attr);
159
160 template <typename DType>
161 LogicalResult processTypeDecoration(Location loc, DType type,
162 uint32_t resultId) {
163 return emitError(loc, "unhandled decoration for type:") << type;
164 }
165
166 /// Process member decoration
167 LogicalResult processMemberDecoration(
168 uint32_t structID,
169 const spirv::StructType::MemberDecorationInfo &memberDecorationInfo);
170
171 //===--------------------------------------------------------------------===//
172 // Types
173 //===--------------------------------------------------------------------===//
174
175 uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); }
176
177 Type getVoidType() { return mlirBuilder.getNoneType(); }
178
179 bool isVoidType(Type type) const { return isa<NoneType>(type); }
180
181 /// Returns true if the given type is a pointer type to a struct in some
182 /// interface storage class.
183 bool isInterfaceStructPtrType(Type type) const;
184
185 /// Main dispatch method for serializing a type. The result <id> of the
186 /// serialized type will be returned as `typeID`.
187 LogicalResult processType(Location loc, Type type, uint32_t &typeID);
188 LogicalResult processTypeImpl(Location loc, Type type, uint32_t &typeID,
189 SetVector<StringRef> &serializationCtx);
190
191 /// Method for preparing basic SPIR-V type serialization. Returns the type's
192 /// opcode and operands for the instruction via `typeEnum` and `operands`.
193 LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID,
194 spirv::Opcode &typeEnum,
196 bool &deferSerialization,
197 SetVector<StringRef> &serializationCtx);
198
199 LogicalResult prepareFunctionType(Location loc, FunctionType type,
200 spirv::Opcode &typeEnum,
201 SmallVectorImpl<uint32_t> &operands);
202
203 LogicalResult prepareGraphType(Location loc, GraphType type,
204 spirv::Opcode &typeEnum,
205 SmallVectorImpl<uint32_t> &operands);
206
207 //===--------------------------------------------------------------------===//
208 // Constant
209 //===--------------------------------------------------------------------===//
210
211 uint32_t getConstantID(Attribute value) const {
212 return constIDMap.lookup(value);
213 }
214
215 uint32_t getConstantCompositeReplicateID(
216 std::pair<Attribute, Type> valueTypePair) const {
217 return constCompositeReplicateIDMap.lookup(valueTypePair);
218 }
219
220 /// Main dispatch method for processing a constant with the given `constType`
221 /// and `valueAttr`. `constType` is needed here because we can interpret the
222 /// `valueAttr` as a different type than the type of `valueAttr` itself; for
223 /// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType
224 /// constants.
225 uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr);
226
227 /// Prepares array attribute serialization. This method emits corresponding
228 /// OpConstant* and returns the result <id> associated with it. Returns 0 if
229 /// failed.
230 uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr);
231
232 /// Prepares bool/int/float DenseElementsAttr serialization. This method
233 /// iterates the DenseElementsAttr to construct the constant array, and
234 /// returns the result <id> associated with it. Returns 0 if failed. Note
235 /// that the size of `index` must match the rank.
236 /// TODO: Consider to enhance splat elements cases. For splat cases,
237 /// we don't need to loop over all elements, especially when the splat value
238 /// is zero. We can use OpConstantNull when the value is zero.
239 uint32_t prepareDenseElementsConstant(Location loc, Type constType,
240 DenseElementsAttr valueAttr, int dim,
242
243 /// Prepares scalar attribute serialization. This method emits corresponding
244 /// OpConstant* and returns the result <id> associated with it. Returns 0 if
245 /// the attribute is not for a scalar bool/integer/float value. If `isSpec` is
246 /// true, then the constant will be serialized as a specialization constant.
247 uint32_t prepareConstantScalar(Location loc, Attribute valueAttr,
248 bool isSpec = false);
249
250 uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr,
251 bool isSpec = false);
252
253 uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr,
254 bool isSpec = false);
255
256 uint32_t getGraphConstantARMId(Attribute value) const {
257 return graphConstIDMap.lookup(value);
258 }
259
260 uint32_t prepareGraphConstantId(Location loc, Type graphConstType,
261 IntegerAttr intAttr);
262
263 uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr,
264 bool isSpec = false);
265
266 /// Prepares `spirv.EXTConstantCompositeReplicateOp` serialization. This
267 /// method emits OpConstantCompositeReplicateEXT and returns the result <id>
268 /// associated with it.
269 uint32_t prepareConstantCompositeReplicate(Location loc, Type resultType,
270 Attribute valueAttr);
271
272 //===--------------------------------------------------------------------===//
273 // Control flow
274 //===--------------------------------------------------------------------===//
275
276 /// Returns the result <id> for the given block.
277 uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); }
278
279 /// Returns the result <id> for the given block. If no <id> has been assigned,
280 /// assigns the next available <id>
281 uint32_t getOrCreateBlockID(Block *block);
282
283#ifndef NDEBUG
284 /// (For debugging) prints the block with its result <id>.
285 void printBlock(Block *block, raw_ostream &os);
286#endif
287
288 /// Processes the given `block` and emits SPIR-V instructions for all ops
289 /// inside. Does not emit OpLabel for this block if `omitLabel` is true.
290 /// `emitMerge` is a callback that will be invoked before handling the
291 /// terminator op to inject the Op*Merge instruction if this is a SPIR-V
292 /// selection/loop header block.
293 LogicalResult processBlock(Block *block, bool omitLabel = false,
294 function_ref<LogicalResult()> emitMerge = nullptr);
295
296 /// Emits OpPhi instructions for the given block if it has block arguments.
297 LogicalResult emitPhiForBlockArguments(Block *block);
298
299 LogicalResult processSelectionOp(spirv::SelectionOp selectionOp);
300
301 LogicalResult processLoopOp(spirv::LoopOp loopOp);
302
303 LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp);
304
305 LogicalResult processBranchOp(spirv::BranchOp branchOp);
306
307 //===--------------------------------------------------------------------===//
308 // Operations
309 //===--------------------------------------------------------------------===//
310
311 LogicalResult encodeExtensionInstruction(Operation *op,
312 StringRef extensionSetName,
313 uint32_t opcode,
314 ArrayRef<uint32_t> operands);
315
316 uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); }
317
318 LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp);
319
320 LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp);
321
322 /// Main dispatch method for serializing an operation.
323 LogicalResult processOperation(Operation *op);
324
325 /// Serializes an operation `op` as core instruction with `opcode` if
326 /// `extInstSet` is empty. Otherwise serializes it as an extended instruction
327 /// with `opcode` from `extInstSet`.
328 /// This method is a generic one for dispatching any SPIR-V ops that has no
329 /// variadic operands and attributes in TableGen definitions.
330 LogicalResult processOpWithoutGrammarAttr(Operation *op, StringRef extInstSet,
331 uint32_t opcode);
332
333 /// Dispatches to the serialization function for an operation in SPIR-V
334 /// dialect that is a mirror of an instruction in the SPIR-V spec. This is
335 /// auto-generated from ODS. Dispatch is handled for all operations in SPIR-V
336 /// dialect that have hasOpcode == 1.
337 LogicalResult dispatchToAutogenSerialization(Operation *op);
338
339 /// Serializes an operation in the SPIR-V dialect that is a mirror of an
340 /// instruction in the SPIR-V spec. This is auto generated if hasOpcode == 1
341 /// and autogenSerialization == 1 in ODS.
342 template <typename OpTy>
343 LogicalResult processOp(OpTy op) {
344 return op.emitError("unsupported op serialization");
345 }
346
347 //===--------------------------------------------------------------------===//
348 // Utilities
349 //===--------------------------------------------------------------------===//
350
351 /// Emits an OpDecorate instruction to decorate the given `target` with the
352 /// given `decoration`.
353 LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration,
354 ArrayRef<uint32_t> params = {});
355
356 /// Emits an OpLine instruction with the given `loc` location information into
357 /// the given `binary` vector.
358 LogicalResult emitDebugLine(SmallVectorImpl<uint32_t> &binary, Location loc);
359
360private:
361 /// The SPIR-V module to be serialized.
362 spirv::ModuleOp module;
363
364 /// An MLIR builder for getting MLIR constructs.
365 mlir::Builder mlirBuilder;
366
367 /// Serialization options.
368 SerializationOptions options;
369
370 /// A flag which indicates if the last processed instruction was a merge
371 /// instruction.
372 /// According to SPIR-V spec: "If a branch merge instruction is used, the last
373 /// OpLine in the block must be before its merge instruction".
374 bool lastProcessedWasMergeInst = false;
375
376 /// The <id> of the OpString instruction, which specifies a file name, for
377 /// use by other debug instructions.
378 uint32_t fileID = 0;
379
380 /// The next available result <id>.
381 uint32_t nextID = 1;
382
383 // The following are for different SPIR-V instruction sections. They follow
384 // the logical layout of a SPIR-V module.
385
386 SmallVector<uint32_t, 4> capabilities;
387 SmallVector<uint32_t, 0> extensions;
388 SmallVector<uint32_t, 0> extendedSets;
389 SmallVector<uint32_t, 3> memoryModel;
390 SmallVector<uint32_t, 0> entryPoints;
391 SmallVector<uint32_t, 4> executionModes;
394 SmallVector<uint32_t, 0> decorations;
395 SmallVector<uint32_t, 0> typesGlobalValues;
396 SmallVector<uint32_t, 0> functions;
398
399 /// Recursive struct references are serialized as OpTypePointer instructions
400 /// to the recursive struct type. However, the OpTypePointer instruction
401 /// cannot be emitted before the recursive struct's OpTypeStruct.
402 /// RecursiveStructPointerInfo stores the data needed to emit such
403 /// OpTypePointer instructions after forward references to such types.
404 struct RecursiveStructPointerInfo {
405 uint32_t pointerTypeID;
406 spirv::StorageClass storageClass;
407 };
408
409 // Maps spirv::StructType to its recursive reference member info.
411 recursiveStructInfos;
412
413 /// `functionHeader` contains all the instructions that must be in the first
414 /// block in the function or graph, and `functionBody` contains the rest.
415 /// After processing FuncOp/GraphARMOp, the encoded instructions of a function
416 /// or graph are appended to `functions` or `graphs` respectively. Examples of
417 /// instructions in `functionHeader` in order:
418 ///
419 /// For a FuncOp:
420 /// OpFunction ...
421 /// OpFunctionParameter ...
422 /// OpFunctionParameter ...
423 /// OpLabel ...
424 /// OpVariable ...
425 /// OpVariable ...
426 ///
427 /// For a GraphARMOp
428 /// OpGraphARM ...
429 /// OpGraphInputARM ...
430 SmallVector<uint32_t, 0> functionHeader;
431 SmallVector<uint32_t, 0> functionBody;
432
433 /// Map from type used in SPIR-V module to their <id>s.
434 DenseMap<Type, uint32_t> typeIDMap;
435
436 /// Map from constant values to their <id>s.
438
439 /// Map from a replicated composite constant's value and type to their <id>s.
440 DenseMap<std::pair<Attribute, Type>, uint32_t> constCompositeReplicateIDMap;
441
442 /// Map from specialization constant names to their <id>s.
443 llvm::StringMap<uint32_t> specConstIDMap;
444
445 /// Map from graph constant ID value to their <id>s.
446 DenseMap<Attribute, uint32_t> graphConstIDMap;
447
448 /// Map from GlobalVariableOps name to <id>s.
449 llvm::StringMap<uint32_t> globalVarIDMap;
450
451 /// Map from FuncOps name to <id>s.
452 llvm::StringMap<uint32_t> funcIDMap;
453
454 /// Map from blocks to their <id>s.
456
457 /// Map from the Type to the <id> that represents undef value of that type.
458 DenseMap<Type, uint32_t> undefValIDMap;
459
460 /// Map from results of normal operations to their <id>s.
461 DenseMap<Value, uint32_t> valueIDMap;
462
463 /// Map from extended instruction set name to <id>s.
464 llvm::StringMap<uint32_t> extendedInstSetIDMap;
465
466 /// Map from values used in OpPhi instructions to their offset in the
467 /// `functions` section.
468 ///
469 /// When processing a block with arguments, we need to emit OpPhi
470 /// instructions to record the predecessor block <id>s and the values they
471 /// send to the block in question. But it's not guaranteed all values are
472 /// visited and thus assigned result <id>s. So we need this list to capture
473 /// the offsets into `functions` where a value is used so that we can fix it
474 /// up later after processing all the blocks in a function.
475 ///
476 /// More concretely, say if we are visiting the following blocks:
477 ///
478 /// ```mlir
479 /// ^phi(%arg0: i32):
480 /// ...
481 /// ^parent1:
482 /// ...
483 /// spirv.Branch ^phi(%val0: i32)
484 /// ^parent2:
485 /// ...
486 /// spirv.Branch ^phi(%val1: i32)
487 /// ```
488 ///
489 /// When we are serializing the `^phi` block, we need to emit at the beginning
490 /// of the block OpPhi instructions which has the following parameters:
491 ///
492 /// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1
493 /// id-for-%val1 id-for-^parent2
494 ///
495 /// But we don't know the <id> for %val0 and %val1 yet. One way is to visit
496 /// all the blocks twice and use the first visit to assign an <id> to each
497 /// value. But it's paying the overheads just for OpPhi emission. Instead,
498 /// we still visit the blocks once for emission. When we emit the OpPhi
499 /// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1.
500 /// At the same time, we record their offsets in the emitted binary (which is
501 /// placed inside `functions`) here. And then after emitting all blocks, we
502 /// replace the dummy <id> 0 with the real result <id> by overwriting
503 /// `functions[offset]`.
505};
506} // namespace spirv
507} // namespace mlir
508
509#endif // MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
ArrayAttr()
Attributes are known-constant values of operations.
Definition Attributes.h:25
Block represents an ordered list of Operations.
Definition Block.h:33
Special case of IntegerAttr to represent boolean integers, i.e., signless i1 integers.
This class is a general helper class for creating context-global objects like types,...
Definition Builders.h:51
An attribute that represents a reference to a dense vector or tensor object.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition Location.h:76
NamedAttribute represents a combination of a name and an Attribute value.
Definition Attributes.h:164
Operation is the basic unit of execution within MLIR.
Definition Operation.h:88
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition Types.h:74
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
void printValueIDMap(raw_ostream &os)
(For debugging) prints each value and its corresponding result <id>.
Serializer(spirv::ModuleOp module, const SerializationOptions &options)
Creates a serializer for the given SPIR-V module.
LogicalResult serialize()
Serializes the remembered SPIR-V module.
void collect(SmallVectorImpl< uint32_t > &binary)
Collects the final SPIR-V binary.
void encodeInstructionInto(SmallVectorImpl< uint32_t > &binary, spirv::Opcode op, ArrayRef< uint32_t > operands)
Encodes an SPIR-V instruction with the given opcode and operands into the given binary vector.
Include the generated interface declarations.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
llvm::SetVector< T, Vector, Set, N > SetVector
Definition LLVM.h:131
llvm::DenseMap< KeyT, ValueT, KeyInfoT, BucketT > DenseMap
Definition LLVM.h:126
llvm::function_ref< Fn > function_ref
Definition LLVM.h:152