MLIR  20.0.0git
Serializer.h
Go to the documentation of this file.
1 //===- Serializer.h - MLIR SPIR-V Serializer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the MLIR SPIR-V module to SPIR-V binary serializer.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
14 #define MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
15 
17 #include "mlir/IR/Builders.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 namespace mlir {
24 namespace spirv {
25 
26 void encodeInstructionInto(SmallVectorImpl<uint32_t> &binary, spirv::Opcode op,
27  ArrayRef<uint32_t> operands);
28 
29 /// A SPIR-V module serializer.
30 ///
31 /// A SPIR-V binary module is a single linear stream of instructions; each
32 /// instruction is composed of 32-bit words with the layout:
33 ///
34 /// | <word-count>|<opcode> | <operand> | <operand> | ... |
35 /// | <------ word -------> | <-- word --> | <-- word --> | ... |
36 ///
37 /// For the first word, the 16 high-order bits are the word count of the
38 /// instruction, the 16 low-order bits are the opcode enumerant. The
39 /// instructions then belong to different sections, which must be laid out in
40 /// the particular order as specified in "2.4 Logical Layout of a Module" of
41 /// the SPIR-V spec.
42 class Serializer {
43 public:
44  /// Creates a serializer for the given SPIR-V `module`.
45  explicit Serializer(spirv::ModuleOp module,
46  const SerializationOptions &options);
47 
48  /// Serializes the remembered SPIR-V module.
49  LogicalResult serialize();
50 
51  /// Collects the final SPIR-V `binary`.
52  void collect(SmallVectorImpl<uint32_t> &binary);
53 
54 #ifndef NDEBUG
55  /// (For debugging) prints each value and its corresponding result <id>.
56  void printValueIDMap(raw_ostream &os);
57 #endif
58 
59 private:
60  // Note that there are two main categories of methods in this class:
61  // * process*() methods are meant to fully serialize a SPIR-V module entity
62  // (header, type, op, etc.). They update internal vectors containing
63  // different binary sections. They are not meant to be called except the
64  // top-level serialization loop.
65  // * prepare*() methods are meant to be helpers that prepare for serializing
66  // certain entity. They may or may not update internal vectors containing
67  // different binary sections. They are meant to be called among themselves
68  // or by other process*() methods for subtasks.
69 
70  //===--------------------------------------------------------------------===//
71  // <id>
72  //===--------------------------------------------------------------------===//
73 
74  // Note that it is illegal to use id <0> in SPIR-V binary module. Various
75  // methods in this class, if using SPIR-V word (uint32_t) as interface,
76  // check or return id <0> to indicate error in processing.
77 
78  /// Consumes the next unused <id>. This method will never return 0.
79  uint32_t getNextID() { return nextID++; }
80 
81  //===--------------------------------------------------------------------===//
82  // Module structure
83  //===--------------------------------------------------------------------===//
84 
85  uint32_t getSpecConstID(StringRef constName) const {
86  return specConstIDMap.lookup(constName);
87  }
88 
89  uint32_t getVariableID(StringRef varName) const {
90  return globalVarIDMap.lookup(varName);
91  }
92 
93  uint32_t getFunctionID(StringRef fnName) const {
94  return funcIDMap.lookup(fnName);
95  }
96 
97  /// Gets the <id> for the function with the given name. Assigns the next
98  /// available <id> if the function haven't been deserialized.
99  uint32_t getOrCreateFunctionID(StringRef fnName);
100 
101  void processCapability();
102 
103  void processDebugInfo();
104 
105  void processExtension();
106 
107  void processMemoryModel();
108 
109  LogicalResult processConstantOp(spirv::ConstantOp op);
110 
111  LogicalResult processSpecConstantOp(spirv::SpecConstantOp op);
112 
113  LogicalResult
114  processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op);
115 
116  LogicalResult
117  processSpecConstantOperationOp(spirv::SpecConstantOperationOp op);
118 
119  /// SPIR-V dialect supports OpUndef using spirv.UndefOp that produces a SSA
120  /// value to use with other operations. The SPIR-V spec recommends that
121  /// OpUndef be generated at module level. The serialization generates an
122  /// OpUndef for each type needed at module level.
123  LogicalResult processUndefOp(spirv::UndefOp op);
124 
125  /// Emit OpName for the given `resultID`.
126  LogicalResult processName(uint32_t resultID, StringRef name);
127 
128  /// Processes a SPIR-V function op.
129  LogicalResult processFuncOp(spirv::FuncOp op);
130  LogicalResult processFuncParameter(spirv::FuncOp op);
131 
132  LogicalResult processVariableOp(spirv::VariableOp op);
133 
134  /// Process a SPIR-V GlobalVariableOp
135  LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp);
136 
137  /// Process attributes that translate to decorations on the result <id>
138  LogicalResult processDecorationAttr(Location loc, uint32_t resultID,
139  Decoration decoration, Attribute attr);
140  LogicalResult processDecoration(Location loc, uint32_t resultID,
141  NamedAttribute attr);
142 
143  template <typename DType>
144  LogicalResult processTypeDecoration(Location loc, DType type,
145  uint32_t resultId) {
146  return emitError(loc, "unhandled decoration for type:") << type;
147  }
148 
149  /// Process member decoration
150  LogicalResult processMemberDecoration(
151  uint32_t structID,
152  const spirv::StructType::MemberDecorationInfo &memberDecorationInfo);
153 
154  //===--------------------------------------------------------------------===//
155  // Types
156  //===--------------------------------------------------------------------===//
157 
158  uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); }
159 
160  Type getVoidType() { return mlirBuilder.getNoneType(); }
161 
162  bool isVoidType(Type type) const { return isa<NoneType>(type); }
163 
164  /// Returns true if the given type is a pointer type to a struct in some
165  /// interface storage class.
166  bool isInterfaceStructPtrType(Type type) const;
167 
168  /// Main dispatch method for serializing a type. The result <id> of the
169  /// serialized type will be returned as `typeID`.
170  LogicalResult processType(Location loc, Type type, uint32_t &typeID);
171  LogicalResult processTypeImpl(Location loc, Type type, uint32_t &typeID,
172  SetVector<StringRef> &serializationCtx);
173 
174  /// Method for preparing basic SPIR-V type serialization. Returns the type's
175  /// opcode and operands for the instruction via `typeEnum` and `operands`.
176  LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID,
177  spirv::Opcode &typeEnum,
178  SmallVectorImpl<uint32_t> &operands,
179  bool &deferSerialization,
180  SetVector<StringRef> &serializationCtx);
181 
182  LogicalResult prepareFunctionType(Location loc, FunctionType type,
183  spirv::Opcode &typeEnum,
184  SmallVectorImpl<uint32_t> &operands);
185 
186  //===--------------------------------------------------------------------===//
187  // Constant
188  //===--------------------------------------------------------------------===//
189 
190  uint32_t getConstantID(Attribute value) const {
191  return constIDMap.lookup(value);
192  }
193 
194  /// Main dispatch method for processing a constant with the given `constType`
195  /// and `valueAttr`. `constType` is needed here because we can interpret the
196  /// `valueAttr` as a different type than the type of `valueAttr` itself; for
197  /// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType
198  /// constants.
199  uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr);
200 
201  /// Prepares array attribute serialization. This method emits corresponding
202  /// OpConstant* and returns the result <id> associated with it. Returns 0 if
203  /// failed.
204  uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr);
205 
206  /// Prepares bool/int/float DenseElementsAttr serialization. This method
207  /// iterates the DenseElementsAttr to construct the constant array, and
208  /// returns the result <id> associated with it. Returns 0 if failed. Note
209  /// that the size of `index` must match the rank.
210  /// TODO: Consider to enhance splat elements cases. For splat cases,
211  /// we don't need to loop over all elements, especially when the splat value
212  /// is zero. We can use OpConstantNull when the value is zero.
213  uint32_t prepareDenseElementsConstant(Location loc, Type constType,
214  DenseElementsAttr valueAttr, int dim,
216 
217  /// Prepares scalar attribute serialization. This method emits corresponding
218  /// OpConstant* and returns the result <id> associated with it. Returns 0 if
219  /// the attribute is not for a scalar bool/integer/float value. If `isSpec` is
220  /// true, then the constant will be serialized as a specialization constant.
221  uint32_t prepareConstantScalar(Location loc, Attribute valueAttr,
222  bool isSpec = false);
223 
224  uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr,
225  bool isSpec = false);
226 
227  uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr,
228  bool isSpec = false);
229 
230  uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr,
231  bool isSpec = false);
232 
233  //===--------------------------------------------------------------------===//
234  // Control flow
235  //===--------------------------------------------------------------------===//
236 
237  /// Returns the result <id> for the given block.
238  uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); }
239 
240  /// Returns the result <id> for the given block. If no <id> has been assigned,
241  /// assigns the next available <id>
242  uint32_t getOrCreateBlockID(Block *block);
243 
244 #ifndef NDEBUG
245  /// (For debugging) prints the block with its result <id>.
246  void printBlock(Block *block, raw_ostream &os);
247 #endif
248 
249  /// Processes the given `block` and emits SPIR-V instructions for all ops
250  /// inside. Does not emit OpLabel for this block if `omitLabel` is true.
251  /// `emitMerge` is a callback that will be invoked before handling the
252  /// terminator op to inject the Op*Merge instruction if this is a SPIR-V
253  /// selection/loop header block.
254  LogicalResult processBlock(Block *block, bool omitLabel = false,
255  function_ref<LogicalResult()> emitMerge = nullptr);
256 
257  /// Emits OpPhi instructions for the given block if it has block arguments.
258  LogicalResult emitPhiForBlockArguments(Block *block);
259 
260  LogicalResult processSelectionOp(spirv::SelectionOp selectionOp);
261 
262  LogicalResult processLoopOp(spirv::LoopOp loopOp);
263 
264  LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp);
265 
266  LogicalResult processBranchOp(spirv::BranchOp branchOp);
267 
268  //===--------------------------------------------------------------------===//
269  // Operations
270  //===--------------------------------------------------------------------===//
271 
272  LogicalResult encodeExtensionInstruction(Operation *op,
273  StringRef extensionSetName,
274  uint32_t opcode,
275  ArrayRef<uint32_t> operands);
276 
277  uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); }
278 
279  LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp);
280 
281  LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp);
282 
283  /// Main dispatch method for serializing an operation.
284  LogicalResult processOperation(Operation *op);
285 
286  /// Serializes an operation `op` as core instruction with `opcode` if
287  /// `extInstSet` is empty. Otherwise serializes it as an extended instruction
288  /// with `opcode` from `extInstSet`.
289  /// This method is a generic one for dispatching any SPIR-V ops that has no
290  /// variadic operands and attributes in TableGen definitions.
291  LogicalResult processOpWithoutGrammarAttr(Operation *op, StringRef extInstSet,
292  uint32_t opcode);
293 
294  /// Dispatches to the serialization function for an operation in SPIR-V
295  /// dialect that is a mirror of an instruction in the SPIR-V spec. This is
296  /// auto-generated from ODS. Dispatch is handled for all operations in SPIR-V
297  /// dialect that have hasOpcode == 1.
298  LogicalResult dispatchToAutogenSerialization(Operation *op);
299 
300  /// Serializes an operation in the SPIR-V dialect that is a mirror of an
301  /// instruction in the SPIR-V spec. This is auto generated if hasOpcode == 1
302  /// and autogenSerialization == 1 in ODS.
303  template <typename OpTy>
304  LogicalResult processOp(OpTy op) {
305  return op.emitError("unsupported op serialization");
306  }
307 
308  //===--------------------------------------------------------------------===//
309  // Utilities
310  //===--------------------------------------------------------------------===//
311 
312  /// Emits an OpDecorate instruction to decorate the given `target` with the
313  /// given `decoration`.
314  LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration,
315  ArrayRef<uint32_t> params = {});
316 
317  /// Emits an OpLine instruction with the given `loc` location information into
318  /// the given `binary` vector.
319  LogicalResult emitDebugLine(SmallVectorImpl<uint32_t> &binary, Location loc);
320 
321 private:
322  /// The SPIR-V module to be serialized.
323  spirv::ModuleOp module;
324 
325  /// An MLIR builder for getting MLIR constructs.
326  mlir::Builder mlirBuilder;
327 
328  /// Serialization options.
329  SerializationOptions options;
330 
331  /// A flag which indicates if the last processed instruction was a merge
332  /// instruction.
333  /// According to SPIR-V spec: "If a branch merge instruction is used, the last
334  /// OpLine in the block must be before its merge instruction".
335  bool lastProcessedWasMergeInst = false;
336 
337  /// The <id> of the OpString instruction, which specifies a file name, for
338  /// use by other debug instructions.
339  uint32_t fileID = 0;
340 
341  /// The next available result <id>.
342  uint32_t nextID = 1;
343 
344  // The following are for different SPIR-V instruction sections. They follow
345  // the logical layout of a SPIR-V module.
346 
347  SmallVector<uint32_t, 4> capabilities;
348  SmallVector<uint32_t, 0> extensions;
349  SmallVector<uint32_t, 0> extendedSets;
350  SmallVector<uint32_t, 3> memoryModel;
351  SmallVector<uint32_t, 0> entryPoints;
352  SmallVector<uint32_t, 4> executionModes;
355  SmallVector<uint32_t, 0> decorations;
356  SmallVector<uint32_t, 0> typesGlobalValues;
357  SmallVector<uint32_t, 0> functions;
358 
359  /// Recursive struct references are serialized as OpTypePointer instructions
360  /// to the recursive struct type. However, the OpTypePointer instruction
361  /// cannot be emitted before the recursive struct's OpTypeStruct.
362  /// RecursiveStructPointerInfo stores the data needed to emit such
363  /// OpTypePointer instructions after forward references to such types.
364  struct RecursiveStructPointerInfo {
365  uint32_t pointerTypeID;
366  spirv::StorageClass storageClass;
367  };
368 
369  // Maps spirv::StructType to its recursive reference member info.
371  recursiveStructInfos;
372 
373  /// `functionHeader` contains all the instructions that must be in the first
374  /// block in the function, and `functionBody` contains the rest. After
375  /// processing FuncOp, the encoded instructions of a function are appended to
376  /// `functions`. An example of instructions in `functionHeader` in order:
377  /// OpFunction ...
378  /// OpFunctionParameter ...
379  /// OpFunctionParameter ...
380  /// OpLabel ...
381  /// OpVariable ...
382  /// OpVariable ...
383  SmallVector<uint32_t, 0> functionHeader;
384  SmallVector<uint32_t, 0> functionBody;
385 
386  /// Map from type used in SPIR-V module to their <id>s.
387  DenseMap<Type, uint32_t> typeIDMap;
388 
389  /// Map from constant values to their <id>s.
391 
392  /// Map from specialization constant names to their <id>s.
393  llvm::StringMap<uint32_t> specConstIDMap;
394 
395  /// Map from GlobalVariableOps name to <id>s.
396  llvm::StringMap<uint32_t> globalVarIDMap;
397 
398  /// Map from FuncOps name to <id>s.
399  llvm::StringMap<uint32_t> funcIDMap;
400 
401  /// Map from blocks to their <id>s.
402  DenseMap<Block *, uint32_t> blockIDMap;
403 
404  /// Map from the Type to the <id> that represents undef value of that type.
405  DenseMap<Type, uint32_t> undefValIDMap;
406 
407  /// Map from results of normal operations to their <id>s.
408  DenseMap<Value, uint32_t> valueIDMap;
409 
410  /// Map from extended instruction set name to <id>s.
411  llvm::StringMap<uint32_t> extendedInstSetIDMap;
412 
413  /// Map from values used in OpPhi instructions to their offset in the
414  /// `functions` section.
415  ///
416  /// When processing a block with arguments, we need to emit OpPhi
417  /// instructions to record the predecessor block <id>s and the values they
418  /// send to the block in question. But it's not guaranteed all values are
419  /// visited and thus assigned result <id>s. So we need this list to capture
420  /// the offsets into `functions` where a value is used so that we can fix it
421  /// up later after processing all the blocks in a function.
422  ///
423  /// More concretely, say if we are visiting the following blocks:
424  ///
425  /// ```mlir
426  /// ^phi(%arg0: i32):
427  /// ...
428  /// ^parent1:
429  /// ...
430  /// spirv.Branch ^phi(%val0: i32)
431  /// ^parent2:
432  /// ...
433  /// spirv.Branch ^phi(%val1: i32)
434  /// ```
435  ///
436  /// When we are serializing the `^phi` block, we need to emit at the beginning
437  /// of the block OpPhi instructions which has the following parameters:
438  ///
439  /// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1
440  /// id-for-%val1 id-for-^parent2
441  ///
442  /// But we don't know the <id> for %val0 and %val1 yet. One way is to visit
443  /// all the blocks twice and use the first visit to assign an <id> to each
444  /// value. But it's paying the overheads just for OpPhi emission. Instead,
445  /// we still visit the blocks once for emission. When we emit the OpPhi
446  /// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1.
447  /// At the same time, we record their offsets in the emitted binary (which is
448  /// placed inside `functions`) here. And then after emitting all blocks, we
449  /// replace the dummy <id> 0 with the real result <id> by overwriting
450  /// `functions[offset]`.
451  DenseMap<Value, SmallVector<size_t, 1>> deferredPhiValues;
452 };
453 } // namespace spirv
454 } // namespace mlir
455 
456 #endif // MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
Attributes are known-constant values of operations.
Definition: Attributes.h:25
Block represents an ordered list of Operations.
Definition: Block.h:33
Special case of IntegerAttr to represent boolean integers, i.e., signless i1 integers.
This class is a general helper class for creating context-global objects like types,...
Definition: Builders.h:50
NoneType getNoneType()
Definition: Builders.cpp:128
An attribute that represents a reference to a dense vector or tensor object.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
NamedAttribute represents a combination of a name and an Attribute value.
Definition: Attributes.h:207
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
A SPIR-V module serializer.
Definition: Serializer.h:42
void printValueIDMap(raw_ostream &os)
(For debugging) prints each value and its corresponding result <id>.
Definition: Serializer.cpp:139
Serializer(spirv::ModuleOp module, const SerializationOptions &options)
Creates a serializer for the given SPIR-V module.
Definition: Serializer.cpp:85
LogicalResult serialize()
Serializes the remembered SPIR-V module.
Definition: Serializer.cpp:89
void collect(SmallVectorImpl< uint32_t > &binary)
Collects the final SPIR-V binary.
Definition: Serializer.cpp:113
void encodeInstructionInto(SmallVectorImpl< uint32_t > &binary, spirv::Opcode op, ArrayRef< uint32_t > operands)
Encodes an SPIR-V instruction with the given opcode and operands into the given binary vector.
Definition: Serializer.cpp:78
Include the generated interface declarations.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.