MLIR  20.0.0git
Serializer.cpp
Go to the documentation of this file.
1 //===- Serializer.cpp - MLIR SPIR-V Serializer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MLIR SPIR-V module to SPIR-V binary serializer.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Serializer.h"
14 
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/TypeSwitch.h"
25 #include "llvm/ADT/bit.h"
26 #include "llvm/Support/Debug.h"
27 #include <cstdint>
28 #include <optional>
29 
30 #define DEBUG_TYPE "spirv-serialization"
31 
32 using namespace mlir;
33 
34 /// Returns the merge block if the given `op` is a structured control flow op.
35 /// Otherwise returns nullptr.
37  if (auto selectionOp = dyn_cast<spirv::SelectionOp>(op))
38  return selectionOp.getMergeBlock();
39  if (auto loopOp = dyn_cast<spirv::LoopOp>(op))
40  return loopOp.getMergeBlock();
41  return nullptr;
42 }
43 
44 /// Given a predecessor `block` for a block with arguments, returns the block
45 /// that should be used as the parent block for SPIR-V OpPhi instructions
46 /// corresponding to the block arguments.
47 static Block *getPhiIncomingBlock(Block *block) {
48  // If the predecessor block in question is the entry block for a
49  // spirv.mlir.loop, we jump to this spirv.mlir.loop from its enclosing block.
50  if (block->isEntryBlock()) {
51  if (auto loopOp = dyn_cast<spirv::LoopOp>(block->getParentOp())) {
52  // Then the incoming parent block for OpPhi should be the merge block of
53  // the structured control flow op before this loop.
54  Operation *op = loopOp.getOperation();
55  while ((op = op->getPrevNode()) != nullptr)
56  if (Block *incomingBlock = getStructuredControlFlowOpMergeBlock(op))
57  return incomingBlock;
58  // Or the enclosing block itself if no structured control flow ops
59  // exists before this loop.
60  return loopOp->getBlock();
61  }
62  }
63 
64  // Otherwise, we jump from the given predecessor block. Try to see if there is
65  // a structured control flow op inside it.
66  for (Operation &op : llvm::reverse(block->getOperations())) {
67  if (Block *incomingBlock = getStructuredControlFlowOpMergeBlock(&op))
68  return incomingBlock;
69  }
70  return block;
71 }
72 
73 namespace mlir {
74 namespace spirv {
75 
76 /// Encodes an SPIR-V instruction with the given `opcode` and `operands` into
77 /// the given `binary` vector.
78 void encodeInstructionInto(SmallVectorImpl<uint32_t> &binary, spirv::Opcode op,
79  ArrayRef<uint32_t> operands) {
80  uint32_t wordCount = 1 + operands.size();
81  binary.push_back(spirv::getPrefixedOpcode(wordCount, op));
82  binary.append(operands.begin(), operands.end());
83 }
84 
85 Serializer::Serializer(spirv::ModuleOp module,
87  : module(module), mlirBuilder(module.getContext()), options(options) {}
88 
89 LogicalResult Serializer::serialize() {
90  LLVM_DEBUG(llvm::dbgs() << "+++ starting serialization +++\n");
91 
92  if (failed(module.verifyInvariants()))
93  return failure();
94 
95  // TODO: handle the other sections
96  processCapability();
97  processExtension();
98  processMemoryModel();
99  processDebugInfo();
100 
101  // Iterate over the module body to serialize it. Assumptions are that there is
102  // only one basic block in the moduleOp
103  for (auto &op : *module.getBody()) {
104  if (failed(processOperation(&op))) {
105  return failure();
106  }
107  }
108 
109  LLVM_DEBUG(llvm::dbgs() << "+++ completed serialization +++\n");
110  return success();
111 }
112 
114  auto moduleSize = spirv::kHeaderWordCount + capabilities.size() +
115  extensions.size() + extendedSets.size() +
116  memoryModel.size() + entryPoints.size() +
117  executionModes.size() + decorations.size() +
118  typesGlobalValues.size() + functions.size();
119 
120  binary.clear();
121  binary.reserve(moduleSize);
122 
123  spirv::appendModuleHeader(binary, module.getVceTriple()->getVersion(),
124  nextID);
125  binary.append(capabilities.begin(), capabilities.end());
126  binary.append(extensions.begin(), extensions.end());
127  binary.append(extendedSets.begin(), extendedSets.end());
128  binary.append(memoryModel.begin(), memoryModel.end());
129  binary.append(entryPoints.begin(), entryPoints.end());
130  binary.append(executionModes.begin(), executionModes.end());
131  binary.append(debug.begin(), debug.end());
132  binary.append(names.begin(), names.end());
133  binary.append(decorations.begin(), decorations.end());
134  binary.append(typesGlobalValues.begin(), typesGlobalValues.end());
135  binary.append(functions.begin(), functions.end());
136 }
137 
138 #ifndef NDEBUG
139 void Serializer::printValueIDMap(raw_ostream &os) {
140  os << "\n= Value <id> Map =\n\n";
141  for (auto valueIDPair : valueIDMap) {
142  Value val = valueIDPair.first;
143  os << " " << val << " "
144  << "id = " << valueIDPair.second << ' ';
145  if (auto *op = val.getDefiningOp()) {
146  os << "from op '" << op->getName() << "'";
147  } else if (auto arg = dyn_cast<BlockArgument>(val)) {
148  Block *block = arg.getOwner();
149  os << "from argument of block " << block << ' ';
150  os << " in op '" << block->getParentOp()->getName() << "'";
151  }
152  os << '\n';
153  }
154 }
155 #endif
156 
157 //===----------------------------------------------------------------------===//
158 // Module structure
159 //===----------------------------------------------------------------------===//
160 
161 uint32_t Serializer::getOrCreateFunctionID(StringRef fnName) {
162  auto funcID = funcIDMap.lookup(fnName);
163  if (!funcID) {
164  funcID = getNextID();
165  funcIDMap[fnName] = funcID;
166  }
167  return funcID;
168 }
169 
170 void Serializer::processCapability() {
171  for (auto cap : module.getVceTriple()->getCapabilities())
172  encodeInstructionInto(capabilities, spirv::Opcode::OpCapability,
173  {static_cast<uint32_t>(cap)});
174 }
175 
176 void Serializer::processDebugInfo() {
177  if (!options.emitDebugInfo)
178  return;
179  auto fileLoc = dyn_cast<FileLineColLoc>(module.getLoc());
180  auto fileName = fileLoc ? fileLoc.getFilename().strref() : "<unknown>";
181  fileID = getNextID();
182  SmallVector<uint32_t, 16> operands;
183  operands.push_back(fileID);
184  spirv::encodeStringLiteralInto(operands, fileName);
185  encodeInstructionInto(debug, spirv::Opcode::OpString, operands);
186  // TODO: Encode more debug instructions.
187 }
188 
189 void Serializer::processExtension() {
191  for (spirv::Extension ext : module.getVceTriple()->getExtensions()) {
192  extName.clear();
193  spirv::encodeStringLiteralInto(extName, spirv::stringifyExtension(ext));
194  encodeInstructionInto(extensions, spirv::Opcode::OpExtension, extName);
195  }
196 }
197 
198 void Serializer::processMemoryModel() {
199  StringAttr memoryModelName = module.getMemoryModelAttrName();
200  auto mm = static_cast<uint32_t>(
201  module->getAttrOfType<spirv::MemoryModelAttr>(memoryModelName)
202  .getValue());
203 
204  StringAttr addressingModelName = module.getAddressingModelAttrName();
205  auto am = static_cast<uint32_t>(
206  module->getAttrOfType<spirv::AddressingModelAttr>(addressingModelName)
207  .getValue());
208 
209  encodeInstructionInto(memoryModel, spirv::Opcode::OpMemoryModel, {am, mm});
210 }
211 
212 static std::string getDecorationName(StringRef attrName) {
213  // convertToCamelFromSnakeCase will convert this to FpFastMathMode instead of
214  // expected FPFastMathMode.
215  if (attrName == "fp_fast_math_mode")
216  return "FPFastMathMode";
217  // similar here
218  if (attrName == "fp_rounding_mode")
219  return "FPRoundingMode";
220  // convertToCamelFromSnakeCase will not capitalize "INTEL".
221  if (attrName == "cache_control_load_intel")
222  return "CacheControlLoadINTEL";
223  if (attrName == "cache_control_store_intel")
224  return "CacheControlStoreINTEL";
225 
226  return llvm::convertToCamelFromSnakeCase(attrName, /*capitalizeFirst=*/true);
227 }
228 
229 template <typename AttrTy, typename EmitF>
230 LogicalResult processDecorationList(Location loc, Decoration decoration,
231  Attribute attrList, StringRef attrName,
232  EmitF emitter) {
233  auto arrayAttr = dyn_cast<ArrayAttr>(attrList);
234  if (!arrayAttr) {
235  return emitError(loc, "expecting array attribute of ")
236  << attrName << " for " << stringifyDecoration(decoration);
237  }
238  if (arrayAttr.empty()) {
239  return emitError(loc, "expecting non-empty array attribute of ")
240  << attrName << " for " << stringifyDecoration(decoration);
241  }
242  for (Attribute attr : arrayAttr.getValue()) {
243  auto cacheControlAttr = dyn_cast<AttrTy>(attr);
244  if (!cacheControlAttr) {
245  return emitError(loc, "expecting array attribute of ")
246  << attrName << " for " << stringifyDecoration(decoration);
247  }
248  // This named attribute encodes several decorations. Emit one per
249  // element in the array.
250  if (failed(emitter(cacheControlAttr)))
251  return failure();
252  }
253  return success();
254 }
255 
256 LogicalResult Serializer::processDecorationAttr(Location loc, uint32_t resultID,
257  Decoration decoration,
258  Attribute attr) {
260  switch (decoration) {
261  case spirv::Decoration::LinkageAttributes: {
262  // Get the value of the Linkage Attributes
263  // e.g., LinkageAttributes=["linkageName", linkageType].
264  auto linkageAttr = llvm::dyn_cast<spirv::LinkageAttributesAttr>(attr);
265  auto linkageName = linkageAttr.getLinkageName();
266  auto linkageType = linkageAttr.getLinkageType().getValue();
267  // Encode the Linkage Name (string literal to uint32_t).
268  spirv::encodeStringLiteralInto(args, linkageName);
269  // Encode LinkageType & Add the Linkagetype to the args.
270  args.push_back(static_cast<uint32_t>(linkageType));
271  break;
272  }
273  case spirv::Decoration::FPFastMathMode:
274  if (auto intAttr = dyn_cast<FPFastMathModeAttr>(attr)) {
275  args.push_back(static_cast<uint32_t>(intAttr.getValue()));
276  break;
277  }
278  return emitError(loc, "expected FPFastMathModeAttr attribute for ")
279  << stringifyDecoration(decoration);
280  case spirv::Decoration::FPRoundingMode:
281  if (auto intAttr = dyn_cast<FPRoundingModeAttr>(attr)) {
282  args.push_back(static_cast<uint32_t>(intAttr.getValue()));
283  break;
284  }
285  return emitError(loc, "expected FPRoundingModeAttr attribute for ")
286  << stringifyDecoration(decoration);
287  case spirv::Decoration::Binding:
288  case spirv::Decoration::DescriptorSet:
289  case spirv::Decoration::Location:
290  if (auto intAttr = dyn_cast<IntegerAttr>(attr)) {
291  args.push_back(intAttr.getValue().getZExtValue());
292  break;
293  }
294  return emitError(loc, "expected integer attribute for ")
295  << stringifyDecoration(decoration);
296  case spirv::Decoration::BuiltIn:
297  if (auto strAttr = dyn_cast<StringAttr>(attr)) {
298  auto enumVal = spirv::symbolizeBuiltIn(strAttr.getValue());
299  if (enumVal) {
300  args.push_back(static_cast<uint32_t>(*enumVal));
301  break;
302  }
303  return emitError(loc, "invalid ")
304  << stringifyDecoration(decoration) << " decoration attribute "
305  << strAttr.getValue();
306  }
307  return emitError(loc, "expected string attribute for ")
308  << stringifyDecoration(decoration);
309  case spirv::Decoration::Aliased:
310  case spirv::Decoration::AliasedPointer:
311  case spirv::Decoration::Flat:
312  case spirv::Decoration::NonReadable:
313  case spirv::Decoration::NonWritable:
314  case spirv::Decoration::NoPerspective:
315  case spirv::Decoration::NoSignedWrap:
316  case spirv::Decoration::NoUnsignedWrap:
317  case spirv::Decoration::RelaxedPrecision:
318  case spirv::Decoration::Restrict:
319  case spirv::Decoration::RestrictPointer:
320  case spirv::Decoration::NoContraction:
321  case spirv::Decoration::Constant:
322  // For unit attributes and decoration attributes, the args list
323  // has no values so we do nothing.
324  if (isa<UnitAttr, DecorationAttr>(attr))
325  break;
326  return emitError(loc,
327  "expected unit attribute or decoration attribute for ")
328  << stringifyDecoration(decoration);
329  case spirv::Decoration::CacheControlLoadINTEL:
330  return processDecorationList<CacheControlLoadINTELAttr>(
331  loc, decoration, attr, "CacheControlLoadINTEL",
332  [&](CacheControlLoadINTELAttr attr) {
333  unsigned cacheLevel = attr.getCacheLevel();
334  LoadCacheControl loadCacheControl = attr.getLoadCacheControl();
335  return emitDecoration(
336  resultID, decoration,
337  {cacheLevel, static_cast<uint32_t>(loadCacheControl)});
338  });
339  case spirv::Decoration::CacheControlStoreINTEL:
340  return processDecorationList<CacheControlStoreINTELAttr>(
341  loc, decoration, attr, "CacheControlStoreINTEL",
342  [&](CacheControlStoreINTELAttr attr) {
343  unsigned cacheLevel = attr.getCacheLevel();
344  StoreCacheControl storeCacheControl = attr.getStoreCacheControl();
345  return emitDecoration(
346  resultID, decoration,
347  {cacheLevel, static_cast<uint32_t>(storeCacheControl)});
348  });
349  default:
350  return emitError(loc, "unhandled decoration ")
351  << stringifyDecoration(decoration);
352  }
353  return emitDecoration(resultID, decoration, args);
354 }
355 
356 LogicalResult Serializer::processDecoration(Location loc, uint32_t resultID,
357  NamedAttribute attr) {
358  StringRef attrName = attr.getName().strref();
359  std::string decorationName = getDecorationName(attrName);
360  std::optional<Decoration> decoration =
361  spirv::symbolizeDecoration(decorationName);
362  if (!decoration) {
363  return emitError(
364  loc, "non-argument attributes expected to have snake-case-ified "
365  "decoration name, unhandled attribute with name : ")
366  << attrName;
367  }
368  return processDecorationAttr(loc, resultID, *decoration, attr.getValue());
369 }
370 
371 LogicalResult Serializer::processName(uint32_t resultID, StringRef name) {
372  assert(!name.empty() && "unexpected empty string for OpName");
373  if (!options.emitSymbolName)
374  return success();
375 
376  SmallVector<uint32_t, 4> nameOperands;
377  nameOperands.push_back(resultID);
378  spirv::encodeStringLiteralInto(nameOperands, name);
379  encodeInstructionInto(names, spirv::Opcode::OpName, nameOperands);
380  return success();
381 }
382 
383 template <>
384 LogicalResult Serializer::processTypeDecoration<spirv::ArrayType>(
385  Location loc, spirv::ArrayType type, uint32_t resultID) {
386  if (unsigned stride = type.getArrayStride()) {
387  // OpDecorate %arrayTypeSSA ArrayStride strideLiteral
388  return emitDecoration(resultID, spirv::Decoration::ArrayStride, {stride});
389  }
390  return success();
391 }
392 
393 template <>
394 LogicalResult Serializer::processTypeDecoration<spirv::RuntimeArrayType>(
395  Location loc, spirv::RuntimeArrayType type, uint32_t resultID) {
396  if (unsigned stride = type.getArrayStride()) {
397  // OpDecorate %arrayTypeSSA ArrayStride strideLiteral
398  return emitDecoration(resultID, spirv::Decoration::ArrayStride, {stride});
399  }
400  return success();
401 }
402 
403 LogicalResult Serializer::processMemberDecoration(
404  uint32_t structID,
405  const spirv::StructType::MemberDecorationInfo &memberDecoration) {
407  {structID, memberDecoration.memberIndex,
408  static_cast<uint32_t>(memberDecoration.decoration)});
409  if (memberDecoration.hasValue) {
410  args.push_back(memberDecoration.decorationValue);
411  }
412  encodeInstructionInto(decorations, spirv::Opcode::OpMemberDecorate, args);
413  return success();
414 }
415 
416 //===----------------------------------------------------------------------===//
417 // Type
418 //===----------------------------------------------------------------------===//
419 
420 // According to the SPIR-V spec "Validation Rules for Shader Capabilities":
421 // "Composite objects in the StorageBuffer, PhysicalStorageBuffer, Uniform, and
422 // PushConstant Storage Classes must be explicitly laid out."
423 bool Serializer::isInterfaceStructPtrType(Type type) const {
424  if (auto ptrType = dyn_cast<spirv::PointerType>(type)) {
425  switch (ptrType.getStorageClass()) {
426  case spirv::StorageClass::PhysicalStorageBuffer:
427  case spirv::StorageClass::PushConstant:
428  case spirv::StorageClass::StorageBuffer:
429  case spirv::StorageClass::Uniform:
430  return isa<spirv::StructType>(ptrType.getPointeeType());
431  default:
432  break;
433  }
434  }
435  return false;
436 }
437 
438 LogicalResult Serializer::processType(Location loc, Type type,
439  uint32_t &typeID) {
440  // Maintains a set of names for nested identified struct types. This is used
441  // to properly serialize recursive references.
442  SetVector<StringRef> serializationCtx;
443  return processTypeImpl(loc, type, typeID, serializationCtx);
444 }
445 
446 LogicalResult
447 Serializer::processTypeImpl(Location loc, Type type, uint32_t &typeID,
448  SetVector<StringRef> &serializationCtx) {
449  typeID = getTypeID(type);
450  if (typeID)
451  return success();
452 
453  typeID = getNextID();
454  SmallVector<uint32_t, 4> operands;
455 
456  operands.push_back(typeID);
457  auto typeEnum = spirv::Opcode::OpTypeVoid;
458  bool deferSerialization = false;
459 
460  if ((isa<FunctionType>(type) &&
461  succeeded(prepareFunctionType(loc, cast<FunctionType>(type), typeEnum,
462  operands))) ||
463  succeeded(prepareBasicType(loc, type, typeID, typeEnum, operands,
464  deferSerialization, serializationCtx))) {
465  if (deferSerialization)
466  return success();
467 
468  typeIDMap[type] = typeID;
469 
470  encodeInstructionInto(typesGlobalValues, typeEnum, operands);
471 
472  if (recursiveStructInfos.count(type) != 0) {
473  // This recursive struct type is emitted already, now the OpTypePointer
474  // instructions referring to recursive references are emitted as well.
475  for (auto &ptrInfo : recursiveStructInfos[type]) {
476  // TODO: This might not work if more than 1 recursive reference is
477  // present in the struct.
478  SmallVector<uint32_t, 4> ptrOperands;
479  ptrOperands.push_back(ptrInfo.pointerTypeID);
480  ptrOperands.push_back(static_cast<uint32_t>(ptrInfo.storageClass));
481  ptrOperands.push_back(typeIDMap[type]);
482 
483  encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpTypePointer,
484  ptrOperands);
485  }
486 
487  recursiveStructInfos[type].clear();
488  }
489 
490  return success();
491  }
492 
493  return failure();
494 }
495 
496 LogicalResult Serializer::prepareBasicType(
497  Location loc, Type type, uint32_t resultID, spirv::Opcode &typeEnum,
498  SmallVectorImpl<uint32_t> &operands, bool &deferSerialization,
499  SetVector<StringRef> &serializationCtx) {
500  deferSerialization = false;
501 
502  if (isVoidType(type)) {
503  typeEnum = spirv::Opcode::OpTypeVoid;
504  return success();
505  }
506 
507  if (auto intType = dyn_cast<IntegerType>(type)) {
508  if (intType.getWidth() == 1) {
509  typeEnum = spirv::Opcode::OpTypeBool;
510  return success();
511  }
512 
513  typeEnum = spirv::Opcode::OpTypeInt;
514  operands.push_back(intType.getWidth());
515  // SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics
516  // to preserve or validate.
517  // 0 indicates unsigned, or no signedness semantics
518  // 1 indicates signed semantics."
519  operands.push_back(intType.isSigned() ? 1 : 0);
520  return success();
521  }
522 
523  if (auto floatType = dyn_cast<FloatType>(type)) {
524  typeEnum = spirv::Opcode::OpTypeFloat;
525  operands.push_back(floatType.getWidth());
526  return success();
527  }
528 
529  if (auto vectorType = dyn_cast<VectorType>(type)) {
530  uint32_t elementTypeID = 0;
531  if (failed(processTypeImpl(loc, vectorType.getElementType(), elementTypeID,
532  serializationCtx))) {
533  return failure();
534  }
535  typeEnum = spirv::Opcode::OpTypeVector;
536  operands.push_back(elementTypeID);
537  operands.push_back(vectorType.getNumElements());
538  return success();
539  }
540 
541  if (auto imageType = dyn_cast<spirv::ImageType>(type)) {
542  typeEnum = spirv::Opcode::OpTypeImage;
543  uint32_t sampledTypeID = 0;
544  if (failed(processType(loc, imageType.getElementType(), sampledTypeID)))
545  return failure();
546 
547  llvm::append_values(operands, sampledTypeID,
548  static_cast<uint32_t>(imageType.getDim()),
549  static_cast<uint32_t>(imageType.getDepthInfo()),
550  static_cast<uint32_t>(imageType.getArrayedInfo()),
551  static_cast<uint32_t>(imageType.getSamplingInfo()),
552  static_cast<uint32_t>(imageType.getSamplerUseInfo()),
553  static_cast<uint32_t>(imageType.getImageFormat()));
554  return success();
555  }
556 
557  if (auto arrayType = dyn_cast<spirv::ArrayType>(type)) {
558  typeEnum = spirv::Opcode::OpTypeArray;
559  uint32_t elementTypeID = 0;
560  if (failed(processTypeImpl(loc, arrayType.getElementType(), elementTypeID,
561  serializationCtx))) {
562  return failure();
563  }
564  operands.push_back(elementTypeID);
565  if (auto elementCountID = prepareConstantInt(
566  loc, mlirBuilder.getI32IntegerAttr(arrayType.getNumElements()))) {
567  operands.push_back(elementCountID);
568  }
569  return processTypeDecoration(loc, arrayType, resultID);
570  }
571 
572  if (auto ptrType = dyn_cast<spirv::PointerType>(type)) {
573  uint32_t pointeeTypeID = 0;
574  spirv::StructType pointeeStruct =
575  dyn_cast<spirv::StructType>(ptrType.getPointeeType());
576 
577  if (pointeeStruct && pointeeStruct.isIdentified() &&
578  serializationCtx.count(pointeeStruct.getIdentifier()) != 0) {
579  // A recursive reference to an enclosing struct is found.
580  //
581  // 1. Prepare an OpTypeForwardPointer with resultID and the ptr storage
582  // class as operands.
583  SmallVector<uint32_t, 2> forwardPtrOperands;
584  forwardPtrOperands.push_back(resultID);
585  forwardPtrOperands.push_back(
586  static_cast<uint32_t>(ptrType.getStorageClass()));
587 
588  encodeInstructionInto(typesGlobalValues,
589  spirv::Opcode::OpTypeForwardPointer,
590  forwardPtrOperands);
591 
592  // 2. Find the pointee (enclosing) struct.
593  auto structType = spirv::StructType::getIdentified(
594  module.getContext(), pointeeStruct.getIdentifier());
595 
596  if (!structType)
597  return failure();
598 
599  // 3. Mark the OpTypePointer that is supposed to be emitted by this call
600  // as deferred.
601  deferSerialization = true;
602 
603  // 4. Record the info needed to emit the deferred OpTypePointer
604  // instruction when the enclosing struct is completely serialized.
605  recursiveStructInfos[structType].push_back(
606  {resultID, ptrType.getStorageClass()});
607  } else {
608  if (failed(processTypeImpl(loc, ptrType.getPointeeType(), pointeeTypeID,
609  serializationCtx)))
610  return failure();
611  }
612 
613  typeEnum = spirv::Opcode::OpTypePointer;
614  operands.push_back(static_cast<uint32_t>(ptrType.getStorageClass()));
615  operands.push_back(pointeeTypeID);
616 
617  if (isInterfaceStructPtrType(ptrType)) {
618  if (failed(emitDecoration(getTypeID(pointeeStruct),
619  spirv::Decoration::Block)))
620  return emitError(loc, "cannot decorate ")
621  << pointeeStruct << " with Block decoration";
622  }
623 
624  return success();
625  }
626 
627  if (auto runtimeArrayType = dyn_cast<spirv::RuntimeArrayType>(type)) {
628  uint32_t elementTypeID = 0;
629  if (failed(processTypeImpl(loc, runtimeArrayType.getElementType(),
630  elementTypeID, serializationCtx))) {
631  return failure();
632  }
633  typeEnum = spirv::Opcode::OpTypeRuntimeArray;
634  operands.push_back(elementTypeID);
635  return processTypeDecoration(loc, runtimeArrayType, resultID);
636  }
637 
638  if (auto sampledImageType = dyn_cast<spirv::SampledImageType>(type)) {
639  typeEnum = spirv::Opcode::OpTypeSampledImage;
640  uint32_t imageTypeID = 0;
641  if (failed(
642  processType(loc, sampledImageType.getImageType(), imageTypeID))) {
643  return failure();
644  }
645  operands.push_back(imageTypeID);
646  return success();
647  }
648 
649  if (auto structType = dyn_cast<spirv::StructType>(type)) {
650  if (structType.isIdentified()) {
651  if (failed(processName(resultID, structType.getIdentifier())))
652  return failure();
653  serializationCtx.insert(structType.getIdentifier());
654  }
655 
656  bool hasOffset = structType.hasOffset();
657  for (auto elementIndex :
658  llvm::seq<uint32_t>(0, structType.getNumElements())) {
659  uint32_t elementTypeID = 0;
660  if (failed(processTypeImpl(loc, structType.getElementType(elementIndex),
661  elementTypeID, serializationCtx))) {
662  return failure();
663  }
664  operands.push_back(elementTypeID);
665  if (hasOffset) {
666  // Decorate each struct member with an offset
668  elementIndex, /*hasValue=*/1, spirv::Decoration::Offset,
669  static_cast<uint32_t>(structType.getMemberOffset(elementIndex))};
670  if (failed(processMemberDecoration(resultID, offsetDecoration))) {
671  return emitError(loc, "cannot decorate ")
672  << elementIndex << "-th member of " << structType
673  << " with its offset";
674  }
675  }
676  }
678  structType.getMemberDecorations(memberDecorations);
679 
680  for (auto &memberDecoration : memberDecorations) {
681  if (failed(processMemberDecoration(resultID, memberDecoration))) {
682  return emitError(loc, "cannot decorate ")
683  << static_cast<uint32_t>(memberDecoration.memberIndex)
684  << "-th member of " << structType << " with "
685  << stringifyDecoration(memberDecoration.decoration);
686  }
687  }
688 
689  typeEnum = spirv::Opcode::OpTypeStruct;
690 
691  if (structType.isIdentified())
692  serializationCtx.remove(structType.getIdentifier());
693 
694  return success();
695  }
696 
697  if (auto cooperativeMatrixType =
698  dyn_cast<spirv::CooperativeMatrixType>(type)) {
699  uint32_t elementTypeID = 0;
700  if (failed(processTypeImpl(loc, cooperativeMatrixType.getElementType(),
701  elementTypeID, serializationCtx))) {
702  return failure();
703  }
704  typeEnum = spirv::Opcode::OpTypeCooperativeMatrixKHR;
705  auto getConstantOp = [&](uint32_t id) {
706  auto attr = IntegerAttr::get(IntegerType::get(type.getContext(), 32), id);
707  return prepareConstantInt(loc, attr);
708  };
709  llvm::append_values(
710  operands, elementTypeID,
711  getConstantOp(static_cast<uint32_t>(cooperativeMatrixType.getScope())),
712  getConstantOp(cooperativeMatrixType.getRows()),
713  getConstantOp(cooperativeMatrixType.getColumns()),
714  getConstantOp(static_cast<uint32_t>(cooperativeMatrixType.getUse())));
715  return success();
716  }
717 
718  if (auto matrixType = dyn_cast<spirv::MatrixType>(type)) {
719  uint32_t elementTypeID = 0;
720  if (failed(processTypeImpl(loc, matrixType.getColumnType(), elementTypeID,
721  serializationCtx))) {
722  return failure();
723  }
724  typeEnum = spirv::Opcode::OpTypeMatrix;
725  llvm::append_values(operands, elementTypeID, matrixType.getNumColumns());
726  return success();
727  }
728 
729  // TODO: Handle other types.
730  return emitError(loc, "unhandled type in serialization: ") << type;
731 }
732 
733 LogicalResult
734 Serializer::prepareFunctionType(Location loc, FunctionType type,
735  spirv::Opcode &typeEnum,
736  SmallVectorImpl<uint32_t> &operands) {
737  typeEnum = spirv::Opcode::OpTypeFunction;
738  assert(type.getNumResults() <= 1 &&
739  "serialization supports only a single return value");
740  uint32_t resultID = 0;
741  if (failed(processType(
742  loc, type.getNumResults() == 1 ? type.getResult(0) : getVoidType(),
743  resultID))) {
744  return failure();
745  }
746  operands.push_back(resultID);
747  for (auto &res : type.getInputs()) {
748  uint32_t argTypeID = 0;
749  if (failed(processType(loc, res, argTypeID))) {
750  return failure();
751  }
752  operands.push_back(argTypeID);
753  }
754  return success();
755 }
756 
757 //===----------------------------------------------------------------------===//
758 // Constant
759 //===----------------------------------------------------------------------===//
760 
761 uint32_t Serializer::prepareConstant(Location loc, Type constType,
762  Attribute valueAttr) {
763  if (auto id = prepareConstantScalar(loc, valueAttr)) {
764  return id;
765  }
766 
767  // This is a composite literal. We need to handle each component separately
768  // and then emit an OpConstantComposite for the whole.
769 
770  if (auto id = getConstantID(valueAttr)) {
771  return id;
772  }
773 
774  uint32_t typeID = 0;
775  if (failed(processType(loc, constType, typeID))) {
776  return 0;
777  }
778 
779  uint32_t resultID = 0;
780  if (auto attr = dyn_cast<DenseElementsAttr>(valueAttr)) {
781  int rank = dyn_cast<ShapedType>(attr.getType()).getRank();
782  SmallVector<uint64_t, 4> index(rank);
783  resultID = prepareDenseElementsConstant(loc, constType, attr,
784  /*dim=*/0, index);
785  } else if (auto arrayAttr = dyn_cast<ArrayAttr>(valueAttr)) {
786  resultID = prepareArrayConstant(loc, constType, arrayAttr);
787  }
788 
789  if (resultID == 0) {
790  emitError(loc, "cannot serialize attribute: ") << valueAttr;
791  return 0;
792  }
793 
794  constIDMap[valueAttr] = resultID;
795  return resultID;
796 }
797 
798 uint32_t Serializer::prepareArrayConstant(Location loc, Type constType,
799  ArrayAttr attr) {
800  uint32_t typeID = 0;
801  if (failed(processType(loc, constType, typeID))) {
802  return 0;
803  }
804 
805  uint32_t resultID = getNextID();
806  SmallVector<uint32_t, 4> operands = {typeID, resultID};
807  operands.reserve(attr.size() + 2);
808  auto elementType = cast<spirv::ArrayType>(constType).getElementType();
809  for (Attribute elementAttr : attr) {
810  if (auto elementID = prepareConstant(loc, elementType, elementAttr)) {
811  operands.push_back(elementID);
812  } else {
813  return 0;
814  }
815  }
816  spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
817  encodeInstructionInto(typesGlobalValues, opcode, operands);
818 
819  return resultID;
820 }
821 
822 // TODO: Turn the below function into iterative function, instead of
823 // recursive function.
824 uint32_t
825 Serializer::prepareDenseElementsConstant(Location loc, Type constType,
826  DenseElementsAttr valueAttr, int dim,
828  auto shapedType = dyn_cast<ShapedType>(valueAttr.getType());
829  assert(dim <= shapedType.getRank());
830  if (shapedType.getRank() == dim) {
831  if (auto attr = dyn_cast<DenseIntElementsAttr>(valueAttr)) {
832  return attr.getType().getElementType().isInteger(1)
833  ? prepareConstantBool(loc, attr.getValues<BoolAttr>()[index])
834  : prepareConstantInt(loc,
835  attr.getValues<IntegerAttr>()[index]);
836  }
837  if (auto attr = dyn_cast<DenseFPElementsAttr>(valueAttr)) {
838  return prepareConstantFp(loc, attr.getValues<FloatAttr>()[index]);
839  }
840  return 0;
841  }
842 
843  uint32_t typeID = 0;
844  if (failed(processType(loc, constType, typeID))) {
845  return 0;
846  }
847 
848  uint32_t resultID = getNextID();
849  SmallVector<uint32_t, 4> operands = {typeID, resultID};
850  operands.reserve(shapedType.getDimSize(dim) + 2);
851  auto elementType = cast<spirv::CompositeType>(constType).getElementType(0);
852  for (int i = 0; i < shapedType.getDimSize(dim); ++i) {
853  index[dim] = i;
854  if (auto elementID = prepareDenseElementsConstant(
855  loc, elementType, valueAttr, dim + 1, index)) {
856  operands.push_back(elementID);
857  } else {
858  return 0;
859  }
860  }
861  spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
862  encodeInstructionInto(typesGlobalValues, opcode, operands);
863 
864  return resultID;
865 }
866 
867 uint32_t Serializer::prepareConstantScalar(Location loc, Attribute valueAttr,
868  bool isSpec) {
869  if (auto floatAttr = dyn_cast<FloatAttr>(valueAttr)) {
870  return prepareConstantFp(loc, floatAttr, isSpec);
871  }
872  if (auto boolAttr = dyn_cast<BoolAttr>(valueAttr)) {
873  return prepareConstantBool(loc, boolAttr, isSpec);
874  }
875  if (auto intAttr = dyn_cast<IntegerAttr>(valueAttr)) {
876  return prepareConstantInt(loc, intAttr, isSpec);
877  }
878 
879  return 0;
880 }
881 
882 uint32_t Serializer::prepareConstantBool(Location loc, BoolAttr boolAttr,
883  bool isSpec) {
884  if (!isSpec) {
885  // We can de-duplicate normal constants, but not specialization constants.
886  if (auto id = getConstantID(boolAttr)) {
887  return id;
888  }
889  }
890 
891  // Process the type for this bool literal
892  uint32_t typeID = 0;
893  if (failed(processType(loc, cast<IntegerAttr>(boolAttr).getType(), typeID))) {
894  return 0;
895  }
896 
897  auto resultID = getNextID();
898  auto opcode = boolAttr.getValue()
899  ? (isSpec ? spirv::Opcode::OpSpecConstantTrue
900  : spirv::Opcode::OpConstantTrue)
901  : (isSpec ? spirv::Opcode::OpSpecConstantFalse
902  : spirv::Opcode::OpConstantFalse);
903  encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID});
904 
905  if (!isSpec) {
906  constIDMap[boolAttr] = resultID;
907  }
908  return resultID;
909 }
910 
911 uint32_t Serializer::prepareConstantInt(Location loc, IntegerAttr intAttr,
912  bool isSpec) {
913  if (!isSpec) {
914  // We can de-duplicate normal constants, but not specialization constants.
915  if (auto id = getConstantID(intAttr)) {
916  return id;
917  }
918  }
919 
920  // Process the type for this integer literal
921  uint32_t typeID = 0;
922  if (failed(processType(loc, intAttr.getType(), typeID))) {
923  return 0;
924  }
925 
926  auto resultID = getNextID();
927  APInt value = intAttr.getValue();
928  unsigned bitwidth = value.getBitWidth();
929  bool isSigned = intAttr.getType().isSignedInteger();
930  auto opcode =
931  isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;
932 
933  switch (bitwidth) {
934  // According to SPIR-V spec, "When the type's bit width is less than
935  // 32-bits, the literal's value appears in the low-order bits of the word,
936  // and the high-order bits must be 0 for a floating-point type, or 0 for an
937  // integer type with Signedness of 0, or sign extended when Signedness
938  // is 1."
939  case 32:
940  case 16:
941  case 8: {
942  uint32_t word = 0;
943  if (isSigned) {
944  word = static_cast<int32_t>(value.getSExtValue());
945  } else {
946  word = static_cast<uint32_t>(value.getZExtValue());
947  }
948  encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
949  } break;
950  // According to SPIR-V spec: "When the type's bit width is larger than one
951  // word, the literal’s low-order words appear first."
952  case 64: {
953  struct DoubleWord {
954  uint32_t word1;
955  uint32_t word2;
956  } words;
957  if (isSigned) {
958  words = llvm::bit_cast<DoubleWord>(value.getSExtValue());
959  } else {
960  words = llvm::bit_cast<DoubleWord>(value.getZExtValue());
961  }
962  encodeInstructionInto(typesGlobalValues, opcode,
963  {typeID, resultID, words.word1, words.word2});
964  } break;
965  default: {
966  std::string valueStr;
967  llvm::raw_string_ostream rss(valueStr);
968  value.print(rss, /*isSigned=*/false);
969 
970  emitError(loc, "cannot serialize ")
971  << bitwidth << "-bit integer literal: " << valueStr;
972  return 0;
973  }
974  }
975 
976  if (!isSpec) {
977  constIDMap[intAttr] = resultID;
978  }
979  return resultID;
980 }
981 
982 uint32_t Serializer::prepareConstantFp(Location loc, FloatAttr floatAttr,
983  bool isSpec) {
984  if (!isSpec) {
985  // We can de-duplicate normal constants, but not specialization constants.
986  if (auto id = getConstantID(floatAttr)) {
987  return id;
988  }
989  }
990 
991  // Process the type for this float literal
992  uint32_t typeID = 0;
993  if (failed(processType(loc, floatAttr.getType(), typeID))) {
994  return 0;
995  }
996 
997  auto resultID = getNextID();
998  APFloat value = floatAttr.getValue();
999  APInt intValue = value.bitcastToAPInt();
1000 
1001  auto opcode =
1002  isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;
1003 
1004  if (&value.getSemantics() == &APFloat::IEEEsingle()) {
1005  uint32_t word = llvm::bit_cast<uint32_t>(value.convertToFloat());
1006  encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
1007  } else if (&value.getSemantics() == &APFloat::IEEEdouble()) {
1008  struct DoubleWord {
1009  uint32_t word1;
1010  uint32_t word2;
1011  } words = llvm::bit_cast<DoubleWord>(value.convertToDouble());
1012  encodeInstructionInto(typesGlobalValues, opcode,
1013  {typeID, resultID, words.word1, words.word2});
1014  } else if (&value.getSemantics() == &APFloat::IEEEhalf()) {
1015  uint32_t word =
1016  static_cast<uint32_t>(value.bitcastToAPInt().getZExtValue());
1017  encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
1018  } else {
1019  std::string valueStr;
1020  llvm::raw_string_ostream rss(valueStr);
1021  value.print(rss);
1022 
1023  emitError(loc, "cannot serialize ")
1024  << floatAttr.getType() << "-typed float literal: " << valueStr;
1025  return 0;
1026  }
1027 
1028  if (!isSpec) {
1029  constIDMap[floatAttr] = resultID;
1030  }
1031  return resultID;
1032 }
1033 
1034 //===----------------------------------------------------------------------===//
1035 // Control flow
1036 //===----------------------------------------------------------------------===//
1037 
1038 uint32_t Serializer::getOrCreateBlockID(Block *block) {
1039  if (uint32_t id = getBlockID(block))
1040  return id;
1041  return blockIDMap[block] = getNextID();
1042 }
1043 
1044 #ifndef NDEBUG
1045 void Serializer::printBlock(Block *block, raw_ostream &os) {
1046  os << "block " << block << " (id = ";
1047  if (uint32_t id = getBlockID(block))
1048  os << id;
1049  else
1050  os << "unknown";
1051  os << ")\n";
1052 }
1053 #endif
1054 
1055 LogicalResult
1056 Serializer::processBlock(Block *block, bool omitLabel,
1057  function_ref<LogicalResult()> emitMerge) {
1058  LLVM_DEBUG(llvm::dbgs() << "processing block " << block << ":\n");
1059  LLVM_DEBUG(block->print(llvm::dbgs()));
1060  LLVM_DEBUG(llvm::dbgs() << '\n');
1061  if (!omitLabel) {
1062  uint32_t blockID = getOrCreateBlockID(block);
1063  LLVM_DEBUG(printBlock(block, llvm::dbgs()));
1064 
1065  // Emit OpLabel for this block.
1066  encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {blockID});
1067  }
1068 
1069  // Emit OpPhi instructions for block arguments, if any.
1070  if (failed(emitPhiForBlockArguments(block)))
1071  return failure();
1072 
1073  // If we need to emit merge instructions, it must happen in this block. Check
1074  // whether we have other structured control flow ops, which will be expanded
1075  // into multiple basic blocks. If that's the case, we need to emit the merge
1076  // right now and then create new blocks for further serialization of the ops
1077  // in this block.
1078  if (emitMerge &&
1079  llvm::any_of(block->getOperations(),
1080  llvm::IsaPred<spirv::LoopOp, spirv::SelectionOp>)) {
1081  if (failed(emitMerge()))
1082  return failure();
1083  emitMerge = nullptr;
1084 
1085  // Start a new block for further serialization.
1086  uint32_t blockID = getNextID();
1087  encodeInstructionInto(functionBody, spirv::Opcode::OpBranch, {blockID});
1088  encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {blockID});
1089  }
1090 
1091  // Process each op in this block except the terminator.
1092  for (Operation &op : llvm::drop_end(*block)) {
1093  if (failed(processOperation(&op)))
1094  return failure();
1095  }
1096 
1097  // Process the terminator.
1098  if (emitMerge)
1099  if (failed(emitMerge()))
1100  return failure();
1101  if (failed(processOperation(&block->back())))
1102  return failure();
1103 
1104  return success();
1105 }
1106 
1107 LogicalResult Serializer::emitPhiForBlockArguments(Block *block) {
1108  // Nothing to do if this block has no arguments or it's the entry block, which
1109  // always has the same arguments as the function signature.
1110  if (block->args_empty() || block->isEntryBlock())
1111  return success();
1112 
1113  LLVM_DEBUG(llvm::dbgs() << "emitting phi instructions..\n");
1114 
1115  // If the block has arguments, we need to create SPIR-V OpPhi instructions.
1116  // A SPIR-V OpPhi instruction is of the syntax:
1117  // OpPhi | result type | result <id> | (value <id>, parent block <id>) pair
1118  // So we need to collect all predecessor blocks and the arguments they send
1119  // to this block.
1121  for (Block *mlirPredecessor : block->getPredecessors()) {
1122  auto *terminator = mlirPredecessor->getTerminator();
1123  LLVM_DEBUG(llvm::dbgs() << " mlir predecessor ");
1124  LLVM_DEBUG(printBlock(mlirPredecessor, llvm::dbgs()));
1125  LLVM_DEBUG(llvm::dbgs() << " terminator: " << *terminator << "\n");
1126  // The predecessor here is the immediate one according to MLIR's IR
1127  // structure. It does not directly map to the incoming parent block for the
1128  // OpPhi instructions at SPIR-V binary level. This is because structured
1129  // control flow ops are serialized to multiple SPIR-V blocks. If there is a
1130  // spirv.mlir.selection/spirv.mlir.loop op in the MLIR predecessor block,
1131  // the branch op jumping to the OpPhi's block then resides in the previous
1132  // structured control flow op's merge block.
1133  Block *spirvPredecessor = getPhiIncomingBlock(mlirPredecessor);
1134  LLVM_DEBUG(llvm::dbgs() << " spirv predecessor ");
1135  LLVM_DEBUG(printBlock(spirvPredecessor, llvm::dbgs()));
1136  if (auto branchOp = dyn_cast<spirv::BranchOp>(terminator)) {
1137  predecessors.emplace_back(spirvPredecessor, branchOp.getOperands());
1138  } else if (auto branchCondOp =
1139  dyn_cast<spirv::BranchConditionalOp>(terminator)) {
1140  std::optional<OperandRange> blockOperands;
1141  if (branchCondOp.getTrueTarget() == block) {
1142  blockOperands = branchCondOp.getTrueTargetOperands();
1143  } else {
1144  assert(branchCondOp.getFalseTarget() == block);
1145  blockOperands = branchCondOp.getFalseTargetOperands();
1146  }
1147 
1148  assert(!blockOperands->empty() &&
1149  "expected non-empty block operand range");
1150  predecessors.emplace_back(spirvPredecessor, *blockOperands);
1151  } else {
1152  return terminator->emitError("unimplemented terminator for Phi creation");
1153  }
1154  LLVM_DEBUG({
1155  llvm::dbgs() << " block arguments:\n";
1156  for (Value v : predecessors.back().second)
1157  llvm::dbgs() << " " << v << "\n";
1158  });
1159  }
1160 
1161  // Then create OpPhi instruction for each of the block argument.
1162  for (auto argIndex : llvm::seq<unsigned>(0, block->getNumArguments())) {
1163  BlockArgument arg = block->getArgument(argIndex);
1164 
1165  // Get the type <id> and result <id> for this OpPhi instruction.
1166  uint32_t phiTypeID = 0;
1167  if (failed(processType(arg.getLoc(), arg.getType(), phiTypeID)))
1168  return failure();
1169  uint32_t phiID = getNextID();
1170 
1171  LLVM_DEBUG(llvm::dbgs() << "[phi] for block argument #" << argIndex << ' '
1172  << arg << " (id = " << phiID << ")\n");
1173 
1174  // Prepare the (value <id>, parent block <id>) pairs.
1175  SmallVector<uint32_t, 8> phiArgs;
1176  phiArgs.push_back(phiTypeID);
1177  phiArgs.push_back(phiID);
1178 
1179  for (auto predIndex : llvm::seq<unsigned>(0, predecessors.size())) {
1180  Value value = predecessors[predIndex].second[argIndex];
1181  uint32_t predBlockId = getOrCreateBlockID(predecessors[predIndex].first);
1182  LLVM_DEBUG(llvm::dbgs() << "[phi] use predecessor (id = " << predBlockId
1183  << ") value " << value << ' ');
1184  // Each pair is a value <id> ...
1185  uint32_t valueId = getValueID(value);
1186  if (valueId == 0) {
1187  // The op generating this value hasn't been visited yet so we don't have
1188  // an <id> assigned yet. Record this to fix up later.
1189  LLVM_DEBUG(llvm::dbgs() << "(need to fix)\n");
1190  deferredPhiValues[value].push_back(functionBody.size() + 1 +
1191  phiArgs.size());
1192  } else {
1193  LLVM_DEBUG(llvm::dbgs() << "(id = " << valueId << ")\n");
1194  }
1195  phiArgs.push_back(valueId);
1196  // ... and a parent block <id>.
1197  phiArgs.push_back(predBlockId);
1198  }
1199 
1200  encodeInstructionInto(functionBody, spirv::Opcode::OpPhi, phiArgs);
1201  valueIDMap[arg] = phiID;
1202  }
1203 
1204  return success();
1205 }
1206 
1207 //===----------------------------------------------------------------------===//
1208 // Operation
1209 //===----------------------------------------------------------------------===//
1210 
1211 LogicalResult Serializer::encodeExtensionInstruction(
1212  Operation *op, StringRef extensionSetName, uint32_t extensionOpcode,
1213  ArrayRef<uint32_t> operands) {
1214  // Check if the extension has been imported.
1215  auto &setID = extendedInstSetIDMap[extensionSetName];
1216  if (!setID) {
1217  setID = getNextID();
1218  SmallVector<uint32_t, 16> importOperands;
1219  importOperands.push_back(setID);
1220  spirv::encodeStringLiteralInto(importOperands, extensionSetName);
1221  encodeInstructionInto(extendedSets, spirv::Opcode::OpExtInstImport,
1222  importOperands);
1223  }
1224 
1225  // The first two operands are the result type <id> and result <id>. The set
1226  // <id> and the opcode need to be insert after this.
1227  if (operands.size() < 2) {
1228  return op->emitError("extended instructions must have a result encoding");
1229  }
1230  SmallVector<uint32_t, 8> extInstOperands;
1231  extInstOperands.reserve(operands.size() + 2);
1232  extInstOperands.append(operands.begin(), std::next(operands.begin(), 2));
1233  extInstOperands.push_back(setID);
1234  extInstOperands.push_back(extensionOpcode);
1235  extInstOperands.append(std::next(operands.begin(), 2), operands.end());
1236  encodeInstructionInto(functionBody, spirv::Opcode::OpExtInst,
1237  extInstOperands);
1238  return success();
1239 }
1240 
1241 LogicalResult Serializer::processOperation(Operation *opInst) {
1242  LLVM_DEBUG(llvm::dbgs() << "[op] '" << opInst->getName() << "'\n");
1243 
1244  // First dispatch the ops that do not directly mirror an instruction from
1245  // the SPIR-V spec.
1247  .Case([&](spirv::AddressOfOp op) { return processAddressOfOp(op); })
1248  .Case([&](spirv::BranchOp op) { return processBranchOp(op); })
1249  .Case([&](spirv::BranchConditionalOp op) {
1250  return processBranchConditionalOp(op);
1251  })
1252  .Case([&](spirv::ConstantOp op) { return processConstantOp(op); })
1253  .Case([&](spirv::FuncOp op) { return processFuncOp(op); })
1254  .Case([&](spirv::GlobalVariableOp op) {
1255  return processGlobalVariableOp(op);
1256  })
1257  .Case([&](spirv::LoopOp op) { return processLoopOp(op); })
1258  .Case([&](spirv::ReferenceOfOp op) { return processReferenceOfOp(op); })
1259  .Case([&](spirv::SelectionOp op) { return processSelectionOp(op); })
1260  .Case([&](spirv::SpecConstantOp op) { return processSpecConstantOp(op); })
1261  .Case([&](spirv::SpecConstantCompositeOp op) {
1262  return processSpecConstantCompositeOp(op);
1263  })
1264  .Case([&](spirv::SpecConstantOperationOp op) {
1265  return processSpecConstantOperationOp(op);
1266  })
1267  .Case([&](spirv::UndefOp op) { return processUndefOp(op); })
1268  .Case([&](spirv::VariableOp op) { return processVariableOp(op); })
1269 
1270  // Then handle all the ops that directly mirror SPIR-V instructions with
1271  // auto-generated methods.
1272  .Default(
1273  [&](Operation *op) { return dispatchToAutogenSerialization(op); });
1274 }
1275 
1276 LogicalResult Serializer::processOpWithoutGrammarAttr(Operation *op,
1277  StringRef extInstSet,
1278  uint32_t opcode) {
1279  SmallVector<uint32_t, 4> operands;
1280  Location loc = op->getLoc();
1281 
1282  uint32_t resultID = 0;
1283  if (op->getNumResults() != 0) {
1284  uint32_t resultTypeID = 0;
1285  if (failed(processType(loc, op->getResult(0).getType(), resultTypeID)))
1286  return failure();
1287  operands.push_back(resultTypeID);
1288 
1289  resultID = getNextID();
1290  operands.push_back(resultID);
1291  valueIDMap[op->getResult(0)] = resultID;
1292  };
1293 
1294  for (Value operand : op->getOperands())
1295  operands.push_back(getValueID(operand));
1296 
1297  if (failed(emitDebugLine(functionBody, loc)))
1298  return failure();
1299 
1300  if (extInstSet.empty()) {
1301  encodeInstructionInto(functionBody, static_cast<spirv::Opcode>(opcode),
1302  operands);
1303  } else {
1304  if (failed(encodeExtensionInstruction(op, extInstSet, opcode, operands)))
1305  return failure();
1306  }
1307 
1308  if (op->getNumResults() != 0) {
1309  for (auto attr : op->getAttrs()) {
1310  if (failed(processDecoration(loc, resultID, attr)))
1311  return failure();
1312  }
1313  }
1314 
1315  return success();
1316 }
1317 
1318 LogicalResult Serializer::emitDecoration(uint32_t target,
1319  spirv::Decoration decoration,
1320  ArrayRef<uint32_t> params) {
1321  uint32_t wordCount = 3 + params.size();
1322  llvm::append_values(
1323  decorations,
1324  spirv::getPrefixedOpcode(wordCount, spirv::Opcode::OpDecorate), target,
1325  static_cast<uint32_t>(decoration));
1326  llvm::append_range(decorations, params);
1327  return success();
1328 }
1329 
1330 LogicalResult Serializer::emitDebugLine(SmallVectorImpl<uint32_t> &binary,
1331  Location loc) {
1332  if (!options.emitDebugInfo)
1333  return success();
1334 
1335  if (lastProcessedWasMergeInst) {
1336  lastProcessedWasMergeInst = false;
1337  return success();
1338  }
1339 
1340  auto fileLoc = dyn_cast<FileLineColLoc>(loc);
1341  if (fileLoc)
1342  encodeInstructionInto(binary, spirv::Opcode::OpLine,
1343  {fileID, fileLoc.getLine(), fileLoc.getColumn()});
1344  return success();
1345 }
1346 } // namespace spirv
1347 } // namespace mlir
static MLIRContext * getContext(OpFoldResult val)
static llvm::ManagedStatic< PassManagerOptions > options
static Block * getStructuredControlFlowOpMergeBlock(Operation *op)
Returns the merge block if the given op is a structured control flow op.
Definition: Serializer.cpp:36
static Block * getPhiIncomingBlock(Block *block)
Given a predecessor block for a block with arguments, returns the block that should be used as the pa...
Definition: Serializer.cpp:47
Attributes are known-constant values of operations.
Definition: Attributes.h:25
This class represents an argument of a Block.
Definition: Value.h:319
Location getLoc() const
Return the location for this argument.
Definition: Value.h:334
Block represents an ordered list of Operations.
Definition: Block.h:33
BlockArgument getArgument(unsigned i)
Definition: Block.h:129
unsigned getNumArguments()
Definition: Block.h:128
Operation & back()
Definition: Block.h:152
iterator_range< pred_iterator > getPredecessors()
Definition: Block.h:237
OpListType & getOperations()
Definition: Block.h:137
void print(raw_ostream &os)
bool args_empty()
Definition: Block.h:99
bool isEntryBlock()
Return if this block is the entry block in the parent region.
Definition: Block.cpp:38
Operation * getParentOp()
Returns the closest surrounding operation that contains this block.
Definition: Block.cpp:33
Special case of IntegerAttr to represent boolean integers, i.e., signless i1 integers.
bool getValue() const
Return the boolean value of this attribute.
IntegerAttr getI32IntegerAttr(int32_t value)
Definition: Builders.cpp:240
An attribute that represents a reference to a dense vector or tensor object.
ShapedType getType() const
Return the type of this ElementsAttr, guaranteed to be a vector or tensor with static shape.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
NamedAttribute represents a combination of a name and an Attribute value.
Definition: Attributes.h:207
StringAttr getName() const
Return the name of the attribute.
Definition: Attributes.cpp:49
Attribute getValue() const
Return the value of the attribute.
Definition: Attributes.h:221
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Definition: Operation.h:407
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
ArrayRef< NamedAttribute > getAttrs()
Return all of the attributes on this operation.
Definition: Operation.h:512
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
Block * getBlock()
Returns the operation block that contains this operation.
Definition: Operation.h:213
OperationName getName()
The name of an operation is the key identifier for it.
Definition: Operation.h:119
operand_range getOperands()
Returns an iterator on the underlying Value's.
Definition: Operation.h:378
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:404
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
MLIRContext * getContext() const
Return the MLIRContext in which this type was uniqued.
Definition: Types.cpp:35
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
unsigned getArrayStride() const
Returns the array stride in bytes.
Definition: SPIRVTypes.cpp:68
unsigned getArrayStride() const
Returns the array stride in bytes.
Definition: SPIRVTypes.cpp:473
void printValueIDMap(raw_ostream &os)
(For debugging) prints each value and its corresponding result <id>.
Definition: Serializer.cpp:139
Serializer(spirv::ModuleOp module, const SerializationOptions &options)
Creates a serializer for the given SPIR-V module.
Definition: Serializer.cpp:85
LogicalResult serialize()
Serializes the remembered SPIR-V module.
Definition: Serializer.cpp:89
void collect(SmallVectorImpl< uint32_t > &binary)
Collects the final SPIR-V binary.
Definition: Serializer.cpp:113
SPIR-V struct type.
Definition: SPIRVTypes.h:293
static StructType getIdentified(MLIRContext *context, StringRef identifier)
Construct an identified StructType.
Definition: SPIRVTypes.cpp:974
bool isIdentified() const
Returns true if the StructType is identified.
StringRef getIdentifier() const
For literal structs, return an empty string.
Definition: SPIRVTypes.cpp:998
void encodeStringLiteralInto(SmallVectorImpl< uint32_t > &binary, StringRef literal)
Encodes an SPIR-V literal string into the given binary vector.
LogicalResult processDecorationList(Location loc, Decoration decoration, Attribute attrList, StringRef attrName, EmitF emitter)
Definition: Serializer.cpp:230
uint32_t getPrefixedOpcode(uint32_t wordCount, spirv::Opcode opcode)
Returns the word-count-prefixed opcode for an SPIR-V instruction.
void encodeInstructionInto(SmallVectorImpl< uint32_t > &binary, spirv::Opcode op, ArrayRef< uint32_t > operands)
Encodes an SPIR-V instruction with the given opcode and operands into the given binary vector.
Definition: Serializer.cpp:78
void appendModuleHeader(SmallVectorImpl< uint32_t > &header, spirv::Version version, uint32_t idBound)
Appends a SPRI-V module header to header with the given version and idBound.
constexpr unsigned kHeaderWordCount
SPIR-V binary header word count.
static std::string getDecorationName(StringRef attrName)
Definition: Serializer.cpp:212
Include the generated interface declarations.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
Definition: Utils.cpp:305
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
bool emitSymbolName
Whether to emit OpName instructions for SPIR-V symbol ops.
Definition: Serialization.h:26
bool emitDebugInfo
Whether to emit OpLine location information for SPIR-V ops.
Definition: Serialization.h:28