23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/FloatingPointMode.h"
25 #include "llvm/ADT/SmallVector.h"
39 template <
class SrcValType,
class TargetValType,
class TargetType>
42 const std::function<TargetValType(
const SrcValType &)> &toApply,
43 TargetType targetType) {
48 for (
auto val : toTransform.
getValues<SrcValType>()) {
49 auto transformedVal = toApply(val);
50 transformedValues.push_back(transformedVal);
54 auto inShape = toTransform.
getType();
55 auto outTy = inShape.cloneWith({}, targetType);
62 const std::function<APFloat(
const APFloat &)> &toApply,
63 FloatType targetType);
68 if (isa<FloatType>(toCheck.getType().getElementType())) {
72 "Unexpected input tensor type: the "
73 "TOSA spec only allows floats");
87 "Non-const or non-dense input tensor");
92 if (isa<ConstOp>(toCheck.getDefiningOp())) {
97 "The reciprocal can only be folded if "
98 "it operates on a TOSA constant");
105 auto floatCheck = notifyIfNotFloat(toCheck, location, rewriter);
106 if (failed(floatCheck)) {
109 return notifyIfNoTosaDenseConstantTensor(toCheck, location, rewriter);
121 assert(unaryOp->getNumOperands() == 1);
122 auto inputOp = unaryOp->getOperand(0);
125 if (isa<SplatElementsAttr>(values)) {
131 return inputOp.hasOneUse();
134 template <
typename RangeType>
136 ShapedType outputType,
138 using ElementType = std::decay_t<decltype(*std::begin(data))>;
140 assert(inputType.getElementType() == outputType.getElementType());
142 if (inputType.getNumElements() == 0)
145 auto inputShape = inputType.getShape();
153 auto initialValue = *std::begin(data);
158 auto srcLinearIndex = it.index();
160 uint64_t dstLinearIndex = 0;
161 for (int64_t dim = inputShape.size() - 1; dim >= 0; --dim) {
163 auto sourceIndexForDim = srcLinearIndex % inputShape[dim];
164 srcLinearIndex /= inputShape[dim];
169 outputStrides[invertedPermValues[dim]] * sourceIndexForDim;
172 outputValues[dstLinearIndex] = it.value();
184 ShapedType outputType,
186 if (
auto data = attr.tryGetValues<
bool>())
187 return transposeType(*data, inputType, outputType, permValues);
189 if (
auto data = attr.tryGetValues<int8_t>())
190 return transposeType(*data, inputType, outputType, permValues);
192 if (
auto data = attr.tryGetValues<int16_t>())
193 return transposeType(*data, inputType, outputType, permValues);
195 if (
auto data = attr.tryGetValues<int32_t>())
196 return transposeType(*data, inputType, outputType, permValues);
198 if (
auto data = attr.tryGetValues<int64_t>())
199 return transposeType(*data, inputType, outputType, permValues);
201 if (
auto data = attr.tryGetValues<
float>())
202 return transposeType(*data, inputType, outputType, permValues);
204 if (
auto data = attr.tryGetValues<APFloat>())
205 return transposeType(*data, inputType, outputType, permValues);
210 struct TosaFoldConstantTranspose :
public OpRewritePattern<tosa::TransposeOp> {
213 LogicalResult matchAndRewrite(tosa::TransposeOp op,
215 auto outputType = cast<ShapedType>(op.getType());
217 if (!outputType.getElementType().isIntOrIndexOrFloat())
220 ElementsAttr inputValues;
224 if (!llvm::hasSingleElement(op.getInput1().getDefiningOp()->getUsers()))
227 auto permValues = llvm::map_to_vector(
228 op.getPerms(), [](
const int32_t v) { return static_cast<int64_t>(v); });
230 auto inputType = cast<ShapedType>(op.getInput1().getType());
232 auto resultAttr =
transpose(inputValues, inputType, outputType, permValues);
235 op,
"unsupported attribute or element type");
247 LogicalResult matchAndRewrite(ReciprocalOp recip,
249 auto inputTensor = recip.getInput1();
253 notifyIfNotConstantFloatTosaTensor(inputTensor, recip, rewriter);
254 if (failed(preCondCheck)) {
263 if (!constantUnaryOpShouldBeFolded(recip, inputValues)) {
265 recip,
"Currently, reciprocals will only be folded if the input "
266 "tensor has a single user");
270 auto newTensor = applyElementWise<APFloat, APFloat, FloatType>(
271 inputValues, &ReciprocalOp::calcOneElement,
285 int64_t remaining = index;
287 for (int64_t i = tensorShape.size() - 1; i >= 0; --i) {
288 position[i] = remaining % tensorShape[i];
289 remaining /= tensorShape[i];
300 int64_t multiplierTmp = 1;
301 for (int64_t i = position.size() - 1; i >= 0; --i) {
302 index += position[i] * multiplierTmp;
303 multiplierTmp *= tensorShape[i];
308 template <
typename OperationType>
309 llvm::APInt calculateReducedValue(
const mlir::ElementsAttr &oldTensorAttr,
311 int64_t reductionAxis,
312 int64_t reductionIndex) {
315 newShape[reductionAxis] = 1;
318 getPositionFromIndex(reductionIndex, newShape);
319 auto oldTensor = oldTensorAttr.getValues<llvm::APInt>();
321 position[reductionAxis] = 0;
322 int64_t indexAtOldTensor = getIndexFromPosition(position, oldShape);
323 llvm::APInt reducedValue = oldTensor[indexAtOldTensor];
325 for (int64_t reductionAxisVal = 1; reductionAxisVal < oldShape[reductionAxis];
326 ++reductionAxisVal) {
328 int64_t stride = std::accumulate(oldShape.begin() + reductionAxis + 1,
329 oldShape.end(), 1, std::multiplies<int>());
330 int64_t index = indexAtOldTensor + stride * reductionAxisVal;
332 OperationType::calcOneElement(reducedValue, oldTensor[index]);
337 template <
typename OperationType>
338 struct ReduceConstantOptimization :
public OpRewritePattern<OperationType> {
341 bool aggressiveReduceConstant)
343 aggressiveReduceConstant(aggressiveReduceConstant) {}
347 LogicalResult matchAndRewrite(OperationType op,
349 Value inputOp = op.getInput();
354 op,
"reduce input must be const operation");
356 if (!inputOp.
hasOneUse() && !this->aggressiveReduceConstant)
358 op,
"input operation has more than one user");
360 auto resultType = cast<ShapedType>(op.getOutput().getType());
362 if (!resultType.hasStaticShape())
365 auto reductionAxis = op.getAxis();
366 const auto denseElementsAttr = constOp.getValues();
367 const auto shapedOldElementsValues =
368 cast<ShapedType>(denseElementsAttr.getType());
370 if (!llvm::isa<IntegerType>(shapedOldElementsValues.getElementType()))
372 op,
"reduce input currently supported with integer type");
374 auto oldShape = shapedOldElementsValues.getShape();
375 auto newShape = resultType.getShape();
377 auto newNumOfElements = std::accumulate(newShape.begin(), newShape.end(), 1,
378 std::multiplies<int>());
381 for (int64_t reductionIndex = 0; reductionIndex < newNumOfElements;
385 newReducedTensor[reductionIndex] = calculateReducedValue<OperationType>(
386 denseElementsAttr, oldShape, reductionAxis, reductionIndex);
389 auto rankedTensorType = cast<RankedTensorType>(resultType);
395 const bool aggressiveReduceConstant;
402 bool aggressiveReduceConstant) {
403 patterns.add<ReduceConstantOptimization<ReduceAllOp>>(
404 ctx, aggressiveReduceConstant);
405 patterns.add<ReduceConstantOptimization<ReduceAnyOp>>(
406 ctx, aggressiveReduceConstant);
407 patterns.add<ReduceConstantOptimization<ReduceMaxOp>>(
408 ctx, aggressiveReduceConstant);
409 patterns.add<ReduceConstantOptimization<ReduceMinOp>>(
410 ctx, aggressiveReduceConstant);
411 patterns.add<ReduceConstantOptimization<ReduceProductOp>>(
412 ctx, aggressiveReduceConstant);
413 patterns.add<ReduceConstantOptimization<ReduceSumOp>>(
414 ctx, aggressiveReduceConstant);
419 patterns.add<TosaFoldConstantTranspose>(ctx);
424 patterns.add<TosaFoldConstantReciprocal>(ctx);
An attribute that represents a reference to a dense vector or tensor object.
auto getValues() const
Return the held element values as a range of the given type.
int64_t getNumElements() const
Returns the number of elements held by this attribute.
Type getElementType() const
Return the element type of this DenseElementsAttr.
static DenseElementsAttr get(ShapedType type, ArrayRef< Attribute > values)
Constructs a dense elements attribute from an array of element values.
ShapedType getType() const
Return the type of this ElementsAttr, guaranteed to be a vector or tensor with static shape.
MLIRContext is the top-level object for a collection of MLIR operations.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
bool hasOneUse() const
Returns true if this value has exactly one use.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
void populateTosaConstantReduction(MLIRContext *ctx, RewritePatternSet &patterns, bool aggressiveReduceConstant)
void populateTosaFoldConstantReciprocalPatterns(MLIRContext *ctx, RewritePatternSet &patterns)
void populateTosaFoldConstantTransposePatterns(MLIRContext *ctx, RewritePatternSet &patterns)
static void transpose(llvm::ArrayRef< int64_t > trans, SmallVector< int64_t > &shape)
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
SmallVector< int64_t > computeStrides(ArrayRef< int64_t > sizes)
const FrozenRewritePatternSet & patterns
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
SmallVector< int64_t > invertPermutationVector(ArrayRef< int64_t > permutation)
Helper method to apply to inverse a permutation.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
Patterns must specify the root operation name they match against, and can also specify the benefit of...