MLIR  20.0.0git
CheckUses.cpp
Go to the documentation of this file.
1 //===- CheckUses.cpp - Expensive transform value validity checks ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pass that performs expensive opt-in checks for Transform
10 // dialect values being potentially used after they have been consumed.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 
18 #include "mlir/Pass/Pass.h"
19 #include "llvm/ADT/SetOperations.h"
20 
21 namespace mlir {
22 namespace transform {
23 #define GEN_PASS_DEF_CHECKUSESPASS
24 #include "mlir/Dialect/Transform/Transforms/Passes.h.inc"
25 } // namespace transform
26 } // namespace mlir
27 
28 using namespace mlir;
29 
30 namespace {
31 
32 /// Returns a reference to a cached set of blocks that are reachable from the
33 /// given block via edges computed by the `getNextNodes` function. For example,
34 /// if `getNextNodes` returns successors of a block, this will return the set of
35 /// reachable blocks; if it returns predecessors of a block, this will return
36 /// the set of blocks from which the given block can be reached. The block is
37 /// considered reachable form itself only if there is a cycle.
38 template <typename FnTy>
40 getReachableImpl(Block *block, FnTy getNextNodes,
42  auto [it, inserted] = cache.try_emplace(block);
43  if (!inserted)
44  return it->getSecond();
45 
46  llvm::SmallPtrSet<Block *, 4> &reachable = it->second;
47  SmallVector<Block *> worklist;
48  worklist.push_back(block);
49  while (!worklist.empty()) {
50  Block *current = worklist.pop_back_val();
51  for (Block *predecessor : getNextNodes(current)) {
52  // The block is reachable from its transitive predecessors. Only add
53  // them to the worklist if they weren't already visited.
54  if (reachable.insert(predecessor).second)
55  worklist.push_back(predecessor);
56  }
57  }
58  return reachable;
59 }
60 
61 /// An analysis that identifies whether a value allocated by a Transform op may
62 /// be used by another such op after it may have been freed by a third op on
63 /// some control flow path. This is conceptually similar to a data flow
64 /// analysis, but relies on side effects related to particular values that
65 /// currently cannot be modeled by the MLIR data flow analysis framework (also,
66 /// the lattice element would be rather expensive as it would need to include
67 /// live and/or freed values for each operation).
68 ///
69 /// This analysis is conservatively pessimisic: it will consider that a value
70 /// may be freed if it is freed on any possible control flow path between its
71 /// allocation and a relevant use, even if the control never actually flows
72 /// through the operation that frees the value. It also does not differentiate
73 /// between may- (freed on at least one control flow path) and must-free (freed
74 /// on all possible control flow paths) because it would require expensive graph
75 /// algorithms.
76 ///
77 /// It is intended as an additional non-blocking verification or debugging aid
78 /// for ops in the Transform dialect. It leverages the requirement for Transform
79 /// dialect ops to implement the MemoryEffectsOpInterface, and expects the
80 /// values in the Transform IR to have an allocation effect on the
81 /// TransformMappingResource when defined.
82 class TransformOpMemFreeAnalysis {
83 public:
84  MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TransformOpMemFreeAnalysis)
85 
86  /// Computes the analysis for Transform ops nested in the given operation.
87  explicit TransformOpMemFreeAnalysis(Operation *root) {
88  root->walk([&](Operation *op) {
89  if (isa<transform::TransformOpInterface>(op)) {
90  collectFreedValues(op);
91  return WalkResult::skip();
92  }
93  return WalkResult::advance();
94  });
95  }
96 
97  /// A list of operations that may be deleting a value. Non-empty list
98  /// contextually converts to boolean "true" value.
99  class PotentialDeleters {
100  public:
101  /// Creates an empty list that corresponds to the value being live.
102  static PotentialDeleters live() { return PotentialDeleters({}); }
103 
104  /// Creates a list from the operations that may be deleting the value.
105  static PotentialDeleters maybeFreed(ArrayRef<Operation *> deleters) {
106  return PotentialDeleters(deleters);
107  }
108 
109  /// Converts to "true" if there are operations that may be deleting the
110  /// value.
111  explicit operator bool() const { return !deleters.empty(); }
112 
113  /// Concatenates the lists of operations that may be deleting the value. The
114  /// value is known to be live if the reuslting list is still empty.
115  PotentialDeleters &operator|=(const PotentialDeleters &other) {
116  llvm::append_range(deleters, other.deleters);
117  return *this;
118  }
119 
120  /// Returns the list of ops that may be deleting the value.
121  ArrayRef<Operation *> getOps() const { return deleters; }
122 
123  private:
124  /// Constructs the list from the given operations.
125  explicit PotentialDeleters(ArrayRef<Operation *> ops) {
126  llvm::append_range(deleters, ops);
127  }
128 
129  /// The list of operations that may be deleting the value.
130  SmallVector<Operation *> deleters;
131  };
132 
133  /// Returns the list of operations that may be deleting the operand value on
134  /// any control flow path between the definition of the value and its use as
135  /// the given operand. For the purposes of this analysis, the value is
136  /// considered to be allocated at its definition point and never re-allocated.
137  PotentialDeleters isUseLive(OpOperand &operand) {
138  const llvm::SmallPtrSet<Operation *, 2> &deleters = freedBy[operand.get()];
139  if (deleters.empty())
140  return live();
141 
142 #ifndef NDEBUG
143  // Check that the definition point actually allocates the value. If the
144  // definition is a block argument, it may be just forwarding the operand of
145  // the parent op without doing a new allocation, allow that. We currently
146  // don't have the capability to analyze region-based control flow here.
147  //
148  // TODO: when this ported to the dataflow analysis infra, we should have
149  // proper support for region-based control flow.
150  Operation *valueSource =
151  isa<OpResult>(operand.get())
152  ? operand.get().getDefiningOp()
153  : operand.get().getParentBlock()->getParentOp();
154  auto iface = cast<MemoryEffectOpInterface>(valueSource);
156  iface.getEffectsOnResource(transform::TransformMappingResource::get(),
157  instances);
158  assert((isa<BlockArgument>(operand.get()) ||
159  hasEffect<MemoryEffects::Allocate>(instances, operand.get())) &&
160  "expected the op defining the value to have an allocation effect "
161  "on it");
162 #endif
163 
164  // Collect ancestors of the use operation.
165  Block *defBlock = operand.get().getParentBlock();
166  SmallVector<Operation *> ancestors;
167  Operation *ancestor = operand.getOwner();
168  do {
169  ancestors.push_back(ancestor);
170  if (ancestor->getParentRegion() == defBlock->getParent())
171  break;
172  ancestor = ancestor->getParentOp();
173  } while (true);
174  std::reverse(ancestors.begin(), ancestors.end());
175 
176  // Consider the control flow from the definition point of the value to its
177  // use point. If the use is located in some nested region, consider the path
178  // from the entry block of the region to the use.
179  for (Operation *ancestor : ancestors) {
180  // The block should be considered partially if it is the block that
181  // contains the definition (allocation) of the value being used, and the
182  // value is defined in the middle of the block, i.e., is not a block
183  // argument.
184  bool isOutermost = ancestor == ancestors.front();
185  bool isFromBlockPartial = isOutermost && isa<OpResult>(operand.get());
186 
187  // Check if the value may be freed by operations between its definition
188  // (allocation) point in its block and the terminator of the block or the
189  // ancestor of the use if it is located in the same block. This is only
190  // done for partial blocks here, full blocks will be considered below
191  // similarly to other blocks.
192  if (isFromBlockPartial) {
193  bool defUseSameBlock = ancestor->getBlock() == defBlock;
194  // Consider all ops from the def to its block terminator, except the
195  // when the use is in the same block, in which case only consider the
196  // ops until the user.
197  if (PotentialDeleters potentialDeleters = isFreedInBlockAfter(
198  operand.get().getDefiningOp(), operand.get(),
199  defUseSameBlock ? ancestor : nullptr))
200  return potentialDeleters;
201  }
202 
203  // Check if the value may be freed by opeations preceding the ancestor in
204  // its block. Skip the check for partial blocks that contain both the
205  // definition and the use point, as this has been already checked above.
206  if (!isFromBlockPartial || ancestor->getBlock() != defBlock) {
207  if (PotentialDeleters potentialDeleters =
208  isFreedInBlockBefore(ancestor, operand.get()))
209  return potentialDeleters;
210  }
211 
212  // Check if the value may be freed by operations in any of the blocks
213  // between the definition point (in the outermost region) or the entry
214  // block of the region (in other regions) and the operand or its ancestor
215  // in the region. This includes the entire "form" block if (1) the block
216  // has not been considered as partial above and (2) the block can be
217  // reached again through some control-flow loop. This includes the entire
218  // "to" block if it can be reached form itself through some control-flow
219  // cycle, regardless of whether it has been visited before.
220  Block *ancestorBlock = ancestor->getBlock();
221  Block *from =
222  isOutermost ? defBlock : &ancestorBlock->getParent()->front();
223  if (PotentialDeleters potentialDeleters =
224  isMaybeFreedOnPaths(from, ancestorBlock, operand.get(),
225  /*alwaysIncludeFrom=*/!isFromBlockPartial))
226  return potentialDeleters;
227  }
228  return live();
229  }
230 
231 private:
232  /// Make PotentialDeleters constructors available with shorter names.
233  static PotentialDeleters maybeFreed(ArrayRef<Operation *> deleters) {
234  return PotentialDeleters::maybeFreed(deleters);
235  }
236  static PotentialDeleters live() { return PotentialDeleters::live(); }
237 
238  /// Returns the list of operations that may be deleting the given value betwen
239  /// the first and last operations, non-inclusive. `getNext` indicates the
240  /// direction of the traversal.
241  PotentialDeleters
242  isFreedBetween(Value value, Operation *first, Operation *last,
243  llvm::function_ref<Operation *(Operation *)> getNext) const {
244  auto it = freedBy.find(value);
245  if (it == freedBy.end())
246  return live();
247  const llvm::SmallPtrSet<Operation *, 2> &deleters = it->getSecond();
248  for (Operation *op = getNext(first); op != last; op = getNext(op)) {
249  if (deleters.contains(op))
250  return maybeFreed(op);
251  }
252  return live();
253  }
254 
255  /// Returns the list of operations that may be deleting the given value
256  /// between `root` and `before` values. `root` is expected to be in the same
257  /// block as `before` and precede it. If `before` is null, consider all
258  /// operations until the end of the block including the terminator.
259  PotentialDeleters isFreedInBlockAfter(Operation *root, Value value,
260  Operation *before = nullptr) const {
261  return isFreedBetween(value, root, before,
262  [](Operation *op) { return op->getNextNode(); });
263  }
264 
265  /// Returns the list of operations that may be deleting the given value
266  /// between the entry of the block and the `root` operation.
267  PotentialDeleters isFreedInBlockBefore(Operation *root, Value value) const {
268  return isFreedBetween(value, root, nullptr,
269  [](Operation *op) { return op->getPrevNode(); });
270  }
271 
272  /// Returns the list of operations that may be deleting the given value on
273  /// any of the control flow paths between the "form" and the "to" block. The
274  /// operations from any block visited on any control flow path are
275  /// consdiered. The "from" block is considered if there is a control flow
276  /// cycle going through it, i.e., if there is a possibility that all
277  /// operations in this block are visited or if the `alwaysIncludeFrom` flag is
278  /// set. The "to" block is considered only if there is a control flow cycle
279  /// going through it.
280  PotentialDeleters isMaybeFreedOnPaths(Block *from, Block *to, Value value,
281  bool alwaysIncludeFrom) {
282  // Find all blocks that lie on any path between "from" and "to", i.e., the
283  // intersection of blocks reachable from "from" and blocks from which "to"
284  // is rechable.
285  const llvm::SmallPtrSet<Block *, 4> &sources = getReachableFrom(to);
286  if (!sources.contains(from))
287  return live();
288 
289  llvm::SmallPtrSet<Block *, 4> reachable(getReachable(from));
290  llvm::set_intersect(reachable, sources);
291 
292  // If requested, include the "from" block that may not be present in the set
293  // of visited blocks when there is no cycle going through it.
294  if (alwaysIncludeFrom)
295  reachable.insert(from);
296 
297  // Join potential deleters from all blocks as we don't know here which of
298  // the paths through the control flow is taken.
299  PotentialDeleters potentialDeleters = live();
300  for (Block *block : reachable) {
301  for (Operation &op : *block) {
302  if (freedBy[value].count(&op))
303  potentialDeleters |= maybeFreed(&op);
304  }
305  }
306  return potentialDeleters;
307  }
308 
309  /// Popualtes `reachable` with the set of blocks that are rechable from the
310  /// given block. A block is considered reachable from itself if there is a
311  /// cycle in the control-flow graph that invovles the block.
312  const llvm::SmallPtrSet<Block *, 4> &getReachable(Block *block) {
313  return getReachableImpl(
314  block, [](Block *b) { return b->getSuccessors(); }, reachableCache);
315  }
316 
317  /// Populates `sources` with the set of blocks from which the given block is
318  /// reachable.
319  const llvm::SmallPtrSet<Block *, 4> &getReachableFrom(Block *block) {
320  return getReachableImpl(
321  block, [](Block *b) { return b->getPredecessors(); },
322  reachableFromCache);
323  }
324 
325  /// Returns true of `instances` contains an effect of `EffectTy` on `value`.
326  template <typename EffectTy>
328  Value value) {
329  return llvm::any_of(instances,
330  [&](const MemoryEffects::EffectInstance &instance) {
331  return instance.getValue() == value &&
332  isa<EffectTy>(instance.getEffect());
333  });
334  }
335 
336  /// Records the values that are being freed by an operation or any of its
337  /// children in `freedBy`.
338  void collectFreedValues(Operation *root) {
340  root->walk([&](Operation *child) {
341  // TODO: extend this to conservatively handle operations with undeclared
342  // side effects as maybe freeing the operands.
343  auto iface = cast<MemoryEffectOpInterface>(child);
344  instances.clear();
345  iface.getEffectsOnResource(transform::TransformMappingResource::get(),
346  instances);
347  for (Value operand : child->getOperands()) {
348  if (hasEffect<MemoryEffects::Free>(instances, operand)) {
349  // All parents of the operation that frees a value should be
350  // considered as potentially freeing the value as well.
351  //
352  // TODO: differentiate between must-free/may-free as well as between
353  // this op having the effect and children having the effect. This may
354  // require some analysis of all control flow paths through the nested
355  // regions as well as a mechanism to separate proper side effects from
356  // those obtained by nesting.
357  Operation *parent = child;
358  do {
359  freedBy[operand].insert(parent);
360  if (parent == root)
361  break;
362  parent = parent->getParentOp();
363  } while (true);
364  }
365  }
366  });
367  }
368 
369  /// The mapping from a value to operations that have a Free memory effect on
370  /// the TransformMappingResource and associated with this value, or to
371  /// Transform operations transitively containing such operations.
373 
374  /// Caches for sets of reachable blocks.
377 };
378 
379 //// A simple pass that warns about any use of a value by a transform operation
380 // that may be using the value after it has been freed.
381 class CheckUsesPass : public transform::impl::CheckUsesPassBase<CheckUsesPass> {
382 public:
383  void runOnOperation() override {
384  auto &analysis = getAnalysis<TransformOpMemFreeAnalysis>();
385 
386  getOperation()->walk([&](Operation *child) {
387  for (OpOperand &operand : child->getOpOperands()) {
388  TransformOpMemFreeAnalysis::PotentialDeleters deleters =
389  analysis.isUseLive(operand);
390  if (!deleters)
391  continue;
392 
393  InFlightDiagnostic diag = child->emitWarning()
394  << "operand #" << operand.getOperandNumber()
395  << " may be used after free";
396  diag.attachNote(operand.get().getLoc()) << "allocated here";
397  for (Operation *d : deleters.getOps()) {
398  diag.attachNote(d->getLoc()) << "freed here";
399  }
400  }
401  });
402  }
403 };
404 
405 } // namespace
406 
#define MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(CLASS_NAME)
Definition: TypeID.h:274
Block represents an ordered list of Operations.
Definition: Block.h:33
Region * getParent() const
Provide a 'getParent' method for ilist_node_with_parent methods.
Definition: Block.cpp:29
SuccessorRange getSuccessors()
Definition: Block.h:267
iterator_range< pred_iterator > getPredecessors()
Definition: Block.h:237
Operation * getParentOp()
Returns the closest surrounding operation that contains this block.
Definition: Block.cpp:33
IRValueT get() const
Return the current value being used by this operand.
Definition: UseDefLists.h:160
This class represents an operand of an operation.
Definition: Value.h:267
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Definition: Operation.h:793
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
Definition: Operation.h:234
Block * getBlock()
Returns the operation block that contains this operation.
Definition: Operation.h:213
MutableArrayRef< OpOperand > getOpOperands()
Definition: Operation.h:378
operand_range getOperands()
Returns an iterator on the underlying Value's.
Definition: Operation.h:373
Region * getParentRegion()
Returns the region to which the instruction belongs.
Definition: Operation.h:230
Block & front()
Definition: Region.h:65
This class represents a specific instance of an effect.
EffectT * getEffect() const
Return the effect being applied.
Value getValue() const
Return the value the effect is applied on, or nullptr if there isn't a known value being affected.
static TransformMappingResource * get()
Returns a unique instance for the given effect class.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Block * getParentBlock()
Return the Block in which this Value is defined.
Definition: Value.cpp:48
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
static WalkResult skip()
Definition: Visitors.h:52
static WalkResult advance()
Definition: Visitors.h:51
Operation * getOwner() const
Return the owner of this operand.
Definition: UseDefLists.h:38
Include the generated interface declarations.
ChangeResult & operator|=(ChangeResult &lhs, ChangeResult rhs)
bool hasEffect(Operation *op)
Returns true if op has an effect of type EffectTy.