MLIR  21.0.0git
Deserializer.h
Go to the documentation of this file.
1 //===- Deserializer.h - MLIR SPIR-V Deserializer ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SPIR-V binary to MLIR SPIR-V module deserializer.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef MLIR_TARGET_SPIRV_DESERIALIZER_H
14 #define MLIR_TARGET_SPIRV_DESERIALIZER_H
15 
18 #include "mlir/IR/Builders.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 #include <cstdint>
25 #include <optional>
26 
27 namespace mlir {
28 namespace spirv {
29 
30 //===----------------------------------------------------------------------===//
31 // Utility Definitions
32 //===----------------------------------------------------------------------===//
33 
34 /// A struct for containing a header block's merge and continue targets.
35 ///
36 /// This struct is used to track original structured control flow info from
37 /// SPIR-V blob. This info will be used to create
38 /// spirv.mlir.selection/spirv.mlir.loop later.
41  Block *continueBlock; // nullptr for spirv.mlir.selection
43  uint32_t control; // Selection/loop control
44 
45  BlockMergeInfo(Location location, uint32_t control)
46  : mergeBlock(nullptr), continueBlock(nullptr), loc(location),
47  control(control) {}
48  BlockMergeInfo(Location location, uint32_t control, Block *m,
49  Block *c = nullptr)
50  : mergeBlock(m), continueBlock(c), loc(location), control(control) {}
51 };
52 
53 /// A struct for containing OpLine instruction information.
54 struct DebugLine {
55  uint32_t fileID;
56  uint32_t line;
57  uint32_t column;
58 };
59 
60 /// Map from a selection/loop's header block to its merge (and continue) target.
62 
63 /// A "deferred struct type" is a struct type with one or more member types not
64 /// known when the Deserializer first encounters the struct. This happens, for
65 /// example, with recursive structs where a pointer to the struct type is
66 /// forward declared through OpTypeForwardPointer in the SPIR-V module before
67 /// the struct declaration; the actual pointer to struct type should be defined
68 /// later through an OpTypePointer. For example, the following C struct:
69 ///
70 /// struct A {
71 /// A* next;
72 /// };
73 ///
74 /// would be represented in the SPIR-V module as:
75 ///
76 /// OpName %A "A"
77 /// OpTypeForwardPointer %APtr Generic
78 /// %A = OpTypeStruct %APtr
79 /// %APtr = OpTypePointer Generic %A
80 ///
81 /// This means that the spirv::StructType cannot be fully constructed directly
82 /// when the Deserializer encounters it. Instead we create a
83 /// DeferredStructTypeInfo that contains all the information we know about the
84 /// spirv::StructType. Once all forward references for the struct are resolved,
85 /// the struct's body is set with all member info.
88 
89  // A list of all unresolved member types for the struct. First element of each
90  // item is operand ID, second element is member index in the struct.
92 
93  // The list of member types. For unresolved members, this list contains
94  // place-holder empty types that will be updated later.
98 };
99 
100 /// A struct that collects the info needed to materialize/emit a
101 /// SpecConstantOperation op.
103  spirv::Opcode enclodesOpcode;
104  uint32_t resultTypeID;
106 };
107 
108 //===----------------------------------------------------------------------===//
109 // Deserializer Declaration
110 //===----------------------------------------------------------------------===//
111 
112 /// A SPIR-V module serializer.
113 ///
114 /// A SPIR-V binary module is a single linear stream of instructions; each
115 /// instruction is composed of 32-bit words. The first word of an instruction
116 /// records the total number of words of that instruction using the 16
117 /// higher-order bits. So this deserializer uses that to get instruction
118 /// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
119 ///
120 // TODO: clean up created ops on errors
122 public:
123  /// Creates a deserializer for the given SPIR-V `binary` module.
124  /// The SPIR-V ModuleOp will be created into `context.
125  explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context,
126  const DeserializationOptions &options);
127 
128  /// Deserializes the remembered SPIR-V binary module.
129  LogicalResult deserialize();
130 
131  /// Collects the final SPIR-V ModuleOp.
133 
134 private:
135  //===--------------------------------------------------------------------===//
136  // Module structure
137  //===--------------------------------------------------------------------===//
138 
139  /// Initializes the `module` ModuleOp in this deserializer instance.
140  OwningOpRef<spirv::ModuleOp> createModuleOp();
141 
142  /// Processes SPIR-V module header in `binary`.
143  LogicalResult processHeader();
144 
145  /// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping
146  /// in the deserializer.
147  LogicalResult processCapability(ArrayRef<uint32_t> operands);
148 
149  /// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping
150  /// in the deserializer.
151  LogicalResult processExtension(ArrayRef<uint32_t> words);
152 
153  /// Processes the SPIR-V OpExtInstImport with `operands` and updates
154  /// bookkeeping in the deserializer.
155  LogicalResult processExtInstImport(ArrayRef<uint32_t> words);
156 
157  /// Attaches (version, capabilities, extensions) triple to `module` as an
158  /// attribute.
159  void attachVCETriple();
160 
161  /// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`.
162  LogicalResult processMemoryModel(ArrayRef<uint32_t> operands);
163 
164  /// Process SPIR-V OpName with `operands`.
165  LogicalResult processName(ArrayRef<uint32_t> operands);
166 
167  /// Processes an OpDecorate instruction.
168  LogicalResult processDecoration(ArrayRef<uint32_t> words);
169 
170  // Processes an OpMemberDecorate instruction.
171  LogicalResult processMemberDecoration(ArrayRef<uint32_t> words);
172 
173  /// Processes an OpMemberName instruction.
174  LogicalResult processMemberName(ArrayRef<uint32_t> words);
175 
176  /// Gets the function op associated with a result <id> of OpFunction.
177  spirv::FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); }
178 
179  /// Processes the SPIR-V function at the current `offset` into `binary`.
180  /// The operands to the OpFunction instruction is passed in as ``operands`.
181  /// This method processes each instruction inside the function and dispatches
182  /// them to their handler method accordingly.
183  LogicalResult processFunction(ArrayRef<uint32_t> operands);
184 
185  /// Processes OpFunctionEnd and finalizes function. This wires up block
186  /// argument created from OpPhi instructions and also structurizes control
187  /// flow.
188  LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands);
189 
190  /// Gets the constant's attribute and type associated with the given <id>.
191  std::optional<std::pair<Attribute, Type>> getConstant(uint32_t id);
192 
193  /// Gets the info needed to materialize the spec constant operation op
194  /// associated with the given <id>.
195  std::optional<SpecConstOperationMaterializationInfo>
196  getSpecConstantOperation(uint32_t id);
197 
198  /// Gets the constant's integer attribute with the given <id>. Returns a
199  /// null IntegerAttr if the given is not registered or does not correspond
200  /// to an integer constant.
201  IntegerAttr getConstantInt(uint32_t id);
202 
203  /// Returns a symbol to be used for the function name with the given
204  /// result <id>. This tries to use the function's OpName if
205  /// exists; otherwise creates one based on the <id>.
206  std::string getFunctionSymbol(uint32_t id);
207 
208  /// Returns a symbol to be used for the specialization constant with the given
209  /// result <id>. This tries to use the specialization constant's OpName if
210  /// exists; otherwise creates one based on the <id>.
211  std::string getSpecConstantSymbol(uint32_t id);
212 
213  /// Gets the specialization constant with the given result <id>.
214  spirv::SpecConstantOp getSpecConstant(uint32_t id) {
215  return specConstMap.lookup(id);
216  }
217 
218  /// Gets the composite specialization constant with the given result <id>.
219  spirv::SpecConstantCompositeOp getSpecConstantComposite(uint32_t id) {
220  return specConstCompositeMap.lookup(id);
221  }
222 
223  /// Creates a spirv::SpecConstantOp.
224  spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID,
225  TypedAttr defaultValue);
226 
227  /// Processes the OpVariable instructions at current `offset` into `binary`.
228  /// It is expected that this method is used for variables that are to be
229  /// defined at module scope and will be deserialized into a
230  /// spirv.GlobalVariable instruction.
231  LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands);
232 
233  /// Gets the global variable associated with a result <id> of OpVariable.
234  spirv::GlobalVariableOp getGlobalVariable(uint32_t id) {
235  return globalVariableMap.lookup(id);
236  }
237 
238  /// Sets the function argument's attributes. |argID| is the function
239  /// argument's result <id>, and |argIndex| is its index in the function's
240  /// argument list.
241  LogicalResult setFunctionArgAttrs(uint32_t argID,
242  SmallVectorImpl<Attribute> &argAttrs,
243  size_t argIndex);
244 
245  /// Gets the symbol name from the name of decoration.
246  StringAttr getSymbolDecoration(StringRef decorationName) {
247  auto attrName = llvm::convertToSnakeFromCamelCase(decorationName);
248  return opBuilder.getStringAttr(attrName);
249  }
250 
251  /// Move a conditional branch into a separate basic block to avoid unnecessary
252  /// sinking of defs that may be required outside a selection region. This
253  /// function also ensures that a single block cannot be a header block of one
254  /// selection construct and the merge block of another.
255  LogicalResult splitConditionalBlocks();
256 
257  //===--------------------------------------------------------------------===//
258  // Type
259  //===--------------------------------------------------------------------===//
260 
261  /// Gets type for a given result <id>.
262  Type getType(uint32_t id) { return typeMap.lookup(id); }
263 
264  /// Get the type associated with the result <id> of an OpUndef.
265  Type getUndefType(uint32_t id) { return undefMap.lookup(id); }
266 
267  /// Returns true if the given `type` is for SPIR-V void type.
268  bool isVoidType(Type type) const { return isa<NoneType>(type); }
269 
270  /// Processes a SPIR-V type instruction with given `opcode` and `operands` and
271  /// registers the type into `module`.
272  LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands);
273 
274  LogicalResult processOpTypePointer(ArrayRef<uint32_t> operands);
275 
276  LogicalResult processArrayType(ArrayRef<uint32_t> operands);
277 
278  LogicalResult processCooperativeMatrixTypeKHR(ArrayRef<uint32_t> operands);
279 
280  LogicalResult processCooperativeMatrixTypeNV(ArrayRef<uint32_t> operands);
281 
282  LogicalResult processFunctionType(ArrayRef<uint32_t> operands);
283 
284  LogicalResult processImageType(ArrayRef<uint32_t> operands);
285 
286  LogicalResult processSampledImageType(ArrayRef<uint32_t> operands);
287 
288  LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands);
289 
290  LogicalResult processStructType(ArrayRef<uint32_t> operands);
291 
292  LogicalResult processMatrixType(ArrayRef<uint32_t> operands);
293 
294  LogicalResult processTypeForwardPointer(ArrayRef<uint32_t> operands);
295 
296  //===--------------------------------------------------------------------===//
297  // Constant
298  //===--------------------------------------------------------------------===//
299 
300  /// Processes a SPIR-V Op{|Spec}Constant instruction with the given
301  /// `operands`. `isSpec` indicates whether this is a specialization constant.
302  LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec);
303 
304  /// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the
305  /// given `operands`. `isSpec` indicates whether this is a specialization
306  /// constant.
307  LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands,
308  bool isSpec);
309 
310  /// Processes a SPIR-V OpConstantComposite instruction with the given
311  /// `operands`.
312  LogicalResult processConstantComposite(ArrayRef<uint32_t> operands);
313 
314  /// Processes a SPIR-V OpSpecConstantComposite instruction with the given
315  /// `operands`.
316  LogicalResult processSpecConstantComposite(ArrayRef<uint32_t> operands);
317 
318  /// Processes a SPIR-V OpSpecConstantOp instruction with the given
319  /// `operands`.
320  LogicalResult processSpecConstantOperation(ArrayRef<uint32_t> operands);
321 
322  /// Materializes/emits an OpSpecConstantOp instruction.
323  Value materializeSpecConstantOperation(uint32_t resultID,
324  spirv::Opcode enclosedOpcode,
325  uint32_t resultTypeID,
326  ArrayRef<uint32_t> enclosedOpOperands);
327 
328  /// Processes a SPIR-V OpConstantNull instruction with the given `operands`.
329  LogicalResult processConstantNull(ArrayRef<uint32_t> operands);
330 
331  //===--------------------------------------------------------------------===//
332  // Debug
333  //===--------------------------------------------------------------------===//
334 
335  /// Discontinues any source-level location information that might be active
336  /// from a previous OpLine instruction.
337  void clearDebugLine();
338 
339  /// Creates a FileLineColLoc with the OpLine location information.
340  Location createFileLineColLoc(OpBuilder opBuilder);
341 
342  /// Processes a SPIR-V OpLine instruction with the given `operands`.
343  LogicalResult processDebugLine(ArrayRef<uint32_t> operands);
344 
345  /// Processes a SPIR-V OpString instruction with the given `operands`.
346  LogicalResult processDebugString(ArrayRef<uint32_t> operands);
347 
348  //===--------------------------------------------------------------------===//
349  // Control flow
350  //===--------------------------------------------------------------------===//
351 
352  /// Returns the block for the given label <id>.
353  Block *getBlock(uint32_t id) const { return blockMap.lookup(id); }
354 
355  // In SPIR-V, structured control flow is explicitly declared using merge
356  // instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect,
357  // we use spirv.mlir.selection and spirv.mlir.loop to group structured control
358  // flow. The deserializer need to turn structured control flow marked with
359  // merge instructions into using spirv.mlir.selection/spirv.mlir.loop ops.
360  //
361  // Because structured control flow can nest and the basic block order have
362  // flexibility, we cannot isolate a structured selection/loop without
363  // deserializing all the blocks. So we use the following approach:
364  //
365  // 1. Deserialize all basic blocks in a function and create MLIR blocks for
366  // them into the function's region. In the meanwhile, keep a map between
367  // selection/loop header blocks to their corresponding merge (and continue)
368  // target blocks.
369  // 2. For each selection/loop header block, recursively get all basic blocks
370  // reachable (except the merge block) and put them in a newly created
371  // spirv.mlir.selection/spirv.mlir.loop's region. Structured control flow
372  // guarantees that we enter and exit in structured ways and the construct
373  // is nestable.
374  // 3. Put the new spirv.mlir.selection/spirv.mlir.loop op at the beginning of
375  // the
376  // old merge block and redirect all branches to the old header block to the
377  // old merge block (which contains the spirv.mlir.selection/spirv.mlir.loop
378  // op now).
379 
380  /// For OpPhi instructions, we use block arguments to represent them. OpPhi
381  /// encodes a list of (value, predecessor) pairs. At the time of handling the
382  /// block containing an OpPhi instruction, the predecessor block might not be
383  /// processed yet, also the value sent by it. So we need to defer handling
384  /// the block argument from the predecessors. We use the following approach:
385  ///
386  /// 1. For each OpPhi instruction, add a block argument to the current block
387  /// in construction. Record the block argument in `valueMap` so its uses
388  /// can be resolved. For the list of (value, predecessor) pairs, update
389  /// `blockPhiInfo` for bookkeeping.
390  /// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each
391  /// block recorded there to create the proper block arguments on their
392  /// terminators.
393 
394  /// A data structure for containing a SPIR-V block's phi info. It will be
395  /// represented as block argument in SPIR-V dialect.
396  using BlockPhiInfo =
397  SmallVector<uint32_t, 2>; // The result <id> of the values sent
398 
399  /// Gets or creates the block corresponding to the given label <id>. The newly
400  /// created block will always be placed at the end of the current function.
401  Block *getOrCreateBlock(uint32_t id);
402 
403  LogicalResult processBranch(ArrayRef<uint32_t> operands);
404 
405  LogicalResult processBranchConditional(ArrayRef<uint32_t> operands);
406 
407  /// Processes a SPIR-V OpLabel instruction with the given `operands`.
408  LogicalResult processLabel(ArrayRef<uint32_t> operands);
409 
410  /// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`.
411  LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands);
412 
413  /// Processes a SPIR-V OpLoopMerge instruction with the given `operands`.
414  LogicalResult processLoopMerge(ArrayRef<uint32_t> operands);
415 
416  /// Processes a SPIR-V OpPhi instruction with the given `operands`.
417  LogicalResult processPhi(ArrayRef<uint32_t> operands);
418 
419  /// Creates block arguments on predecessors previously recorded when handling
420  /// OpPhi instructions.
421  LogicalResult wireUpBlockArgument();
422 
423  /// Extracts blocks belonging to a structured selection/loop into a
424  /// spirv.mlir.selection/spirv.mlir.loop op. This method iterates until all
425  /// blocks declared as selection/loop headers are handled.
426  LogicalResult structurizeControlFlow();
427 
428  //===--------------------------------------------------------------------===//
429  // Instruction
430  //===--------------------------------------------------------------------===//
431 
432  /// Get the Value associated with a result <id>.
433  ///
434  /// This method materializes normal constants and inserts "casting" ops
435  /// (`spirv.mlir.addressof` and `spirv.mlir.referenceof`) to turn an symbol
436  /// into a SSA value for handling uses of module scope constants/variables in
437  /// functions.
438  Value getValue(uint32_t id);
439 
440  /// Slices the first instruction out of `binary` and returns its opcode and
441  /// operands via `opcode` and `operands` respectively. Returns failure if
442  /// there is no more remaining instructions (`expectedOpcode` will be used to
443  /// compose the error message) or the next instruction is malformed.
444  LogicalResult
445  sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands,
446  std::optional<spirv::Opcode> expectedOpcode = std::nullopt);
447 
448  /// Processes a SPIR-V instruction with the given `opcode` and `operands`.
449  /// This method is the main entrance for handling SPIR-V instruction; it
450  /// checks the instruction opcode and dispatches to the corresponding handler.
451  /// Processing of Some instructions (like OpEntryPoint and OpExecutionMode)
452  /// might need to be deferred, since they contain forward references to <id>s
453  /// in the deserialized binary, but module in SPIR-V dialect expects these to
454  /// be ssa-uses.
455  LogicalResult processInstruction(spirv::Opcode opcode,
456  ArrayRef<uint32_t> operands,
457  bool deferInstructions = true);
458 
459  /// Processes a SPIR-V instruction from the given `operands`. It should
460  /// deserialize into an op with the given `opName` and `numOperands`.
461  /// This method is a generic one for dispatching any SPIR-V ops without
462  /// variadic operands and attributes in TableGen definitions.
463  LogicalResult processOpWithoutGrammarAttr(ArrayRef<uint32_t> words,
464  StringRef opName, bool hasResult,
465  unsigned numOperands);
466 
467  /// Processes a OpUndef instruction. Adds a spirv.Undef operation at the
468  /// current insertion point.
469  LogicalResult processUndef(ArrayRef<uint32_t> operands);
470 
471  /// Method to dispatch to the specialized deserialization function for an
472  /// operation in SPIR-V dialect that is a mirror of an instruction in the
473  /// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for
474  /// all operations in SPIR-V dialect that have hasOpcode == 1.
475  LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode,
476  ArrayRef<uint32_t> words);
477 
478  /// Processes a SPIR-V OpExtInst with given `operands`. This slices the
479  /// entries of `operands` that specify the extended instruction set <id> and
480  /// the instruction opcode. The op deserializer is then invoked using the
481  /// other entries.
482  LogicalResult processExtInst(ArrayRef<uint32_t> operands);
483 
484  /// Dispatches the deserialization of extended instruction set operation based
485  /// on the extended instruction set name, and instruction opcode. This is
486  /// autogenerated from ODS.
487  LogicalResult
488  dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName,
489  uint32_t instructionID,
490  ArrayRef<uint32_t> words);
491 
492  /// Method to deserialize an operation in the SPIR-V dialect that is a mirror
493  /// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode
494  /// == 1 and autogenSerialization == 1 in ODS.
495  template <typename OpTy>
496  LogicalResult processOp(ArrayRef<uint32_t> words) {
497  return emitError(unknownLoc, "unsupported deserialization for ")
498  << OpTy::getOperationName() << " op";
499  }
500 
501 private:
502  /// The SPIR-V binary module.
503  ArrayRef<uint32_t> binary;
504 
505  /// Contains the data of the OpLine instruction which precedes the current
506  /// processing instruction.
507  std::optional<DebugLine> debugLine;
508 
509  /// The current word offset into the binary module.
510  unsigned curOffset = 0;
511 
512  /// MLIRContext to create SPIR-V ModuleOp into.
513  MLIRContext *context;
514 
515  // TODO: create Location subclass for binary blob
516  Location unknownLoc;
517 
518  /// The SPIR-V ModuleOp.
520 
521  /// The current function under construction.
522  std::optional<spirv::FuncOp> curFunction;
523 
524  /// The current block under construction.
525  Block *curBlock = nullptr;
526 
527  OpBuilder opBuilder;
528 
529  spirv::Version version = spirv::Version::V_1_0;
530 
531  /// The list of capabilities used by the module.
532  llvm::SmallSetVector<spirv::Capability, 4> capabilities;
533 
534  /// The list of extensions used by the module.
535  llvm::SmallSetVector<spirv::Extension, 2> extensions;
536 
537  // Result <id> to type mapping.
538  DenseMap<uint32_t, Type> typeMap;
539 
540  // Result <id> to constant attribute and type mapping.
541  ///
542  /// In the SPIR-V binary format, all constants are placed in the module and
543  /// shared by instructions at module level and in subsequent functions. But in
544  /// the SPIR-V dialect, we materialize the constant to where it's used in the
545  /// function. So when seeing a constant instruction in the binary format, we
546  /// don't immediately emit a constant op into the module, we keep its value
547  /// (and type) here. Later when it's used, we materialize the constant.
549 
550  // Result <id> to spec constant mapping.
552 
553  // Result <id> to composite spec constant mapping.
555 
556  /// Result <id> to info needed to materialize an OpSpecConstantOp
557  /// mapping.
559  specConstOperationMap;
560 
561  // Result <id> to variable mapping.
563 
564  // Result <id> to function mapping.
566 
567  // Result <id> to block mapping.
569 
570  // Header block to its merge (and continue) target mapping.
571  BlockMergeInfoMap blockMergeInfo;
572 
573  // For each pair of {predecessor, target} blocks, maps the pair of blocks to
574  // the list of phi arguments passed from predecessor to target.
575  DenseMap<std::pair<Block * /*predecessor*/, Block * /*target*/>, BlockPhiInfo>
576  blockPhiInfo;
577 
578  // Result <id> to value mapping.
579  DenseMap<uint32_t, Value> valueMap;
580 
581  // Mapping from result <id> to undef value of a type.
582  DenseMap<uint32_t, Type> undefMap;
583 
584  // Result <id> to name mapping.
586 
587  // Result <id> to debug info mapping.
588  DenseMap<uint32_t, StringRef> debugInfoMap;
589 
590  // Result <id> to decorations mapping.
592 
593  // Result <id> to type decorations.
594  DenseMap<uint32_t, uint32_t> typeDecorations;
595 
596  // Result <id> to member decorations.
597  // decorated-struct-type-<id> ->
598  // (struct-member-index -> (decoration -> decoration-operands))
599  DenseMap<uint32_t,
601  memberDecorationMap;
602 
603  // Result <id> to member name.
604  // struct-type-<id> -> (struct-member-index -> name)
606 
607  // Result <id> to extended instruction set name.
608  DenseMap<uint32_t, StringRef> extendedInstSets;
609 
610  // List of instructions that are processed in a deferred fashion (after an
611  // initial processing of the entire binary). Some operations like
612  // OpEntryPoint, and OpExecutionMode use forward references to function
613  // <id>s. In SPIR-V dialect the corresponding operations (spirv.EntryPoint and
614  // spirv.ExecutionMode) need these references resolved. So these instructions
615  // are deserialized and stored for processing once the entire binary is
616  // processed.
618  deferredInstructions;
619 
620  /// A list of IDs for all types forward-declared through OpTypeForwardPointer
621  /// instructions.
622  SetVector<uint32_t> typeForwardPointerIDs;
623 
624  /// A list of all structs which have unresolved member types.
625  SmallVector<DeferredStructTypeInfo, 0> deferredStructTypesInfos;
626 
627  /// Deserialization options.
628  DeserializationOptions options;
629 
630 #ifndef NDEBUG
631  /// A logger used to emit information during the deserialzation process.
632  llvm::ScopedPrinter logger;
633 #endif
634 };
635 
636 } // namespace spirv
637 } // namespace mlir
638 
639 #endif // MLIR_TARGET_SPIRV_DESERIALIZER_H
Block represents an ordered list of Operations.
Definition: Block.h:33
StringAttr getStringAttr(const Twine &bytes)
Definition: Builders.cpp:260
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:76
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class helps build Operations.
Definition: Builders.h:205
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
A SPIR-V module serializer.
Definition: Deserializer.h:121
LogicalResult deserialize()
Deserializes the remembered SPIR-V binary module.
Deserializer(ArrayRef< uint32_t > binary, MLIRContext *context, const DeserializationOptions &options)
Creates a deserializer for the given SPIR-V binary module.
OwningOpRef< spirv::ModuleOp > collect()
Collects the final SPIR-V ModuleOp.
SPIR-V struct type.
Definition: SPIRVTypes.h:293
Include the generated interface declarations.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
A struct for containing a header block's merge and continue targets.
Definition: Deserializer.h:39
BlockMergeInfo(Location location, uint32_t control, Block *m, Block *c=nullptr)
Definition: Deserializer.h:48
BlockMergeInfo(Location location, uint32_t control)
Definition: Deserializer.h:45
A struct for containing OpLine instruction information.
Definition: Deserializer.h:54
A "deferred struct type" is a struct type with one or more member types not known when the Deserializ...
Definition: Deserializer.h:86
spirv::StructType deferredStructType
Definition: Deserializer.h:87
SmallVector< spirv::StructType::MemberDecorationInfo, 0 > memberDecorationsInfo
Definition: Deserializer.h:97
SmallVector< spirv::StructType::OffsetInfo, 0 > offsetInfo
Definition: Deserializer.h:96
SmallVector< Type, 4 > memberTypes
Definition: Deserializer.h:95
SmallVector< std::pair< uint32_t, unsigned >, 0 > unresolvedMemberTypes
Definition: Deserializer.h:91
A struct that collects the info needed to materialize/emit a SpecConstantOperation op.
Definition: Deserializer.h:102