MLIR  21.0.0git
ExpandStridedMetadata.cpp
Go to the documentation of this file.
1 //===- ExpandStridedMetadata.cpp - Simplify this operation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// The pass expands memref operations that modify the metadata of a memref
10 /// (sizes, offset, strides) into a sequence of easier to analyze constructs.
11 /// In particular, this pass transforms operations into explicit sequence of
12 /// operations that model the effect of this operation on the different
13 /// metadata. This pass uses affine constructs to materialize these effects.
14 //===----------------------------------------------------------------------===//
15 
22 #include "mlir/IR/AffineMap.h"
23 #include "mlir/IR/BuiltinTypes.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include <optional>
28 
29 namespace mlir {
30 namespace memref {
31 #define GEN_PASS_DEF_EXPANDSTRIDEDMETADATAPASS
32 #include "mlir/Dialect/MemRef/Transforms/Passes.h.inc"
33 } // namespace memref
34 } // namespace mlir
35 
36 using namespace mlir;
37 using namespace mlir::affine;
38 
39 namespace {
40 
41 struct StridedMetadata {
42  Value basePtr;
43  OpFoldResult offset;
46 };
47 
48 /// From `subview(memref, subOffset, subSizes, subStrides))` compute
49 ///
50 /// \verbatim
51 /// baseBuffer, baseOffset, baseSizes, baseStrides =
52 /// extract_strided_metadata(memref)
53 /// strides#i = baseStrides#i * subStrides#i
54 /// offset = baseOffset + sum(subOffset#i * baseStrides#i)
55 /// sizes = subSizes
56 /// \endverbatim
57 ///
58 /// and return {baseBuffer, offset, sizes, strides}
59 static FailureOr<StridedMetadata>
60 resolveSubviewStridedMetadata(RewriterBase &rewriter,
61  memref::SubViewOp subview) {
62  // Build a plain extract_strided_metadata(memref) from subview(memref).
63  Location origLoc = subview.getLoc();
64  Value source = subview.getSource();
65  auto sourceType = cast<MemRefType>(source.getType());
66  unsigned sourceRank = sourceType.getRank();
67 
68  auto newExtractStridedMetadata =
69  rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
70 
71  auto [sourceStrides, sourceOffset] = sourceType.getStridesAndOffset();
72 #ifndef NDEBUG
73  auto [resultStrides, resultOffset] = subview.getType().getStridesAndOffset();
74 #endif // NDEBUG
75 
76  // Compute the new strides and offset from the base strides and offset:
77  // newStride#i = baseStride#i * subStride#i
78  // offset = baseOffset + sum(subOffsets#i * newStrides#i)
80  SmallVector<OpFoldResult> subStrides = subview.getMixedStrides();
81  auto origStrides = newExtractStridedMetadata.getStrides();
82 
83  // Hold the affine symbols and values for the computation of the offset.
84  SmallVector<OpFoldResult> values(2 * sourceRank + 1);
85  SmallVector<AffineExpr> symbols(2 * sourceRank + 1);
86 
87  bindSymbolsList(rewriter.getContext(), MutableArrayRef{symbols});
88  AffineExpr expr = symbols.front();
89  values[0] = ShapedType::isDynamic(sourceOffset)
90  ? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
91  : rewriter.getIndexAttr(sourceOffset);
92  SmallVector<OpFoldResult> subOffsets = subview.getMixedOffsets();
93 
94  AffineExpr s0 = rewriter.getAffineSymbolExpr(0);
95  AffineExpr s1 = rewriter.getAffineSymbolExpr(1);
96  for (unsigned i = 0; i < sourceRank; ++i) {
97  // Compute the stride.
98  OpFoldResult origStride =
99  ShapedType::isDynamic(sourceStrides[i])
100  ? origStrides[i]
101  : OpFoldResult(rewriter.getIndexAttr(sourceStrides[i]));
102  strides.push_back(makeComposedFoldedAffineApply(
103  rewriter, origLoc, s0 * s1, {subStrides[i], origStride}));
104 
105  // Build up the computation of the offset.
106  unsigned baseIdxForDim = 1 + 2 * i;
107  unsigned subOffsetForDim = baseIdxForDim;
108  unsigned origStrideForDim = baseIdxForDim + 1;
109  expr = expr + symbols[subOffsetForDim] * symbols[origStrideForDim];
110  values[subOffsetForDim] = subOffsets[i];
111  values[origStrideForDim] = origStride;
112  }
113 
114  // Compute the offset.
115  OpFoldResult finalOffset =
116  makeComposedFoldedAffineApply(rewriter, origLoc, expr, values);
117 #ifndef NDEBUG
118  // Assert that the computed offset matches the offset of the result type of
119  // the subview op (if both are static).
120  std::optional<int64_t> computedOffset = getConstantIntValue(finalOffset);
121  if (computedOffset && !ShapedType::isDynamic(resultOffset))
122  assert(*computedOffset == resultOffset &&
123  "mismatch between computed offset and result type offset");
124 #endif // NDEBUG
125 
126  // The final result is <baseBuffer, offset, sizes, strides>.
127  // Thus we need 1 + 1 + subview.getRank() + subview.getRank(), to hold all
128  // the values.
129  auto subType = cast<MemRefType>(subview.getType());
130  unsigned subRank = subType.getRank();
131 
132  // The sizes of the final type are defined directly by the input sizes of
133  // the subview.
134  // Moreover subviews can drop some dimensions, some strides and sizes may
135  // not end up in the final <base, offset, sizes, strides> value that we are
136  // replacing.
137  // Do the filtering here.
138  SmallVector<OpFoldResult> subSizes = subview.getMixedSizes();
139  llvm::SmallBitVector droppedDims = subview.getDroppedDims();
140 
141  SmallVector<OpFoldResult> finalSizes;
142  finalSizes.reserve(subRank);
143 
144  SmallVector<OpFoldResult> finalStrides;
145  finalStrides.reserve(subRank);
146 
147 #ifndef NDEBUG
148  // Iteration variable for result dimensions of the subview op.
149  int64_t j = 0;
150 #endif // NDEBUG
151  for (unsigned i = 0; i < sourceRank; ++i) {
152  if (droppedDims.test(i))
153  continue;
154 
155  finalSizes.push_back(subSizes[i]);
156  finalStrides.push_back(strides[i]);
157 #ifndef NDEBUG
158  // Assert that the computed stride matches the stride of the result type of
159  // the subview op (if both are static).
160  std::optional<int64_t> computedStride = getConstantIntValue(strides[i]);
161  if (computedStride && !ShapedType::isDynamic(resultStrides[j]))
162  assert(*computedStride == resultStrides[j] &&
163  "mismatch between computed stride and result type stride");
164  ++j;
165 #endif // NDEBUG
166  }
167  assert(finalSizes.size() == subRank &&
168  "Should have populated all the values at this point");
169  return StridedMetadata{newExtractStridedMetadata.getBaseBuffer(), finalOffset,
170  finalSizes, finalStrides};
171 }
172 
173 /// Replace `dst = subview(memref, subOffset, subSizes, subStrides))`
174 /// With
175 ///
176 /// \verbatim
177 /// baseBuffer, baseOffset, baseSizes, baseStrides =
178 /// extract_strided_metadata(memref)
179 /// strides#i = baseStrides#i * subSizes#i
180 /// offset = baseOffset + sum(subOffset#i * baseStrides#i)
181 /// sizes = subSizes
182 /// dst = reinterpret_cast baseBuffer, offset, sizes, strides
183 /// \endverbatim
184 ///
185 /// In other words, get rid of the subview in that expression and canonicalize
186 /// on its effects on the offset, the sizes, and the strides using affine.apply.
187 struct SubviewFolder : public OpRewritePattern<memref::SubViewOp> {
188 public:
190 
191  LogicalResult matchAndRewrite(memref::SubViewOp subview,
192  PatternRewriter &rewriter) const override {
193  FailureOr<StridedMetadata> stridedMetadata =
194  resolveSubviewStridedMetadata(rewriter, subview);
195  if (failed(stridedMetadata)) {
196  return rewriter.notifyMatchFailure(subview,
197  "failed to resolve subview metadata");
198  }
199 
200  rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
201  subview, subview.getType(), stridedMetadata->basePtr,
202  stridedMetadata->offset, stridedMetadata->sizes,
203  stridedMetadata->strides);
204  return success();
205  }
206 };
207 
208 /// Pattern to replace `extract_strided_metadata(subview)`
209 /// With
210 ///
211 /// \verbatim
212 /// baseBuffer, baseOffset, baseSizes, baseStrides =
213 /// extract_strided_metadata(memref)
214 /// strides#i = baseStrides#i * subSizes#i
215 /// offset = baseOffset + sum(subOffset#i * baseStrides#i)
216 /// sizes = subSizes
217 /// \verbatim
218 ///
219 /// with `baseBuffer`, `offset`, `sizes` and `strides` being
220 /// the replacements for the original `extract_strided_metadata`.
221 struct ExtractStridedMetadataOpSubviewFolder
222  : OpRewritePattern<memref::ExtractStridedMetadataOp> {
224 
225  LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
226  PatternRewriter &rewriter) const override {
227  auto subviewOp = op.getSource().getDefiningOp<memref::SubViewOp>();
228  if (!subviewOp)
229  return failure();
230 
231  FailureOr<StridedMetadata> stridedMetadata =
232  resolveSubviewStridedMetadata(rewriter, subviewOp);
233  if (failed(stridedMetadata)) {
234  return rewriter.notifyMatchFailure(
235  op, "failed to resolve metadata in terms of source subview op");
236  }
237  Location loc = subviewOp.getLoc();
238  SmallVector<Value> results;
239  results.reserve(subviewOp.getType().getRank() * 2 + 2);
240  results.push_back(stridedMetadata->basePtr);
241  results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc,
242  stridedMetadata->offset));
243  results.append(
244  getValueOrCreateConstantIndexOp(rewriter, loc, stridedMetadata->sizes));
245  results.append(getValueOrCreateConstantIndexOp(rewriter, loc,
246  stridedMetadata->strides));
247  rewriter.replaceOp(op, results);
248 
249  return success();
250  }
251 };
252 
253 /// Compute the expanded sizes of the given \p expandShape for the
254 /// \p groupId-th reassociation group.
255 /// \p origSizes hold the sizes of the source shape as values.
256 /// This is used to compute the new sizes in cases of dynamic shapes.
257 ///
258 /// sizes#i =
259 /// baseSizes#groupId / product(expandShapeSizes#j,
260 /// for j in group excluding reassIdx#i)
261 /// Where reassIdx#i is the reassociation index at index i in \p groupId.
262 ///
263 /// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
264 ///
265 /// TODO: Move this utility function directly within ExpandShapeOp. For now,
266 /// this is not possible because this function uses the Affine dialect and the
267 /// MemRef dialect cannot depend on the Affine dialect.
269 getExpandedSizes(memref::ExpandShapeOp expandShape, OpBuilder &builder,
270  ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
271  SmallVector<int64_t, 2> reassocGroup =
272  expandShape.getReassociationIndices()[groupId];
273  assert(!reassocGroup.empty() &&
274  "Reassociation group should have at least one dimension");
275 
276  unsigned groupSize = reassocGroup.size();
277  SmallVector<OpFoldResult> expandedSizes(groupSize);
278 
279  uint64_t productOfAllStaticSizes = 1;
280  std::optional<unsigned> dynSizeIdx;
281  MemRefType expandShapeType = expandShape.getResultType();
282 
283  // Fill up all the statically known sizes.
284  for (unsigned i = 0; i < groupSize; ++i) {
285  uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
286  if (ShapedType::isDynamic(dimSize)) {
287  assert(!dynSizeIdx && "There must be at most one dynamic size per group");
288  dynSizeIdx = i;
289  continue;
290  }
291  productOfAllStaticSizes *= dimSize;
292  expandedSizes[i] = builder.getIndexAttr(dimSize);
293  }
294 
295  // Compute the dynamic size using the original size and all the other known
296  // static sizes:
297  // expandSize = origSize / productOfAllStaticSizes.
298  if (dynSizeIdx) {
299  AffineExpr s0 = builder.getAffineSymbolExpr(0);
300  expandedSizes[*dynSizeIdx] = makeComposedFoldedAffineApply(
301  builder, expandShape.getLoc(), s0.floorDiv(productOfAllStaticSizes),
302  origSizes[groupId]);
303  }
304 
305  return expandedSizes;
306 }
307 
308 /// Compute the expanded strides of the given \p expandShape for the
309 /// \p groupId-th reassociation group.
310 /// \p origStrides and \p origSizes hold respectively the strides and sizes
311 /// of the source shape as values.
312 /// This is used to compute the strides in cases of dynamic shapes and/or
313 /// dynamic stride for this reassociation group.
314 ///
315 /// strides#i =
316 /// origStrides#reassDim * product(expandShapeSizes#j, for j in
317 /// reassIdx#i+1..reassIdx#i+group.size-1)
318 ///
319 /// Where reassIdx#i is the reassociation index for at index i in \p groupId
320 /// and expandShapeSizes#j is either:
321 /// - The constant size at dimension j, derived directly from the result type of
322 /// the expand_shape op, or
323 /// - An affine expression: baseSizes#reassDim / product of all constant sizes
324 /// in expandShapeSizes. (Remember expandShapeSizes has at most one dynamic
325 /// element.)
326 ///
327 /// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
328 ///
329 /// TODO: Move this utility function directly within ExpandShapeOp. For now,
330 /// this is not possible because this function uses the Affine dialect and the
331 /// MemRef dialect cannot depend on the Affine dialect.
332 SmallVector<OpFoldResult> getExpandedStrides(memref::ExpandShapeOp expandShape,
333  OpBuilder &builder,
334  ArrayRef<OpFoldResult> origSizes,
335  ArrayRef<OpFoldResult> origStrides,
336  unsigned groupId) {
337  SmallVector<int64_t, 2> reassocGroup =
338  expandShape.getReassociationIndices()[groupId];
339  assert(!reassocGroup.empty() &&
340  "Reassociation group should have at least one dimension");
341 
342  unsigned groupSize = reassocGroup.size();
343  MemRefType expandShapeType = expandShape.getResultType();
344 
345  std::optional<int64_t> dynSizeIdx;
346 
347  // Fill up the expanded strides, with the information we can deduce from the
348  // resulting shape.
349  uint64_t currentStride = 1;
350  SmallVector<OpFoldResult> expandedStrides(groupSize);
351  for (int i = groupSize - 1; i >= 0; --i) {
352  expandedStrides[i] = builder.getIndexAttr(currentStride);
353  uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
354  if (ShapedType::isDynamic(dimSize)) {
355  assert(!dynSizeIdx && "There must be at most one dynamic size per group");
356  dynSizeIdx = i;
357  continue;
358  }
359 
360  currentStride *= dimSize;
361  }
362 
363  // Collect the statically known information about the original stride.
364  Value source = expandShape.getSrc();
365  auto sourceType = cast<MemRefType>(source.getType());
366  auto [strides, offset] = sourceType.getStridesAndOffset();
367 
368  OpFoldResult origStride = ShapedType::isDynamic(strides[groupId])
369  ? origStrides[groupId]
370  : builder.getIndexAttr(strides[groupId]);
371 
372  // Apply the original stride to all the strides.
373  int64_t doneStrideIdx = 0;
374  // If we saw a dynamic dimension, we need to fix-up all the strides up to
375  // that dimension with the dynamic size.
376  if (dynSizeIdx) {
377  int64_t productOfAllStaticSizes = currentStride;
378  assert(ShapedType::isDynamic(sourceType.getDimSize(groupId)) &&
379  "We shouldn't be able to change dynamicity");
380  OpFoldResult origSize = origSizes[groupId];
381 
382  AffineExpr s0 = builder.getAffineSymbolExpr(0);
383  AffineExpr s1 = builder.getAffineSymbolExpr(1);
384  for (; doneStrideIdx < *dynSizeIdx; ++doneStrideIdx) {
385  int64_t baseExpandedStride =
386  cast<IntegerAttr>(cast<Attribute>(expandedStrides[doneStrideIdx]))
387  .getInt();
388  expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
389  builder, expandShape.getLoc(),
390  (s0 * baseExpandedStride).floorDiv(productOfAllStaticSizes) * s1,
391  {origSize, origStride});
392  }
393  }
394 
395  // Now apply the origStride to the remaining dimensions.
396  AffineExpr s0 = builder.getAffineSymbolExpr(0);
397  for (; doneStrideIdx < groupSize; ++doneStrideIdx) {
398  int64_t baseExpandedStride =
399  cast<IntegerAttr>(cast<Attribute>(expandedStrides[doneStrideIdx]))
400  .getInt();
401  expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
402  builder, expandShape.getLoc(), s0 * baseExpandedStride, {origStride});
403  }
404 
405  return expandedStrides;
406 }
407 
408 /// Produce an OpFoldResult object with \p builder at \p loc representing
409 /// `prod(valueOrConstant#i, for i in {indices})`,
410 /// where valueOrConstant#i is maybeConstant[i] when \p isDymamic is false,
411 /// values[i] otherwise.
412 ///
413 /// \pre for all index in indices: index < values.size()
414 /// \pre for all index in indices: index < maybeConstants.size()
415 static OpFoldResult
416 getProductOfValues(ArrayRef<int64_t> indices, OpBuilder &builder, Location loc,
417  ArrayRef<int64_t> maybeConstants,
418  ArrayRef<OpFoldResult> values,
419  llvm::function_ref<bool(int64_t)> isDynamic) {
420  AffineExpr productOfValues = builder.getAffineConstantExpr(1);
421  SmallVector<OpFoldResult> inputValues;
422  unsigned numberOfSymbols = 0;
423  unsigned groupSize = indices.size();
424  for (unsigned i = 0; i < groupSize; ++i) {
425  productOfValues =
426  productOfValues * builder.getAffineSymbolExpr(numberOfSymbols++);
427  unsigned srcIdx = indices[i];
428  int64_t maybeConstant = maybeConstants[srcIdx];
429 
430  inputValues.push_back(isDynamic(maybeConstant)
431  ? values[srcIdx]
432  : builder.getIndexAttr(maybeConstant));
433  }
434 
435  return makeComposedFoldedAffineApply(builder, loc, productOfValues,
436  inputValues);
437 }
438 
439 /// Compute the collapsed size of the given \p collpaseShape for the
440 /// \p groupId-th reassociation group.
441 /// \p origSizes hold the sizes of the source shape as values.
442 /// This is used to compute the new sizes in cases of dynamic shapes.
443 ///
444 /// Conceptually this helper function computes:
445 /// `prod(origSizes#i, for i in {ressociationGroup[groupId]})`.
446 ///
447 /// \post result.size() == 1, in other words, each group collapse to one
448 /// dimension.
449 ///
450 /// TODO: Move this utility function directly within CollapseShapeOp. For now,
451 /// this is not possible because this function uses the Affine dialect and the
452 /// MemRef dialect cannot depend on the Affine dialect.
454 getCollapsedSize(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
455  ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
456  SmallVector<OpFoldResult> collapsedSize;
457 
458  MemRefType collapseShapeType = collapseShape.getResultType();
459 
460  uint64_t size = collapseShapeType.getDimSize(groupId);
461  if (!ShapedType::isDynamic(size)) {
462  collapsedSize.push_back(builder.getIndexAttr(size));
463  return collapsedSize;
464  }
465 
466  // We are dealing with a dynamic size.
467  // Build the affine expr of the product of the original sizes involved in that
468  // group.
469  Value source = collapseShape.getSrc();
470  auto sourceType = cast<MemRefType>(source.getType());
471 
472  SmallVector<int64_t, 2> reassocGroup =
473  collapseShape.getReassociationIndices()[groupId];
474 
475  collapsedSize.push_back(getProductOfValues(
476  reassocGroup, builder, collapseShape.getLoc(), sourceType.getShape(),
477  origSizes, ShapedType::isDynamic));
478 
479  return collapsedSize;
480 }
481 
482 /// Compute the collapsed stride of the given \p collpaseShape for the
483 /// \p groupId-th reassociation group.
484 /// \p origStrides and \p origSizes hold respectively the strides and sizes
485 /// of the source shape as values.
486 /// This is used to compute the strides in cases of dynamic shapes and/or
487 /// dynamic stride for this reassociation group.
488 ///
489 /// Conceptually this helper function returns the stride of the inner most
490 /// dimension of that group in the original shape.
491 ///
492 /// \post result.size() == 1, in other words, each group collapse to one
493 /// dimension.
495 getCollapsedStride(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
496  ArrayRef<OpFoldResult> origSizes,
497  ArrayRef<OpFoldResult> origStrides, unsigned groupId) {
498  SmallVector<int64_t, 2> reassocGroup =
499  collapseShape.getReassociationIndices()[groupId];
500  assert(!reassocGroup.empty() &&
501  "Reassociation group should have at least one dimension");
502 
503  Value source = collapseShape.getSrc();
504  auto sourceType = cast<MemRefType>(source.getType());
505 
506  auto [strides, offset] = sourceType.getStridesAndOffset();
507 
508  ArrayRef<int64_t> srcShape = sourceType.getShape();
509 
510  OpFoldResult lastValidStride = nullptr;
511  for (int64_t currentDim : reassocGroup) {
512  // Skip size-of-1 dimensions, since right now their strides may be
513  // meaningless.
514  // FIXME: size-of-1 dimensions shouldn't be used in collapse shape, unless
515  // they are truly contiguous. When they are truly contiguous, we shouldn't
516  // need to skip them.
517  if (srcShape[currentDim] == 1)
518  continue;
519 
520  int64_t currentStride = strides[currentDim];
521  lastValidStride = ShapedType::isDynamic(currentStride)
522  ? origStrides[currentDim]
523  : builder.getIndexAttr(currentStride);
524  }
525  if (!lastValidStride) {
526  // We're dealing with a 1x1x...x1 shape. The stride is meaningless,
527  // but we still have to make the type system happy.
528  MemRefType collapsedType = collapseShape.getResultType();
529  auto [collapsedStrides, collapsedOffset] =
530  collapsedType.getStridesAndOffset();
531  int64_t finalStride = collapsedStrides[groupId];
532  if (ShapedType::isDynamic(finalStride)) {
533  // Look for a dynamic stride. At this point we don't know which one is
534  // desired, but they are all equally good/bad.
535  for (int64_t currentDim : reassocGroup) {
536  assert(srcShape[currentDim] == 1 &&
537  "We should be dealing with 1x1x...x1");
538 
539  if (ShapedType::isDynamic(strides[currentDim]))
540  return {origStrides[currentDim]};
541  }
542  llvm_unreachable("We should have found a dynamic stride");
543  }
544  return {builder.getIndexAttr(finalStride)};
545  }
546 
547  return {lastValidStride};
548 }
549 
550 /// From `reshape_like(memref, subSizes, subStrides))` compute
551 ///
552 /// \verbatim
553 /// baseBuffer, baseOffset, baseSizes, baseStrides =
554 /// extract_strided_metadata(memref)
555 /// strides#i = baseStrides#i * subStrides#i
556 /// sizes = subSizes
557 /// \endverbatim
558 ///
559 /// and return {baseBuffer, baseOffset, sizes, strides}
560 template <typename ReassociativeReshapeLikeOp>
561 static FailureOr<StridedMetadata> resolveReshapeStridedMetadata(
562  RewriterBase &rewriter, ReassociativeReshapeLikeOp reshape,
564  ReassociativeReshapeLikeOp, OpBuilder &,
565  ArrayRef<OpFoldResult> /*origSizes*/, unsigned /*groupId*/)>
566  getReshapedSizes,
568  ReassociativeReshapeLikeOp, OpBuilder &,
569  ArrayRef<OpFoldResult> /*origSizes*/,
570  ArrayRef<OpFoldResult> /*origStrides*/, unsigned /*groupId*/)>
571  getReshapedStrides) {
572  // Build a plain extract_strided_metadata(memref) from
573  // extract_strided_metadata(reassociative_reshape_like(memref)).
574  Location origLoc = reshape.getLoc();
575  Value source = reshape.getSrc();
576  auto sourceType = cast<MemRefType>(source.getType());
577  unsigned sourceRank = sourceType.getRank();
578 
579  auto newExtractStridedMetadata =
580  rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
581 
582  // Collect statically known information.
583  auto [strides, offset] = sourceType.getStridesAndOffset();
584  MemRefType reshapeType = reshape.getResultType();
585  unsigned reshapeRank = reshapeType.getRank();
586 
587  OpFoldResult offsetOfr =
588  ShapedType::isDynamic(offset)
589  ? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
590  : rewriter.getIndexAttr(offset);
591 
592  // Get the special case of 0-D out of the way.
593  if (sourceRank == 0) {
594  SmallVector<OpFoldResult> ones(reshapeRank, rewriter.getIndexAttr(1));
595  return StridedMetadata{newExtractStridedMetadata.getBaseBuffer(), offsetOfr,
596  /*sizes=*/ones, /*strides=*/ones};
597  }
598 
599  SmallVector<OpFoldResult> finalSizes;
600  finalSizes.reserve(reshapeRank);
601  SmallVector<OpFoldResult> finalStrides;
602  finalStrides.reserve(reshapeRank);
603 
604  // Compute the reshaped strides and sizes from the base strides and sizes.
605  SmallVector<OpFoldResult> origSizes =
606  getAsOpFoldResult(newExtractStridedMetadata.getSizes());
607  SmallVector<OpFoldResult> origStrides =
608  getAsOpFoldResult(newExtractStridedMetadata.getStrides());
609  unsigned idx = 0, endIdx = reshape.getReassociationIndices().size();
610  for (; idx != endIdx; ++idx) {
611  SmallVector<OpFoldResult> reshapedSizes =
612  getReshapedSizes(reshape, rewriter, origSizes, /*groupId=*/idx);
613  SmallVector<OpFoldResult> reshapedStrides = getReshapedStrides(
614  reshape, rewriter, origSizes, origStrides, /*groupId=*/idx);
615 
616  unsigned groupSize = reshapedSizes.size();
617  for (unsigned i = 0; i < groupSize; ++i) {
618  finalSizes.push_back(reshapedSizes[i]);
619  finalStrides.push_back(reshapedStrides[i]);
620  }
621  }
622  assert(((isa<memref::ExpandShapeOp>(reshape) && idx == sourceRank) ||
623  (isa<memref::CollapseShapeOp>(reshape) && idx == reshapeRank)) &&
624  "We should have visited all the input dimensions");
625  assert(finalSizes.size() == reshapeRank &&
626  "We should have populated all the values");
627 
628  return StridedMetadata{newExtractStridedMetadata.getBaseBuffer(), offsetOfr,
629  finalSizes, finalStrides};
630 }
631 
632 /// Replace `baseBuffer, offset, sizes, strides =
633 /// extract_strided_metadata(reshapeLike(memref))`
634 /// With
635 ///
636 /// \verbatim
637 /// baseBuffer, offset, baseSizes, baseStrides =
638 /// extract_strided_metadata(memref)
639 /// sizes = getReshapedSizes(reshapeLike)
640 /// strides = getReshapedStrides(reshapeLike)
641 /// \endverbatim
642 ///
643 ///
644 /// Notice that `baseBuffer` and `offset` are unchanged.
645 ///
646 /// In other words, get rid of the expand_shape in that expression and
647 /// materialize its effects on the sizes and the strides using affine apply.
648 template <typename ReassociativeReshapeLikeOp,
649  SmallVector<OpFoldResult> (*getReshapedSizes)(
650  ReassociativeReshapeLikeOp, OpBuilder &,
651  ArrayRef<OpFoldResult> /*origSizes*/, unsigned /*groupId*/),
652  SmallVector<OpFoldResult> (*getReshapedStrides)(
653  ReassociativeReshapeLikeOp, OpBuilder &,
654  ArrayRef<OpFoldResult> /*origSizes*/,
655  ArrayRef<OpFoldResult> /*origStrides*/, unsigned /*groupId*/)>
656 struct ReshapeFolder : public OpRewritePattern<ReassociativeReshapeLikeOp> {
657 public:
659 
660  LogicalResult matchAndRewrite(ReassociativeReshapeLikeOp reshape,
661  PatternRewriter &rewriter) const override {
662  FailureOr<StridedMetadata> stridedMetadata =
663  resolveReshapeStridedMetadata<ReassociativeReshapeLikeOp>(
664  rewriter, reshape, getReshapedSizes, getReshapedStrides);
665  if (failed(stridedMetadata)) {
666  return rewriter.notifyMatchFailure(reshape,
667  "failed to resolve reshape metadata");
668  }
669 
670  rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
671  reshape, reshape.getType(), stridedMetadata->basePtr,
672  stridedMetadata->offset, stridedMetadata->sizes,
673  stridedMetadata->strides);
674  return success();
675  }
676 };
677 
678 /// Pattern to replace `extract_strided_metadata(collapse_shape)`
679 /// With
680 ///
681 /// \verbatim
682 /// baseBuffer, baseOffset, baseSizes, baseStrides =
683 /// extract_strided_metadata(memref)
684 /// strides#i = baseStrides#i * subSizes#i
685 /// offset = baseOffset + sum(subOffset#i * baseStrides#i)
686 /// sizes = subSizes
687 /// \verbatim
688 ///
689 /// with `baseBuffer`, `offset`, `sizes` and `strides` being
690 /// the replacements for the original `extract_strided_metadata`.
691 struct ExtractStridedMetadataOpCollapseShapeFolder
694 
695  LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
696  PatternRewriter &rewriter) const override {
697  auto collapseShapeOp =
698  op.getSource().getDefiningOp<memref::CollapseShapeOp>();
699  if (!collapseShapeOp)
700  return failure();
701 
702  FailureOr<StridedMetadata> stridedMetadata =
703  resolveReshapeStridedMetadata<memref::CollapseShapeOp>(
704  rewriter, collapseShapeOp, getCollapsedSize, getCollapsedStride);
705  if (failed(stridedMetadata)) {
706  return rewriter.notifyMatchFailure(
707  op,
708  "failed to resolve metadata in terms of source collapse_shape op");
709  }
710 
711  Location loc = collapseShapeOp.getLoc();
712  SmallVector<Value> results;
713  results.push_back(stridedMetadata->basePtr);
714  results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc,
715  stridedMetadata->offset));
716  results.append(
717  getValueOrCreateConstantIndexOp(rewriter, loc, stridedMetadata->sizes));
718  results.append(getValueOrCreateConstantIndexOp(rewriter, loc,
719  stridedMetadata->strides));
720  rewriter.replaceOp(op, results);
721  return success();
722  }
723 };
724 
725 /// Pattern to replace `extract_strided_metadata(expand_shape)`
726 /// with the results of computing the sizes and strides on the expanded shape
727 /// and dividing up dimensions into static and dynamic parts as needed.
728 struct ExtractStridedMetadataOpExpandShapeFolder
731 
732  LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
733  PatternRewriter &rewriter) const override {
734  auto expandShapeOp = op.getSource().getDefiningOp<memref::ExpandShapeOp>();
735  if (!expandShapeOp)
736  return failure();
737 
738  FailureOr<StridedMetadata> stridedMetadata =
739  resolveReshapeStridedMetadata<memref::ExpandShapeOp>(
740  rewriter, expandShapeOp, getExpandedSizes, getExpandedStrides);
741  if (failed(stridedMetadata)) {
742  return rewriter.notifyMatchFailure(
743  op, "failed to resolve metadata in terms of source expand_shape op");
744  }
745 
746  Location loc = expandShapeOp.getLoc();
747  SmallVector<Value> results;
748  results.push_back(stridedMetadata->basePtr);
749  results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc,
750  stridedMetadata->offset));
751  results.append(
752  getValueOrCreateConstantIndexOp(rewriter, loc, stridedMetadata->sizes));
753  results.append(getValueOrCreateConstantIndexOp(rewriter, loc,
754  stridedMetadata->strides));
755  rewriter.replaceOp(op, results);
756  return success();
757  }
758 };
759 
760 /// Replace `base, offset, sizes, strides =
761 /// extract_strided_metadata(allocLikeOp)`
762 ///
763 /// With
764 ///
765 /// ```
766 /// base = reinterpret_cast allocLikeOp(allocSizes) to a flat memref<eltTy>
767 /// offset = 0
768 /// sizes = allocSizes
769 /// strides#i = prod(allocSizes#j, for j in {i+1..rank-1})
770 /// ```
771 ///
772 /// The transformation only applies if the allocLikeOp has been normalized.
773 /// In other words, the affine_map must be an identity.
774 template <typename AllocLikeOp>
775 struct ExtractStridedMetadataOpAllocFolder
777 public:
779 
780  LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
781  PatternRewriter &rewriter) const override {
782  auto allocLikeOp = op.getSource().getDefiningOp<AllocLikeOp>();
783  if (!allocLikeOp)
784  return failure();
785 
786  auto memRefType = cast<MemRefType>(allocLikeOp.getResult().getType());
787  if (!memRefType.getLayout().isIdentity())
788  return rewriter.notifyMatchFailure(
789  allocLikeOp, "alloc-like operations should have been normalized");
790 
791  Location loc = op.getLoc();
792  int rank = memRefType.getRank();
793 
794  // Collect the sizes.
795  ValueRange dynamic = allocLikeOp.getDynamicSizes();
797  sizes.reserve(rank);
798  unsigned dynamicPos = 0;
799  for (int64_t size : memRefType.getShape()) {
800  if (ShapedType::isDynamic(size))
801  sizes.push_back(dynamic[dynamicPos++]);
802  else
803  sizes.push_back(rewriter.getIndexAttr(size));
804  }
805 
806  // Strides (just creates identity strides).
807  SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
808  AffineExpr expr = rewriter.getAffineConstantExpr(1);
809  unsigned symbolNumber = 0;
810  for (int i = rank - 2; i >= 0; --i) {
811  expr = expr * rewriter.getAffineSymbolExpr(symbolNumber++);
812  assert(i + 1 + symbolNumber == sizes.size() &&
813  "The ArrayRef should encompass the last #symbolNumber sizes");
814  ArrayRef<OpFoldResult> sizesInvolvedInStride(&sizes[i + 1], symbolNumber);
815  strides[i] = makeComposedFoldedAffineApply(rewriter, loc, expr,
816  sizesInvolvedInStride);
817  }
818 
819  // Put all the values together to replace the results.
820  SmallVector<Value> results;
821  results.reserve(rank * 2 + 2);
822 
823  auto baseBufferType = cast<MemRefType>(op.getBaseBuffer().getType());
824  int64_t offset = 0;
825  if (op.getBaseBuffer().use_empty()) {
826  results.push_back(nullptr);
827  } else {
828  if (allocLikeOp.getType() == baseBufferType)
829  results.push_back(allocLikeOp);
830  else
831  results.push_back(rewriter.create<memref::ReinterpretCastOp>(
832  loc, baseBufferType, allocLikeOp, offset,
833  /*sizes=*/ArrayRef<int64_t>(),
834  /*strides=*/ArrayRef<int64_t>()));
835  }
836 
837  // Offset.
838  results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, offset));
839 
840  for (OpFoldResult size : sizes)
841  results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, size));
842 
843  for (OpFoldResult stride : strides)
844  results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, stride));
845 
846  rewriter.replaceOp(op, results);
847  return success();
848  }
849 };
850 
851 /// Replace `base, offset, sizes, strides =
852 /// extract_strided_metadata(get_global)`
853 ///
854 /// With
855 ///
856 /// ```
857 /// base = reinterpret_cast get_global to a flat memref<eltTy>
858 /// offset = 0
859 /// sizes = allocSizes
860 /// strides#i = prod(allocSizes#j, for j in {i+1..rank-1})
861 /// ```
862 ///
863 /// It is expected that the memref.get_global op has static shapes
864 /// and identity affine_map for the layout.
865 struct ExtractStridedMetadataOpGetGlobalFolder
866  : public OpRewritePattern<memref::ExtractStridedMetadataOp> {
867 public:
869 
870  LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
871  PatternRewriter &rewriter) const override {
872  auto getGlobalOp = op.getSource().getDefiningOp<memref::GetGlobalOp>();
873  if (!getGlobalOp)
874  return failure();
875 
876  auto memRefType = cast<MemRefType>(getGlobalOp.getResult().getType());
877  if (!memRefType.getLayout().isIdentity()) {
878  return rewriter.notifyMatchFailure(
879  getGlobalOp,
880  "get-global operation result should have been normalized");
881  }
882 
883  Location loc = op.getLoc();
884  int rank = memRefType.getRank();
885 
886  // Collect the sizes.
887  ArrayRef<int64_t> sizes = memRefType.getShape();
888  assert(!llvm::any_of(sizes, ShapedType::isDynamic) &&
889  "unexpected dynamic shape for result of `memref.get_global` op");
890 
891  // Strides (just creates identity strides).
893 
894  // Put all the values together to replace the results.
895  SmallVector<Value> results;
896  results.reserve(rank * 2 + 2);
897 
898  auto baseBufferType = cast<MemRefType>(op.getBaseBuffer().getType());
899  int64_t offset = 0;
900  if (getGlobalOp.getType() == baseBufferType)
901  results.push_back(getGlobalOp);
902  else
903  results.push_back(rewriter.create<memref::ReinterpretCastOp>(
904  loc, baseBufferType, getGlobalOp, offset,
905  /*sizes=*/ArrayRef<int64_t>(),
906  /*strides=*/ArrayRef<int64_t>()));
907 
908  // Offset.
909  results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, offset));
910 
911  for (auto size : sizes)
912  results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, size));
913 
914  for (auto stride : strides)
915  results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, stride));
916 
917  rewriter.replaceOp(op, results);
918  return success();
919  }
920 };
921 
922 /// Pattern to replace `extract_strided_metadata(assume_alignment)`
923 ///
924 /// With
925 /// \verbatim
926 /// extract_strided_metadata(memref)
927 /// \endverbatim
928 ///
929 /// Since `assume_alignment` is a view-like op that does not modify the
930 /// underlying buffer, offset, sizes, or strides, extracting strided metadata
931 /// from its result is equivalent to extracting it from its source. This
932 /// canonicalization removes the unnecessary indirection.
933 struct ExtractStridedMetadataOpAssumeAlignmentFolder
934  : public OpRewritePattern<memref::ExtractStridedMetadataOp> {
935 public:
937 
938  LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
939  PatternRewriter &rewriter) const override {
940  auto assumeAlignmentOp =
941  op.getSource().getDefiningOp<memref::AssumeAlignmentOp>();
942  if (!assumeAlignmentOp)
943  return failure();
944 
945  rewriter.replaceOpWithNewOp<memref::ExtractStridedMetadataOp>(
946  op, assumeAlignmentOp.getViewSource());
947  return success();
948  }
949 };
950 
951 /// Rewrite memref.extract_aligned_pointer_as_index of a ViewLikeOp to the
952 /// source of the ViewLikeOp.
953 class RewriteExtractAlignedPointerAsIndexOfViewLikeOp
954  : public OpRewritePattern<memref::ExtractAlignedPointerAsIndexOp> {
956 
957  LogicalResult
958  matchAndRewrite(memref::ExtractAlignedPointerAsIndexOp extractOp,
959  PatternRewriter &rewriter) const override {
960  auto viewLikeOp =
961  extractOp.getSource().getDefiningOp<ViewLikeOpInterface>();
962  if (!viewLikeOp)
963  return rewriter.notifyMatchFailure(extractOp, "not a ViewLike source");
964  rewriter.modifyOpInPlace(extractOp, [&]() {
965  extractOp.getSourceMutable().assign(viewLikeOp.getViewSource());
966  });
967  return success();
968  }
969 };
970 
971 /// Replace `base, offset, sizes, strides =
972 /// extract_strided_metadata(
973 /// reinterpret_cast(src, srcOffset, srcSizes, srcStrides))`
974 /// With
975 /// ```
976 /// base, ... = extract_strided_metadata(src)
977 /// offset = srcOffset
978 /// sizes = srcSizes
979 /// strides = srcStrides
980 /// ```
981 ///
982 /// In other words, consume the `reinterpret_cast` and apply its effects
983 /// on the offset, sizes, and strides.
984 class ExtractStridedMetadataOpReinterpretCastFolder
985  : public OpRewritePattern<memref::ExtractStridedMetadataOp> {
987 
988  LogicalResult
989  matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
990  PatternRewriter &rewriter) const override {
991  auto reinterpretCastOp = extractStridedMetadataOp.getSource()
992  .getDefiningOp<memref::ReinterpretCastOp>();
993  if (!reinterpretCastOp)
994  return failure();
995 
996  Location loc = extractStridedMetadataOp.getLoc();
997  // Check if the source is suitable for extract_strided_metadata.
998  SmallVector<Type> inferredReturnTypes;
999  if (failed(extractStridedMetadataOp.inferReturnTypes(
1000  rewriter.getContext(), loc, {reinterpretCastOp.getSource()},
1001  /*attributes=*/{}, /*properties=*/nullptr, /*regions=*/{},
1002  inferredReturnTypes)))
1003  return rewriter.notifyMatchFailure(
1004  reinterpretCastOp, "reinterpret_cast source's type is incompatible");
1005 
1006  auto memrefType = cast<MemRefType>(reinterpretCastOp.getResult().getType());
1007  unsigned rank = memrefType.getRank();
1008  SmallVector<OpFoldResult> results;
1009  results.resize_for_overwrite(rank * 2 + 2);
1010 
1011  auto newExtractStridedMetadata =
1012  rewriter.create<memref::ExtractStridedMetadataOp>(
1013  loc, reinterpretCastOp.getSource());
1014 
1015  // Register the base_buffer.
1016  results[0] = newExtractStridedMetadata.getBaseBuffer();
1017 
1018  // Register the new offset.
1019  results[1] = getValueOrCreateConstantIndexOp(
1020  rewriter, loc, reinterpretCastOp.getMixedOffsets()[0]);
1021 
1022  const unsigned sizeStartIdx = 2;
1023  const unsigned strideStartIdx = sizeStartIdx + rank;
1024 
1025  SmallVector<OpFoldResult> sizes = reinterpretCastOp.getMixedSizes();
1026  SmallVector<OpFoldResult> strides = reinterpretCastOp.getMixedStrides();
1027  for (unsigned i = 0; i < rank; ++i) {
1028  results[sizeStartIdx + i] = sizes[i];
1029  results[strideStartIdx + i] = strides[i];
1030  }
1031  rewriter.replaceOp(extractStridedMetadataOp,
1032  getValueOrCreateConstantIndexOp(rewriter, loc, results));
1033  return success();
1034  }
1035 };
1036 
1037 /// Replace `base, offset, sizes, strides =
1038 /// extract_strided_metadata(
1039 /// cast(src) to dstTy)`
1040 /// With
1041 /// ```
1042 /// base, ... = extract_strided_metadata(src)
1043 /// offset = !dstTy.srcOffset.isDynamic()
1044 /// ? dstTy.srcOffset
1045 /// : extract_strided_metadata(src).offset
1046 /// sizes = for each srcSize in dstTy.srcSizes:
1047 /// !srcSize.isDynamic()
1048 /// ? srcSize
1049 // : extract_strided_metadata(src).sizes[i]
1050 /// strides = for each srcStride in dstTy.srcStrides:
1051 /// !srcStrides.isDynamic()
1052 /// ? srcStrides
1053 /// : extract_strided_metadata(src).strides[i]
1054 /// ```
1055 ///
1056 /// In other words, consume the `cast` and apply its effects
1057 /// on the offset, sizes, and strides or compute them directly from `src`.
1058 class ExtractStridedMetadataOpCastFolder
1059  : public OpRewritePattern<memref::ExtractStridedMetadataOp> {
1061 
1062  LogicalResult
1063  matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
1064  PatternRewriter &rewriter) const override {
1065  Value source = extractStridedMetadataOp.getSource();
1066  auto castOp = source.getDefiningOp<memref::CastOp>();
1067  if (!castOp)
1068  return failure();
1069 
1070  Location loc = extractStridedMetadataOp.getLoc();
1071  // Check if the source is suitable for extract_strided_metadata.
1072  SmallVector<Type> inferredReturnTypes;
1073  if (failed(extractStridedMetadataOp.inferReturnTypes(
1074  rewriter.getContext(), loc, {castOp.getSource()},
1075  /*attributes=*/{}, /*properties=*/nullptr, /*regions=*/{},
1076  inferredReturnTypes)))
1077  return rewriter.notifyMatchFailure(castOp,
1078  "cast source's type is incompatible");
1079 
1080  auto memrefType = cast<MemRefType>(source.getType());
1081  unsigned rank = memrefType.getRank();
1082  SmallVector<OpFoldResult> results;
1083  results.resize_for_overwrite(rank * 2 + 2);
1084 
1085  auto newExtractStridedMetadata =
1086  rewriter.create<memref::ExtractStridedMetadataOp>(loc,
1087  castOp.getSource());
1088 
1089  // Register the base_buffer.
1090  results[0] = newExtractStridedMetadata.getBaseBuffer();
1091 
1092  auto getConstantOrValue = [&rewriter](int64_t constant,
1093  OpFoldResult ofr) -> OpFoldResult {
1094  return !ShapedType::isDynamic(constant)
1095  ? OpFoldResult(rewriter.getIndexAttr(constant))
1096  : ofr;
1097  };
1098 
1099  auto [sourceStrides, sourceOffset] = memrefType.getStridesAndOffset();
1100  assert(sourceStrides.size() == rank && "unexpected number of strides");
1101 
1102  // Register the new offset.
1103  results[1] =
1104  getConstantOrValue(sourceOffset, newExtractStridedMetadata.getOffset());
1105 
1106  const unsigned sizeStartIdx = 2;
1107  const unsigned strideStartIdx = sizeStartIdx + rank;
1108  ArrayRef<int64_t> sourceSizes = memrefType.getShape();
1109 
1110  SmallVector<OpFoldResult> sizes = newExtractStridedMetadata.getSizes();
1111  SmallVector<OpFoldResult> strides = newExtractStridedMetadata.getStrides();
1112  for (unsigned i = 0; i < rank; ++i) {
1113  results[sizeStartIdx + i] = getConstantOrValue(sourceSizes[i], sizes[i]);
1114  results[strideStartIdx + i] =
1115  getConstantOrValue(sourceStrides[i], strides[i]);
1116  }
1117  rewriter.replaceOp(extractStridedMetadataOp,
1118  getValueOrCreateConstantIndexOp(rewriter, loc, results));
1119  return success();
1120  }
1121 };
1122 
1123 /// Replace `base, offset, sizes, strides = extract_strided_metadata(
1124 /// memory_space_cast(src) to dstTy)`
1125 /// with
1126 /// ```
1127 /// oldBase, offset, sizes, strides = extract_strided_metadata(src)
1128 /// destBaseTy = type(oldBase) with memory space from destTy
1129 /// base = memory_space_cast(oldBase) to destBaseTy
1130 /// ```
1131 ///
1132 /// In other words, propagate metadata extraction accross memory space casts.
1133 class ExtractStridedMetadataOpMemorySpaceCastFolder
1134  : public OpRewritePattern<memref::ExtractStridedMetadataOp> {
1136 
1137  LogicalResult
1138  matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
1139  PatternRewriter &rewriter) const override {
1140  Location loc = extractStridedMetadataOp.getLoc();
1141  Value source = extractStridedMetadataOp.getSource();
1142  auto memSpaceCastOp = source.getDefiningOp<memref::MemorySpaceCastOp>();
1143  if (!memSpaceCastOp)
1144  return failure();
1145  auto newExtractStridedMetadata =
1146  rewriter.create<memref::ExtractStridedMetadataOp>(
1147  loc, memSpaceCastOp.getSource());
1148  SmallVector<Value> results(newExtractStridedMetadata.getResults());
1149  // As with most other strided metadata rewrite patterns, don't introduce
1150  // a use of the base pointer where non existed. This needs to happen here,
1151  // as opposed to in later dead-code elimination, because these patterns are
1152  // sometimes used during dialect conversion (see EmulateNarrowType, for
1153  // example), so adding spurious usages would cause a pre-legalization value
1154  // to be live that would be dead had this pattern not run.
1155  if (!extractStridedMetadataOp.getBaseBuffer().use_empty()) {
1156  auto baseBuffer = results[0];
1157  auto baseBufferType = cast<MemRefType>(baseBuffer.getType());
1158  MemRefType::Builder newTypeBuilder(baseBufferType);
1159  newTypeBuilder.setMemorySpace(
1160  memSpaceCastOp.getResult().getType().getMemorySpace());
1161  results[0] = rewriter.create<memref::MemorySpaceCastOp>(
1162  loc, Type{newTypeBuilder}, baseBuffer);
1163  } else {
1164  results[0] = nullptr;
1165  }
1166  rewriter.replaceOp(extractStridedMetadataOp, results);
1167  return success();
1168  }
1169 };
1170 
1171 /// Replace `base, offset =
1172 /// extract_strided_metadata(extract_strided_metadata(src)#0)`
1173 /// With
1174 /// ```
1175 /// base, ... = extract_strided_metadata(src)
1176 /// offset = 0
1177 /// ```
1178 class ExtractStridedMetadataOpExtractStridedMetadataFolder
1179  : public OpRewritePattern<memref::ExtractStridedMetadataOp> {
1181 
1182  LogicalResult
1183  matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
1184  PatternRewriter &rewriter) const override {
1185  auto sourceExtractStridedMetadataOp =
1186  extractStridedMetadataOp.getSource()
1187  .getDefiningOp<memref::ExtractStridedMetadataOp>();
1188  if (!sourceExtractStridedMetadataOp)
1189  return failure();
1190  Location loc = extractStridedMetadataOp.getLoc();
1191  rewriter.replaceOp(extractStridedMetadataOp,
1192  {sourceExtractStridedMetadataOp.getBaseBuffer(),
1194  rewriter, loc, rewriter.getIndexAttr(0))});
1195  return success();
1196  }
1197 };
1198 } // namespace
1199 
1202  patterns.add<SubviewFolder,
1203  ReshapeFolder<memref::ExpandShapeOp, getExpandedSizes,
1204  getExpandedStrides>,
1205  ReshapeFolder<memref::CollapseShapeOp, getCollapsedSize,
1206  getCollapsedStride>,
1207  ExtractStridedMetadataOpAllocFolder<memref::AllocOp>,
1208  ExtractStridedMetadataOpAllocFolder<memref::AllocaOp>,
1209  ExtractStridedMetadataOpCollapseShapeFolder,
1210  ExtractStridedMetadataOpExpandShapeFolder,
1211  ExtractStridedMetadataOpGetGlobalFolder,
1212  RewriteExtractAlignedPointerAsIndexOfViewLikeOp,
1213  ExtractStridedMetadataOpReinterpretCastFolder,
1214  ExtractStridedMetadataOpSubviewFolder,
1215  ExtractStridedMetadataOpCastFolder,
1216  ExtractStridedMetadataOpMemorySpaceCastFolder,
1217  ExtractStridedMetadataOpAssumeAlignmentFolder,
1218  ExtractStridedMetadataOpExtractStridedMetadataFolder>(
1219  patterns.getContext());
1220 }
1221 
1224  patterns.add<ExtractStridedMetadataOpAllocFolder<memref::AllocOp>,
1225  ExtractStridedMetadataOpAllocFolder<memref::AllocaOp>,
1226  ExtractStridedMetadataOpCollapseShapeFolder,
1227  ExtractStridedMetadataOpExpandShapeFolder,
1228  ExtractStridedMetadataOpGetGlobalFolder,
1229  ExtractStridedMetadataOpSubviewFolder,
1230  RewriteExtractAlignedPointerAsIndexOfViewLikeOp,
1231  ExtractStridedMetadataOpReinterpretCastFolder,
1232  ExtractStridedMetadataOpCastFolder,
1233  ExtractStridedMetadataOpMemorySpaceCastFolder,
1234  ExtractStridedMetadataOpAssumeAlignmentFolder,
1235  ExtractStridedMetadataOpExtractStridedMetadataFolder>(
1236  patterns.getContext());
1237 }
1238 
1239 //===----------------------------------------------------------------------===//
1240 // Pass registration
1241 //===----------------------------------------------------------------------===//
1242 
1243 namespace {
1244 
1245 struct ExpandStridedMetadataPass final
1246  : public memref::impl::ExpandStridedMetadataPassBase<
1247  ExpandStridedMetadataPass> {
1248  void runOnOperation() override;
1249 };
1250 
1251 } // namespace
1252 
1253 void ExpandStridedMetadataPass::runOnOperation() {
1256  (void)applyPatternsGreedily(getOperation(), std::move(patterns));
1257 }
static MLIRContext * getContext(OpFoldResult val)
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExpr floorDiv(uint64_t v) const
Definition: AffineExpr.cpp:921
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:104
AffineExpr getAffineSymbolExpr(unsigned position)
Definition: Builders.cpp:364
AffineExpr getAffineConstantExpr(int64_t constant)
Definition: Builders.cpp:368
MLIRContext * getContext() const
Definition: Builders.h:55
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:76
This is a builder type that keeps local references to arguments.
Definition: BuiltinTypes.h:166
This class helps build Operations.
Definition: Builders.h:204
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:453
This class represents a single result from folding an operation.
Definition: OpDefinition.h:271
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:749
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:358
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:682
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
void modifyOpInPlace(Operation *root, CallableT &&callable)
This method is a utility wrapper around an in-place modification of an operation.
Definition: PatternMatch.h:594
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:500
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:387
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:105
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
Definition: AffineOps.cpp:1225
void populateResolveExtractStridedMetadataPatterns(RewritePatternSet &patterns)
Appends patterns for resolving memref.extract_strided_metadata into memref.extract_strided_metadata o...
void populateExpandStridedMetadataPatterns(RewritePatternSet &patterns)
Appends patterns for expanding memref operations that modify the metadata (sizes, offset,...
Include the generated interface declarations.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
LogicalResult applyPatternsGreedily(Region &region, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
const FrozenRewritePatternSet & patterns
SmallVector< int64_t > computeSuffixProduct(ArrayRef< int64_t > sizes)
Given a set of sizes, return the suffix product.
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
OpFoldResult getAsOpFoldResult(Value val)
Given a value, try to extract a constant Attribute.
void bindSymbolsList(MLIRContext *ctx, MutableArrayRef< AffineExprTy > exprs)
Definition: AffineExpr.h:330
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:314
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
Patterns must specify the root operation name they match against, and can also specify the benefit of...
Definition: PatternMatch.h:319
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.