MLIR  21.0.0git
NVGPUDialect.cpp
Go to the documentation of this file.
1 //===- NVGPUDialect.cpp - MLIR NVGPU ops implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NVGPU dialect and its operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
16 #include "mlir/IR/Builders.h"
18 #include "mlir/IR/BuiltinTypes.h"
19 #include "mlir/IR/Diagnostics.h"
21 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/PatternMatch.h"
24 #include "mlir/IR/TypeUtilities.h"
25 #include "mlir/IR/Verifier.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/TypeSwitch.h"
29 
30 using namespace mlir;
31 using namespace mlir::nvgpu;
32 
33 #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.cpp.inc"
34 
35 void nvgpu::NVGPUDialect::initialize() {
36  addTypes<
37 #define GET_TYPEDEF_LIST
38 #include "mlir/Dialect/NVGPU/IR/NVGPUTypeDefs.cpp.inc"
39  >();
40  addAttributes<
41 #define GET_ATTRDEF_LIST
42 #include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
43  >();
44  addOperations<
45 #define GET_OP_LIST
46 #include "mlir/Dialect/NVGPU/IR/NVGPUOps.cpp.inc"
47  >();
48 }
49 
50 bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
51  if (!memorySpace)
52  return false;
53  if (auto intAttr = llvm::dyn_cast<IntegerAttr>(memorySpace))
54  return intAttr.getInt() == NVGPUDialect::kSharedMemoryAddressSpace;
55  if (auto gpuAttr = llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
56  return gpuAttr.getValue() == gpu::AddressSpace::Workgroup;
57  return false;
58 }
59 
60 bool nvgpu::NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
61  Attribute memorySpace = type.getMemorySpace();
62  return isSharedMemoryAddressSpace(memorySpace);
63 }
64 
65 //===----------------------------------------------------------------------===//
66 // NVGPU_DeviceAsyncCopyOp
67 //===----------------------------------------------------------------------===//
68 
69 LogicalResult DeviceAsyncCopyOp::verify() {
70  auto srcMemref = llvm::cast<MemRefType>(getSrc().getType());
71  auto dstMemref = llvm::cast<MemRefType>(getDst().getType());
72 
73  if (!srcMemref.isLastDimUnitStride())
74  return emitError("source memref most minor dim must have unit stride");
75  if (!dstMemref.isLastDimUnitStride())
76  return emitError("destination memref most minor dim must have unit stride");
77  if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref))
78  return emitError()
79  << "destination memref must have a memory space attribute of "
80  "IntegerAttr("
81  << NVGPUDialect::kSharedMemoryAddressSpace
82  << ") or gpu::AddressSpaceAttr(Workgroup)";
83  if (dstMemref.getElementType() != srcMemref.getElementType())
84  return emitError("source and destination must have the same element type");
85  if (size_t(srcMemref.getRank()) != getSrcIndices().size())
86  return emitOpError() << "expected " << srcMemref.getRank()
87  << " source indices, got " << getSrcIndices().size();
88  if (size_t(dstMemref.getRank()) != getDstIndices().size())
89  return emitOpError() << "expected " << dstMemref.getRank()
90  << " destination indices, got "
91  << getDstIndices().size();
92  int64_t dstElements = getDstElements().getZExtValue();
93  int64_t sizeInBytes = (dstMemref.getElementTypeBitWidth() * dstElements) / 8;
94  if (sizeInBytes != 4 && sizeInBytes != 8 && sizeInBytes != 16) {
95  unsigned dstWidth = dstMemref.getElementTypeBitWidth();
97  diag << "Requested copy elements is " << dstElements << " with width "
98  << dstMemref.getElementTypeBitWidth()
99  << ". But copy elements could be one of ";
100  if ((32 / dstWidth) > 0)
101  diag << (32 / dstWidth) << ", ";
102  if ((64 / dstWidth) > 0)
103  diag << (64 / dstWidth) << ", ";
104  if ((128 / dstWidth) > 0)
105  diag << (128 / dstWidth) << ".";
106  return diag;
107  }
108  if (getBypassL1().has_value()) {
109  int64_t req = 16 * 8 / dstMemref.getElementTypeBitWidth();
110  if (getBypassL1().value() && sizeInBytes != 16) {
111  return emitOpError() << "bypassL1 does not satify alignment for "
112  << dstMemref << " with destination element "
113  << dstElements
114  << ". Unset bypassL1, or set "
115  "destination element to "
116  << req;
117  }
118  }
119  return success();
120 }
121 
122 //===----------------------------------------------------------------------===//
123 // NVGPU_MmaSyncOp
124 //===----------------------------------------------------------------------===//
125 void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
126  ::mlir::OperationState &odsState, Value matrixA,
127  Value matrixB, Value matrixC, ArrayAttr mmaShape) {
128  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
129  mmaShape, UnitAttr());
130 }
131 
132 void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
133  ::mlir::OperationState &odsState, Value matrixA,
134  Value matrixB, Value matrixC, ArrayRef<int64_t> mmaShape,
135  bool tf32Enabled) {
136  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
137  odsBuilder.getI64ArrayAttr(mmaShape),
138  tf32Enabled ? odsBuilder.getUnitAttr() : UnitAttr());
139 }
140 
141 /// Performs verification for MmaSyncOp and MmaSparseSyncOp.
142 static LogicalResult verifyMmaSyncOp(Operation *op,
143  TypedValue<VectorType> matrixA,
144  TypedValue<VectorType> matrixB,
145  TypedValue<VectorType> matrixC,
146  const std::array<int64_t, 3> &mmaShape,
147  bool tf32Enabled, bool sparse = false) {
148 
149  // The verification for mma.sync covering various shapes and data types is
150  // based on the fundamental tensor core shape.
151 
152  // "Fundamental" tensor core shapes:
153  // - For F32 (TF32), F16, S8, and S4 data
154  // types the fundamental tensor core operation is of shape 8-by-8-by-128b.
155  // - F64 is an exception and is of shape 8-by-8-by-256b.
156  int64_t shapeM = 8;
157  int64_t shapeN = 8;
158  int64_t shapeK; // set based on data type (128b for all data types except F64)
159 
160  // Number of elements A, B, and C per thread per fundamental tensor core tile
161  int64_t numElementA; // set based on data type (32b except F64)
162  int64_t numElementB; // set based on data type (32b except F64)
163  int64_t numElementC{2}; // two accumulator elements per fundamental tile
164 
165  // nvgpu.mma.sync vector operands (per thread)
166  auto aVector = matrixA.getType();
167  auto bVector = matrixB.getType();
168  auto cVector = matrixC.getType();
169 
170  // vector shapes
171  ArrayRef<int64_t> aShape = aVector.getShape();
172  ArrayRef<int64_t> bShape = bVector.getShape();
173  ArrayRef<int64_t> cShape = cVector.getShape();
174 
175  // vector element type
176  Type aType = aVector.getElementType();
177 
178  // Certain data types are not allowed in sparse mode.
179  if (sparse && aType.isF64())
180  return op->emitError() << "f64 is not supported for sparse mode";
181 
182  if (aType.isF64()) {
183  // exception to 8-by-8-128b fundamental tensor core tile size
184  shapeK = 4;
185  numElementA = 1;
186  numElementB = 1;
187  } else if (aType.isF32() || aType.isBF16() || aType.isF16() ||
188  aType.isInteger(8) || aType.isInteger(4)) {
189  // 8-by-8-128b fundamental tensor core tile size
190  int operandBitwidth = aType.getIntOrFloatBitWidth();
191  shapeK = 128 / operandBitwidth; // 128b wide shapeK
192 
193  numElementA = 32 / operandBitwidth; // 32b wide operand A
194  numElementB = 32 / operandBitwidth; // 32b wide operand B
195  } else {
196  return op->emitError()
197  << "expected input data type (i4,i8,f16,bf16,tf32,f64) "
198  "supported by "
199  << op->getName();
200  }
201 
202  //
203  // Basic verification
204  //
205 
206  if (aShape.size() != 2) {
207  return op->emitError() << "matrixA must be 2 dimensional vector";
208  }
209 
210  if (bShape.size() != 2) {
211  return op->emitError() << "matrixB must be 2 dimensional vector";
212  }
213 
214  if (cShape.size() != 2) {
215  return op->emitError() << "matrixC must be 2 dimensional vector";
216  }
217 
218  auto [m, n, k] = mmaShape;
219 
220  // verify warp-wide size for vector a
221  int64_t sparseFactor = sparse ? 2 : 1;
222  if (aShape[0] * aShape[1] * kWarpSize != m * k / sparseFactor)
223  return op->emitOpError()
224  << "expected " << m * k << " warp-wide matrix A elements";
225 
226  // verify warp-wide size for vector b
227  if (bShape[0] * bShape[1] * kWarpSize != k * n)
228  return op->emitOpError()
229  << "expected " << k * n << " warp-wide matrix B elements";
230 
231  // verify warp-wide size for vector c
232  if (cShape[0] * cShape[1] * kWarpSize != m * n)
233  return op->emitOpError()
234  << "expected " << m * n << " warp-wide matrix C elements";
235 
236  // verify tf32 tensor cores are enabled for only F32 datatype
237  if (tf32Enabled && !(aType.isF32()))
238  return op->emitOpError()
239  << "expected tf32 tensor cores only for F32 operands";
240 
241  //
242  // Extended verification
243  //
244 
245  // tiles of fundamental tensor core operations
246  int64_t mTile = m / shapeM;
247  int64_t nTile = n / shapeN;
248  int64_t kTile = k / shapeK;
249 
250  // verify shape of aVector
251  if ((aShape[0] != mTile * kTile / (sparse ? 2 : 1)) ||
252  (aShape[1] != numElementA))
253  return op->emitOpError() << "expected matrix A to be shaped ("
254  << mTile * kTile << " x " << numElementA << ")";
255 
256  // verify shape of bVector
257  if ((bShape[0] != kTile * nTile) || (bShape[1] != numElementB))
258  return op->emitOpError() << "expected matrix B to be shaped ("
259  << kTile * nTile << " x " << numElementB << ")";
260 
261  // verify shape of cVector
262  if ((cShape[0] != mTile * nTile) || (cShape[1] != numElementC))
263  return op->emitOpError() << "expected matrix C to be shaped ("
264  << mTile * nTile << " x " << numElementC << ")";
265 
266  return success();
267 }
268 
269 LogicalResult MmaSyncOp::verify() {
270  return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
271  getMatrixC(), getMmaShapeAsArray(),
272  getOperation()->hasAttr(getTf32EnabledAttrName()));
273 }
274 
275 //===----------------------------------------------------------------------===//
276 // NVGPU_MmaSparseSyncOp
277 //===----------------------------------------------------------------------===//
278 void MmaSparseSyncOp::build(::mlir::OpBuilder &odsBuilder,
279  ::mlir::OperationState &odsState, Value matrixA,
280  Value matrixB, Value matrixC, Value sparseMetadata,
281  ArrayRef<int64_t> mmaShape) {
282  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
283  sparseMetadata, odsBuilder.getI64ArrayAttr(mmaShape), 0, UnitAttr());
284 }
285 
286 LogicalResult MmaSparseSyncOp::verify() {
287  unsigned sparsitySelector = getSparsitySelector();
288  if (sparsitySelector > 1)
289  return emitOpError() << "sparsity selector should be 0 or 1";
290  return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
291  getMatrixC(), getMmaShapeAsArray(),
292  getOperation()->hasAttr(getTf32EnabledAttrName()),
293  true);
294 }
295 
296 //===----------------------------------------------------------------------===//
297 // NVGPU_LdMatrixOp
298 //===----------------------------------------------------------------------===//
299 LogicalResult LdMatrixOp::verify() {
300 
301  // ldmatrix reads data from source in shared memory
302  auto srcMemref = llvm::cast<MemRefType>(getSrcMemref().getType());
303 
304  // ldmatrix writes data to result/destination in vector registers
305  auto resVector = llvm::cast<VectorType>(getRes().getType());
306 
307  // vector register shape, element type, and bitwidth
308  ArrayRef<int64_t> resShape = resVector.getShape();
309  Type resType = resVector.getElementType();
310  int64_t elementBitWidth = resType.getIntOrFloatBitWidth();
311 
312  // ldmatrix loads 32 bits into vector registers per 8-by-8 tile per thread
313  int64_t numElementsPer32b = 32 / elementBitWidth;
314 
315  // number of 8-by-8 tiles
316  int64_t numTiles = getNumTiles();
317 
318  // transpose elements in vector registers at 16b granularity when true
319  bool isTranspose = getTranspose();
320 
321  //
322  // verification
323  //
324 
325  if (!NVGPUDialect::hasSharedMemoryAddressSpace(srcMemref))
326  return emitError()
327  << "expected nvgpu.ldmatrix srcMemref must have a memory space "
328  "attribute of IntegerAttr("
329  << NVGPUDialect::kSharedMemoryAddressSpace
330  << ") or gpu::AddressSpaceAttr(Workgroup)";
331  if (elementBitWidth > 32)
332  return emitError() << "nvgpu.ldmatrix works for 32b or lower";
333  if (isTranspose && !(elementBitWidth == 16))
334  return emitError()
335  << "nvgpu.ldmatrix transpose works only at 16b granularity";
336  if (resShape.size() != 2) {
337  return emitError() << "results must be 2 dimensional vector";
338  }
339  if (!(resShape[1] == numElementsPer32b))
340  return emitError() << "expected vector register shape[1] = "
341  << numElementsPer32b;
342  if (!(resShape[0] == numTiles))
343  return emitError()
344  << "expected vector register shape[0] and numTiles to match";
345 
346  return success();
347 }
348 
349 //===----------------------------------------------------------------------===//
350 // NVGPU_TmaAsyncLoadOp
351 //===----------------------------------------------------------------------===//
352 
353 std::optional<InFlightDiagnostic> verifyTmaDescriptorWithMemref(
354  Operation *op, nvgpu::TensorMapDescriptorType descType,
355  std::optional<MemRefType> memrefType = std::nullopt) {
356  MemRefType descMemref = descType.getTensor();
357  // Limitation
358  if (descType.getInterleave() != TensorMapInterleaveKind::INTERLEAVE_NONE)
359  return op->emitError() << "Interleave options are not supported yet.";
360 
361  // Address space check for shared memory check
362  if (!NVGPUDialect::hasSharedMemoryAddressSpace(descMemref)) {
363  return op->emitError() << "the tensor map descriptor has incorrect address "
364  "space, it must be shared memory address space.";
365  }
366  // Support only static shape for the time being
367  if (!descMemref.hasStaticShape())
368  return op->emitError() << "the tensor map descriptor must be static shaped";
369 
370  for (auto dim : descMemref.getShape()) {
371  if (dim <= 0 || dim > kMaxTMADimension) {
372  return op->emitError() << "the tensor map descriptor must have "
373  "dimensions between 1 and "
374  << kMaxTMADimension << " but it is " << dim;
375  }
376  }
377  if (descMemref.getRank() > 1 &&
378  descType.getSwizzle() != TensorMapSwizzleKind::SWIZZLE_NONE) {
379  unsigned lastDimensionByte =
380  descMemref.getElementTypeBitWidth() * descMemref.getShape().back() / 8;
381  if (lastDimensionByte != kMaxTMALastdimByte)
382  return op->emitError() << "the tensormap descriptor must have last "
383  "dimension of "
384  << kMaxTMALastdimByte << " bytes but it is "
385  << lastDimensionByte << " bytes";
386  }
387 
388  // No verification if memref type is not provided
389  if (!memrefType.has_value())
390  return std::nullopt;
391 
392  MemRefType dstMemref = memrefType.value();
393 
394  // Check element type
395  if (descMemref.getElementType() != dstMemref.getElementType()) {
396  return op->emitError() << "the element type of tensor map descriptor and "
397  "memref must be same";
398  }
399 
400  if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref)) {
401  return op->emitError() << "the destination memref has incorrect address "
402  "space, it must be shared memory address space.";
403  }
404  if (!dstMemref.hasStaticShape())
405  return op->emitError() << "the destination memref must be static shaped";
406 
407  if (dstMemref.getRank() != descMemref.getRank()) {
408  return op->emitError() << "the shape of tensor map descriptor and "
409  "memref must have same rank";
410  }
411  if (!descMemref.getShape().equals(dstMemref.getShape())) {
412  return op->emitError() << "memref and tensor map shapes mismatch "
413  << descMemref << " != " << dstMemref;
414  }
415 
416  return std::nullopt;
417 }
418 
419 LogicalResult TmaAsyncLoadOp::verify() {
420  std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
421  *this, getTensorMapDescriptor().getType(), getDst().getType());
422  if (error.has_value())
423  return error.value();
424 
425  if (getCoordinates().size() > kMaxTMATensorDimension) {
426  return emitError() << "Maximum " << kMaxTMATensorDimension
427  << " coordinates are supported.";
428  }
429  if (getCoordinates().size() !=
430  size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
431  return emitError() << "number of coordinates do not match with the rank of "
432  "tensor descriptor map.";
433  }
434 
435  return success();
436 }
437 
438 //===----------------------------------------------------------------------===//
439 // NVGPU_TmaAsyncStoreOp
440 //===----------------------------------------------------------------------===//
441 
442 LogicalResult TmaAsyncStoreOp::verify() {
443  std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
444  *this, getTensorMapDescriptor().getType(), getSrc().getType());
445  if (error.has_value())
446  return error.value();
447 
448  if (getCoordinates().size() > kMaxTMATensorDimension) {
449  return emitError() << "Maximum " << kMaxTMATensorDimension
450  << " coordinates are supported.";
451  }
452  if (getCoordinates().size() !=
453  size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
454  return emitError() << "number of coordinates do not match with the rank of "
455  "tensor descriptor map.";
456  }
457 
458  return success();
459 }
460 
461 LogicalResult TmaCreateDescriptorOp::verify() {
462  if (getBoxDimensions().size() > kMaxTMATensorDimension) {
463  return emitError() << "Maximum " << kMaxTMATensorDimension
464  << " coordinates are supported.";
465  }
466 
467  std::optional<InFlightDiagnostic> error =
468  verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
469  if (error.has_value())
470  return error.value();
471 
472  return success();
473 }
474 
475 //===----------------------------------------------------------------------===//
476 // NVGPU_WarpgroupGenerateDescriptorOp
477 //===----------------------------------------------------------------------===//
478 
480  std::optional<InFlightDiagnostic> error =
481  verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
482  if (error.has_value())
483  return error.value();
484 
485  if (getTensorMap().getType().getSwizzle() !=
486  TensorMapSwizzleKind::SWIZZLE_128B) {
487  return emitError() << "supports only "
488  << stringifyTensorMapSwizzleKind(
489  TensorMapSwizzleKind::SWIZZLE_128B)
490  << " is supported for the time being";
491  }
492 
493  if (getTensorMap().getType().getInterleave() !=
494  TensorMapInterleaveKind::INTERLEAVE_NONE) {
495  return emitError() << "supports only "
496  << stringifyTensorMapInterleaveKind(
497  TensorMapInterleaveKind::INTERLEAVE_NONE)
498  << " is supported for the time being";
499  }
500 
501  return success();
502 }
503 
504 //===----------------------------------------------------------------------===//
505 // WarpgroupMmaOp
506 //===----------------------------------------------------------------------===//
507 
508 LogicalResult isAllowedWGMMADataType(Type typeD, Type typeA, Type typeB) {
509  // F32 += F16 + F16
510  // F16 += F16 + F16
511  if (typeA.isF16() && typeB.isF16() && (typeD.isF32() || typeD.isF16()))
512  return success();
513  // F32 += TF32 + TF32
514  if (typeA.isTF32() && typeD.isF32() && typeB.isTF32())
515  return success();
516  // s32 += i8 + i8
517  if (typeA.isInteger(16) && typeB.isInteger(16) && typeD.isInteger(32))
518  return success();
519  // s32 += i1 + i1
520  if (typeA.isInteger(1) && typeB.isInteger(1) && typeD.isInteger(32))
521  return success();
522  // F32 += BF16 + BF16
523  // F16 += BF16 + BF16
524  if (typeA.isBF16() && typeB.isBF16() && (typeD.isF32() || typeD.isF16()))
525  return success();
526  // F16 += f8 + f8
527  // F32 += f8 + f8
528  if (isa<Float8E5M2Type, Float8E4M3FNType>(typeA) &&
529  isa<Float8E5M2Type, Float8E4M3FNType>(typeB) &&
530  (typeD.isF32() || typeD.isF16()))
531  return success();
532 
533  return failure();
534 }
535 
536 LogicalResult isAllowedSizeM(int sizeM) {
537  if (sizeM % kWgmmaSizeM)
538  return failure();
539  return success();
540 }
541 
542 LogicalResult isAllowedSizeN(int sizeN, Type typeA) {
543  SmallVector<int> allowedN = {8, 16, 24, 32, 40, 48, 56, 64,
544  72, 80, 88, 96, 104, 112, 120, 128,
545  136, 144, 152, 160, 168, 176, 184, 192,
546  200, 208, 216, 224, 232, 240, 248, 256};
547  SmallVector<int> allowedNshort = {8, 16, 24, 32, 48, 64,
548  80, 96, 112, 128, 144, 160,
549  176, 192, 208, 224, 240, 256};
550  if (typeA.isBF16() || typeA.isF16() || typeA.isF32() || typeA.isTF32() ||
551  isa<Float8E5M2Type, Float8E4M3FNType>(typeA))
552  if (llvm::is_contained(allowedN, sizeN))
553  return success();
554 
555  if (typeA.isInteger(8) || typeA.isInteger(1))
556  if (llvm::is_contained(allowedNshort, sizeN))
557  return success();
558  return failure();
559 }
560 
561 LogicalResult WarpgroupMmaOp::verify() {
562  if (getTransposeA() && !getTransposeB())
563  return emitOpError()
564  << "supports non-transpose A (Row Major) "
565  "and transpose B (Column Major) for the time being ";
566  MemRefType matrixA = getDescriptorA().getType().getTensor();
567  MemRefType matrixB = getDescriptorB().getType().getTensor();
568  VectorType matrixC = getMatrixC().getType().getFragmented();
569  VectorType matrixD = getMatrixD().getType().getFragmented();
570 
571  if (matrixC != matrixD)
572  return emitOpError() << "type of matrix C and matrix D must be the same";
573 
574  if (matrixA.getRank() != 2 || matrixB.getRank() != 2 ||
575  matrixC.getRank() != 2 || matrixD.getRank() != 2) {
576  return emitOpError()
577  << "has matrices A, B, C and D, they must be 2 dimensional";
578  }
579 
580  if (matrixA.getShape()[1] != matrixB.getShape()[0])
581  return emitOpError() << "2nd dim matrix-A (" << matrixA.getShape()[1]
582  << ")!= 1st dim matrix-B (" << matrixB.getShape()[0]
583  << " )";
584  if (matrixA.getShape()[0] != matrixC.getShape()[0])
585  return emitOpError() << "1st dim matrix-A ( " << matrixA.getShape()[0]
586  << " )!= 1st dim matrix-C ( " << matrixC.getShape()[0]
587  << " )";
588  if (matrixB.getShape()[1] != matrixC.getShape()[1])
589  return emitOpError() << "2nd dim matrix-B ( " << matrixB.getShape()[1]
590  << " ) != 2nd dim matrix-C ( " << matrixC.getShape()[1]
591  << " )";
592 
593  if (failed(isAllowedWGMMADataType(matrixC.getElementType(),
594  matrixA.getElementType(),
595  matrixB.getElementType())))
596  return emitOpError() << matrixC.getElementType()
597  << " += " << matrixA.getElementType() << " * "
598  << matrixB.getElementType()
599  << ", it is not supported.";
600  // Check N
601  if (failed(isAllowedSizeN(matrixB.getDimSize(1), matrixA.getElementType()))) {
602  return emitOpError() << "has input type " << matrixB << " n is set to "
603  << matrixB.getDimSize(1) << ", it is not supported";
604  }
605 
606  // Currently, f16/bf16 supported
607  if (!matrixC.getElementType().isF32() && !matrixA.getElementType().isF16() &&
608  !matrixA.getElementType().isBF16()) {
609  return emitOpError() << "hit a limitation: " << matrixC.getElementType()
610  << " += " << matrixA.getElementType() << " * "
611  << matrixB.getElementType()
612  << ", it is not supported yet";
613  }
614 
615  return success();
616 }
617 
618 LogicalResult WarpgroupMmaStoreOp::verify() {
619  MemRefType dstMemrefType = getDstMemref().getType();
620  VectorType vtype = getMatrixD().getType().getFragmented();
621 
622  // Limitation
623  if (!vtype.getElementType().isF32()) {
624  return emitOpError()
625  << "hit a limitation: only f32 results for the time being";
626  }
627  if (vtype.getDimSize(0) != dstMemrefType.getDimSize(0) ||
628  vtype.getDimSize(1) != dstMemrefType.getDimSize(1)) {
629  return emitOpError() << "results [" << vtype << "][" << vtype.getDimSize(1)
630  << "] values. However, destination memref["
631  << dstMemrefType.getDimSize(0) << "]["
632  << dstMemrefType.getDimSize(1)
633  << "] does not have same size as results";
634  }
635  return success();
636 }
637 
638 //===----------------------------------------------------------------------===//
639 // WarpgroupMmaInitAccumulatorOp
640 //===----------------------------------------------------------------------===//
641 
643 
644  nvgpu::WarpgroupAccumulatorType accType = getMatrixC().getType();
645  int64_t sizeM = accType.getFragmented().getDimSize(0);
646  int64_t sizeN = accType.getFragmented().getDimSize(1);
647  Type elemType = accType.getFragmented().getElementType();
648 
649  if (failed(isAllowedSizeM(sizeM)) ||
650  failed(isAllowedSizeN(sizeN, elemType))) {
651  return emitOpError() << "has type " << accType.getFragmented()
652  << ". It does not fit into warp-group "
653  "level (wgmma) matrix multiplication instruction "
654  "(or not supported yet)";
655  }
656  return success();
657 }
658 
659 //===----------------------------------------------------------------------===//
660 // RcpOp
661 //===----------------------------------------------------------------------===//
662 
663 LogicalResult RcpOp::verify() {
664  RcpRoundingModeAttr rounding = getRoundingAttr();
665  bool ftz = getFtz();
666  // Currently, only `rcp_approx` and `ftz` is supported.
667  if (rounding.getValue() != RcpRoundingMode::APPROX || !ftz) {
668  return emitOpError() << "has a limitation. " << rounding
669  << " or non-ftz is not supported yet.";
670  }
671  return success();
672 }
673 
674 //===----------------------------------------------------------------------===//
675 // TableGen'd dialect, type, and op definitions
676 //===----------------------------------------------------------------------===//
677 
678 #define GET_ATTRDEF_CLASSES
679 #include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
680 
681 #include "mlir/Dialect/NVGPU/IR/NVGPUEnums.cpp.inc"
682 
683 #define GET_OP_CLASSES
684 #include "mlir/Dialect/NVGPU/IR/NVGPUOps.cpp.inc"
685 
686 #define GET_TYPEDEF_CLASSES
687 #include "mlir/Dialect/NVGPU/IR/NVGPUTypeDefs.cpp.inc"
static std::string diag(const llvm::Value &value)
LogicalResult isAllowedSizeM(int sizeM)
static LogicalResult verifyMmaSyncOp(Operation *op, TypedValue< VectorType > matrixA, TypedValue< VectorType > matrixB, TypedValue< VectorType > matrixC, const std::array< int64_t, 3 > &mmaShape, bool tf32Enabled, bool sparse=false)
Performs verification for MmaSyncOp and MmaSparseSyncOp.
LogicalResult isAllowedSizeN(int sizeN, Type typeA)
LogicalResult isAllowedWGMMADataType(Type typeD, Type typeA, Type typeB)
std::optional< InFlightDiagnostic > verifyTmaDescriptorWithMemref(Operation *op, nvgpu::TensorMapDescriptorType descType, std::optional< MemRefType > memrefType=std::nullopt)
constexpr int kWgmmaSizeM
M size of wgmma.mma_async instruction.
Definition: NVGPUDialect.h:40
constexpr int kWarpSize
Definition: NVGPUDialect.h:26
constexpr unsigned kMaxTMATensorDimension
Maximum TMA tile dimension (tensorRank) must be non-zero and less than or equal to the maximum suppor...
Definition: NVGPUDialect.h:44
constexpr unsigned kMaxTMADimension
Maximum TMA tile size (boxDim), which specifies number of elements to be traversed along each of the ...
Definition: NVGPUDialect.h:48
constexpr unsigned kMaxTMALastdimByte
Last dimension of 2D+ TMA must be 128 bytes.
Definition: NVGPUDialect.h:50
Attributes are known-constant values of operations.
Definition: Attributes.h:25
UnitAttr getUnitAttr()
Definition: Builders.cpp:94
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
Definition: Builders.cpp:277
This class represents a diagnostic that is inflight and set to be reported.
Definition: Diagnostics.h:314
This class helps build Operations.
Definition: Builders.h:205
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
OperationName getName()
The name of an operation is the key identifier for it.
Definition: Operation.h:119
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
Definition: Operation.cpp:671
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
bool isF64() const
Definition: Types.cpp:41
bool isTF32() const
Definition: Types.cpp:39
bool isF32() const
Definition: Types.cpp:40
bool isInteger() const
Return true if this is an integer type (with the specified width).
Definition: Types.cpp:56
bool isF16() const
Definition: Types.cpp:38
unsigned getIntOrFloatBitWidth() const
Return the bit width of an integer or a float type, assert failure on other types.
Definition: Types.cpp:122
bool isBF16() const
Definition: Types.cpp:37
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
SmallVector< int64_t, 4 > getCoordinates(ArrayRef< int64_t > basis, unsigned linearIndex)
Include the generated interface declarations.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
Definition: Utils.cpp:305
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
Definition: Value.h:498
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
LogicalResult verify(Operation *op, bool verifyRecursively=true)
Perform (potentially expensive) checks of invariants, used to detect compiler bugs,...
Definition: Verifier.cpp:425
This represents an operation in an abstracted form, suitable for use with the builder APIs.