MLIR  22.0.0git
NVGPUDialect.cpp
Go to the documentation of this file.
1 //===- NVGPUDialect.cpp - MLIR NVGPU ops implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NVGPU dialect and its operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
15 #include "mlir/IR/Builders.h"
17 #include "mlir/IR/BuiltinTypes.h"
18 #include "mlir/IR/Diagnostics.h"
20 #include "mlir/IR/TypeUtilities.h"
21 #include "mlir/IR/Verifier.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/TypeSwitch.h"
24 
25 using namespace mlir;
26 using namespace mlir::nvgpu;
27 
28 #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.cpp.inc"
29 
30 void nvgpu::NVGPUDialect::initialize() {
31  addTypes<
32 #define GET_TYPEDEF_LIST
33 #include "mlir/Dialect/NVGPU/IR/NVGPUTypeDefs.cpp.inc"
34  >();
35  addAttributes<
36 #define GET_ATTRDEF_LIST
37 #include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
38  >();
39  addOperations<
40 #define GET_OP_LIST
41 #include "mlir/Dialect/NVGPU/IR/NVGPUOps.cpp.inc"
42  >();
43 }
44 
45 bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
46  if (!memorySpace)
47  return false;
48  if (auto intAttr = llvm::dyn_cast<IntegerAttr>(memorySpace))
49  return intAttr.getInt() == NVGPUDialect::kSharedMemoryAddressSpace;
50  if (auto gpuAttr = llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
51  return gpuAttr.getValue() == gpu::AddressSpace::Workgroup;
52  return false;
53 }
54 
55 bool nvgpu::NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
56  Attribute memorySpace = type.getMemorySpace();
57  return isSharedMemoryAddressSpace(memorySpace);
58 }
59 
60 //===----------------------------------------------------------------------===//
61 // NVGPU_DeviceAsyncCopyOp
62 //===----------------------------------------------------------------------===//
63 
64 LogicalResult DeviceAsyncCopyOp::verify() {
65  auto srcMemref = llvm::cast<MemRefType>(getSrc().getType());
66  auto dstMemref = llvm::cast<MemRefType>(getDst().getType());
67 
68  if (!srcMemref.isLastDimUnitStride())
69  return emitError("source memref most minor dim must have unit stride");
70  if (!dstMemref.isLastDimUnitStride())
71  return emitError("destination memref most minor dim must have unit stride");
72  if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref))
73  return emitError()
74  << "destination memref must have a memory space attribute of "
75  "IntegerAttr("
76  << NVGPUDialect::kSharedMemoryAddressSpace
77  << ") or gpu::AddressSpaceAttr(Workgroup)";
78  if (dstMemref.getElementType() != srcMemref.getElementType())
79  return emitError("source and destination must have the same element type");
80  if (size_t(srcMemref.getRank()) != getSrcIndices().size())
81  return emitOpError() << "expected " << srcMemref.getRank()
82  << " source indices, got " << getSrcIndices().size();
83  if (size_t(dstMemref.getRank()) != getDstIndices().size())
84  return emitOpError() << "expected " << dstMemref.getRank()
85  << " destination indices, got "
86  << getDstIndices().size();
87  int64_t dstElements = getDstElements().getZExtValue();
88  int64_t sizeInBytes = (dstMemref.getElementTypeBitWidth() * dstElements) / 8;
89  if (sizeInBytes != 4 && sizeInBytes != 8 && sizeInBytes != 16) {
90  unsigned dstWidth = dstMemref.getElementTypeBitWidth();
92  diag << "Requested copy elements is " << dstElements << " with width "
93  << dstMemref.getElementTypeBitWidth()
94  << ". But copy elements could be one of ";
95  if ((32 / dstWidth) > 0)
96  diag << (32 / dstWidth) << ", ";
97  if ((64 / dstWidth) > 0)
98  diag << (64 / dstWidth) << ", ";
99  if ((128 / dstWidth) > 0)
100  diag << (128 / dstWidth) << ".";
101  return diag;
102  }
103  if (getBypassL1().has_value()) {
104  int64_t req = 16 * 8 / dstMemref.getElementTypeBitWidth();
105  if (getBypassL1().value() && sizeInBytes != 16) {
106  return emitOpError() << "bypassL1 does not satify alignment for "
107  << dstMemref << " with destination element "
108  << dstElements
109  << ". Unset bypassL1, or set "
110  "destination element to "
111  << req;
112  }
113  }
114  return success();
115 }
116 
117 //===----------------------------------------------------------------------===//
118 // NVGPU_MmaSyncOp
119 //===----------------------------------------------------------------------===//
120 void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
121  ::mlir::OperationState &odsState, Value matrixA,
122  Value matrixB, Value matrixC, ArrayAttr mmaShape) {
123  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
124  mmaShape, UnitAttr());
125 }
126 
127 void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
128  ::mlir::OperationState &odsState, Value matrixA,
129  Value matrixB, Value matrixC, ArrayRef<int64_t> mmaShape,
130  bool tf32Enabled) {
131  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
132  odsBuilder.getI64ArrayAttr(mmaShape),
133  tf32Enabled ? odsBuilder.getUnitAttr() : UnitAttr());
134 }
135 
136 /// Performs verification for MmaSyncOp and MmaSparseSyncOp.
137 static LogicalResult verifyMmaSyncOp(Operation *op,
138  TypedValue<VectorType> matrixA,
139  TypedValue<VectorType> matrixB,
140  TypedValue<VectorType> matrixC,
141  const std::array<int64_t, 3> &mmaShape,
142  bool tf32Enabled, bool sparse = false) {
143 
144  // The verification for mma.sync covering various shapes and data types is
145  // based on the fundamental tensor core shape.
146 
147  // "Fundamental" tensor core shapes:
148  // - For F32 (TF32), F16, S8, and S4 data
149  // types the fundamental tensor core operation is of shape 8-by-8-by-128b.
150  // - F64 is an exception and is of shape 8-by-8-by-256b.
151  int64_t shapeM = 8;
152  int64_t shapeN = 8;
153  int64_t shapeK; // set based on data type (128b for all data types except F64)
154 
155  // Number of elements A, B, and C per thread per fundamental tensor core tile
156  int64_t numElementA; // set based on data type (32b except F64)
157  int64_t numElementB; // set based on data type (32b except F64)
158  int64_t numElementC{2}; // two accumulator elements per fundamental tile
159 
160  // nvgpu.mma.sync vector operands (per thread)
161  auto aVector = matrixA.getType();
162  auto bVector = matrixB.getType();
163  auto cVector = matrixC.getType();
164 
165  // vector shapes
166  ArrayRef<int64_t> aShape = aVector.getShape();
167  ArrayRef<int64_t> bShape = bVector.getShape();
168  ArrayRef<int64_t> cShape = cVector.getShape();
169 
170  // vector element type
171  Type aType = aVector.getElementType();
172 
173  // Certain data types are not allowed in sparse mode.
174  if (sparse && aType.isF64())
175  return op->emitError() << "f64 is not supported for sparse mode";
176 
177  if (aType.isF64()) {
178  // exception to 8-by-8-128b fundamental tensor core tile size
179  shapeK = 4;
180  numElementA = 1;
181  numElementB = 1;
182  } else if (aType.isF32() || aType.isBF16() || aType.isF16() ||
183  aType.isInteger(8) || aType.isInteger(4)) {
184  // 8-by-8-128b fundamental tensor core tile size
185  int operandBitwidth = aType.getIntOrFloatBitWidth();
186  shapeK = 128 / operandBitwidth; // 128b wide shapeK
187 
188  numElementA = 32 / operandBitwidth; // 32b wide operand A
189  numElementB = 32 / operandBitwidth; // 32b wide operand B
190  } else {
191  return op->emitError()
192  << "expected input data type (i4,i8,f16,bf16,tf32,f64) "
193  "supported by "
194  << op->getName();
195  }
196 
197  //
198  // Basic verification
199  //
200 
201  if (aShape.size() != 2) {
202  return op->emitError() << "matrixA must be 2 dimensional vector";
203  }
204 
205  if (bShape.size() != 2) {
206  return op->emitError() << "matrixB must be 2 dimensional vector";
207  }
208 
209  if (cShape.size() != 2) {
210  return op->emitError() << "matrixC must be 2 dimensional vector";
211  }
212 
213  auto [m, n, k] = mmaShape;
214 
215  // verify warp-wide size for vector a
216  int64_t sparseFactor = sparse ? 2 : 1;
217  if (aShape[0] * aShape[1] * kWarpSize != m * k / sparseFactor)
218  return op->emitOpError()
219  << "expected " << m * k << " warp-wide matrix A elements";
220 
221  // verify warp-wide size for vector b
222  if (bShape[0] * bShape[1] * kWarpSize != k * n)
223  return op->emitOpError()
224  << "expected " << k * n << " warp-wide matrix B elements";
225 
226  // verify warp-wide size for vector c
227  if (cShape[0] * cShape[1] * kWarpSize != m * n)
228  return op->emitOpError()
229  << "expected " << m * n << " warp-wide matrix C elements";
230 
231  // verify tf32 tensor cores are enabled for only F32 datatype
232  if (tf32Enabled && !(aType.isF32()))
233  return op->emitOpError()
234  << "expected tf32 tensor cores only for F32 operands";
235 
236  //
237  // Extended verification
238  //
239 
240  // tiles of fundamental tensor core operations
241  int64_t mTile = m / shapeM;
242  int64_t nTile = n / shapeN;
243  int64_t kTile = k / shapeK;
244 
245  // verify shape of aVector
246  if ((aShape[0] != mTile * kTile / (sparse ? 2 : 1)) ||
247  (aShape[1] != numElementA))
248  return op->emitOpError() << "expected matrix A to be shaped ("
249  << mTile * kTile << " x " << numElementA << ")";
250 
251  // verify shape of bVector
252  if ((bShape[0] != kTile * nTile) || (bShape[1] != numElementB))
253  return op->emitOpError() << "expected matrix B to be shaped ("
254  << kTile * nTile << " x " << numElementB << ")";
255 
256  // verify shape of cVector
257  if ((cShape[0] != mTile * nTile) || (cShape[1] != numElementC))
258  return op->emitOpError() << "expected matrix C to be shaped ("
259  << mTile * nTile << " x " << numElementC << ")";
260 
261  return success();
262 }
263 
264 LogicalResult MmaSyncOp::verify() {
265  return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
266  getMatrixC(), getMmaShapeAsArray(),
267  getOperation()->hasAttr(getTf32EnabledAttrName()));
268 }
269 
270 //===----------------------------------------------------------------------===//
271 // NVGPU_MmaSparseSyncOp
272 //===----------------------------------------------------------------------===//
273 void MmaSparseSyncOp::build(::mlir::OpBuilder &odsBuilder,
274  ::mlir::OperationState &odsState, Value matrixA,
275  Value matrixB, Value matrixC, Value sparseMetadata,
276  ArrayRef<int64_t> mmaShape) {
277  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
278  sparseMetadata, odsBuilder.getI64ArrayAttr(mmaShape), 0, UnitAttr());
279 }
280 
281 LogicalResult MmaSparseSyncOp::verify() {
282  unsigned sparsitySelector = getSparsitySelector();
283  if (sparsitySelector > 1)
284  return emitOpError() << "sparsity selector should be 0 or 1";
285  return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
286  getMatrixC(), getMmaShapeAsArray(),
287  getOperation()->hasAttr(getTf32EnabledAttrName()),
288  true);
289 }
290 
291 //===----------------------------------------------------------------------===//
292 // NVGPU_LdMatrixOp
293 //===----------------------------------------------------------------------===//
294 LogicalResult LdMatrixOp::verify() {
295 
296  // ldmatrix reads data from source in shared memory
297  auto srcMemref = llvm::cast<MemRefType>(getSrcMemref().getType());
298 
299  // ldmatrix writes data to result/destination in vector registers
300  auto resVector = llvm::cast<VectorType>(getRes().getType());
301 
302  // vector register shape, element type, and bitwidth
303  ArrayRef<int64_t> resShape = resVector.getShape();
304  Type resType = resVector.getElementType();
305  int64_t elementBitWidth = resType.getIntOrFloatBitWidth();
306 
307  // ldmatrix loads 32 bits into vector registers per 8-by-8 tile per thread
308  int64_t numElementsPer32b = 32 / elementBitWidth;
309 
310  // number of 8-by-8 tiles
311  int64_t numTiles = getNumTiles();
312 
313  // transpose elements in vector registers at 16b granularity when true
314  bool isTranspose = getTranspose();
315 
316  //
317  // verification
318  //
319 
320  if (!NVGPUDialect::hasSharedMemoryAddressSpace(srcMemref))
321  return emitError()
322  << "expected nvgpu.ldmatrix srcMemref must have a memory space "
323  "attribute of IntegerAttr("
324  << NVGPUDialect::kSharedMemoryAddressSpace
325  << ") or gpu::AddressSpaceAttr(Workgroup)";
326  if (elementBitWidth > 32)
327  return emitError() << "nvgpu.ldmatrix works for 32b or lower";
328  if (isTranspose && !(elementBitWidth == 16))
329  return emitError()
330  << "nvgpu.ldmatrix transpose works only at 16b granularity";
331  if (resShape.size() != 2) {
332  return emitError() << "results must be 2 dimensional vector";
333  }
334  if (!(resShape[1] == numElementsPer32b))
335  return emitError() << "expected vector register shape[1] = "
336  << numElementsPer32b;
337  if (!(resShape[0] == numTiles))
338  return emitError()
339  << "expected vector register shape[0] and numTiles to match";
340 
341  return success();
342 }
343 
344 //===----------------------------------------------------------------------===//
345 // NVGPU_TmaAsyncLoadOp
346 //===----------------------------------------------------------------------===//
347 
348 unsigned getSwizzleBytes(TensorMapSwizzleKind kind) {
349  switch (kind) {
350  case TensorMapSwizzleKind::SWIZZLE_32B:
351  return 32;
352  case TensorMapSwizzleKind::SWIZZLE_64B:
353  return 64;
354  case TensorMapSwizzleKind::SWIZZLE_128B:
355  return 128;
356  default:
357  return 0;
358  }
359 }
360 
361 std::optional<InFlightDiagnostic> verifyTmaDescriptorWithMemref(
362  Operation *op, nvgpu::TensorMapDescriptorType descType,
363  std::optional<MemRefType> memrefType = std::nullopt) {
364  MemRefType descMemref = descType.getTensor();
365  // Limitation
366  if (descType.getInterleave() != TensorMapInterleaveKind::INTERLEAVE_NONE)
367  return op->emitError() << "Interleave options are not supported yet.";
368 
369  // Address space check for shared memory check
370  if (!NVGPUDialect::hasSharedMemoryAddressSpace(descMemref)) {
371  return op->emitError() << "the tensor map descriptor has incorrect address "
372  "space, it must be shared memory address space.";
373  }
374  // Support only static shape for the time being
375  if (!descMemref.hasStaticShape())
376  return op->emitError() << "the tensor map descriptor must be static shaped";
377 
378  for (auto dim : descMemref.getShape()) {
379  if (dim <= 0 || dim > kMaxTMADimension) {
380  return op->emitError() << "the tensor map descriptor must have "
381  "dimensions between 1 and "
382  << kMaxTMADimension << " but it is " << dim;
383  }
384  }
385  if (descMemref.getRank() > 1 &&
386  descType.getSwizzle() != TensorMapSwizzleKind::SWIZZLE_NONE) {
387  unsigned lastDimensionByte =
388  descMemref.getElementTypeBitWidth() * descMemref.getShape().back() / 8;
389  unsigned expectByte = getSwizzleBytes(descType.getSwizzle());
390  if (lastDimensionByte != expectByte)
391  return op->emitError() << "the tensormap descriptor must have last "
392  "dimension of "
393  << expectByte << " bytes but it is "
394  << lastDimensionByte << " bytes";
395  }
396 
397  // No verification if memref type is not provided
398  if (!memrefType.has_value())
399  return std::nullopt;
400 
401  MemRefType dstMemref = memrefType.value();
402 
403  // Check element type
404  if (descMemref.getElementType() != dstMemref.getElementType()) {
405  return op->emitError() << "the element type of tensor map descriptor and "
406  "memref must be same";
407  }
408 
409  if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref)) {
410  return op->emitError() << "the destination memref has incorrect address "
411  "space, it must be shared memory address space.";
412  }
413  if (!dstMemref.hasStaticShape())
414  return op->emitError() << "the destination memref must be static shaped";
415 
416  if (dstMemref.getRank() != descMemref.getRank()) {
417  return op->emitError() << "the shape of tensor map descriptor and "
418  "memref must have same rank";
419  }
420  if (!descMemref.getShape().equals(dstMemref.getShape())) {
421  return op->emitError() << "memref and tensor map shapes mismatch "
422  << descMemref << " != " << dstMemref;
423  }
424 
425  int lastDimBytes =
426  descMemref.getShape().back() * descMemref.getElementTypeBitWidth() / 8;
427  if (lastDimBytes % 16 != 0) {
428  return op->emitError() << "the bytes in the last dimension of the tensor "
429  "map must be a multiple of 16";
430  }
431  return std::nullopt;
432 }
433 
434 LogicalResult TmaAsyncLoadOp::verify() {
435  std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
436  *this, getTensorMapDescriptor().getType(), getDst().getType());
437  if (error.has_value())
438  return error.value();
439 
440  if (getCoordinates().size() > kMaxTMATensorDimension) {
441  return emitError() << "Maximum " << kMaxTMATensorDimension
442  << " coordinates are supported.";
443  }
444  if (getCoordinates().size() !=
445  size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
446  return emitError() << "number of coordinates do not match with the rank of "
447  "tensor descriptor map.";
448  }
449 
450  return success();
451 }
452 
453 //===----------------------------------------------------------------------===//
454 // NVGPU_TmaAsyncStoreOp
455 //===----------------------------------------------------------------------===//
456 
457 LogicalResult TmaAsyncStoreOp::verify() {
458  std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
459  *this, getTensorMapDescriptor().getType(), getSrc().getType());
460  if (error.has_value())
461  return error.value();
462 
463  if (getCoordinates().size() > kMaxTMATensorDimension) {
464  return emitError() << "Maximum " << kMaxTMATensorDimension
465  << " coordinates are supported.";
466  }
467  if (getCoordinates().size() !=
468  size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
469  return emitError() << "number of coordinates do not match with the rank of "
470  "tensor descriptor map.";
471  }
472 
473  return success();
474 }
475 
476 LogicalResult TmaCreateDescriptorOp::verify() {
477  if (getBoxDimensions().size() > kMaxTMATensorDimension) {
478  return emitError() << "Maximum " << kMaxTMATensorDimension
479  << " coordinates are supported.";
480  }
481 
482  std::optional<InFlightDiagnostic> error =
483  verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
484  if (error.has_value())
485  return error.value();
486 
487  return success();
488 }
489 
490 //===----------------------------------------------------------------------===//
491 // NVGPU_WarpgroupGenerateDescriptorOp
492 //===----------------------------------------------------------------------===//
493 
495  std::optional<InFlightDiagnostic> error =
496  verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
497  if (error.has_value())
498  return error.value();
499 
500  if (getTensorMap().getType().getSwizzle() !=
501  TensorMapSwizzleKind::SWIZZLE_128B) {
502  return emitError() << "supports only "
503  << stringifyTensorMapSwizzleKind(
504  TensorMapSwizzleKind::SWIZZLE_128B)
505  << " is supported for the time being";
506  }
507 
508  if (getTensorMap().getType().getInterleave() !=
509  TensorMapInterleaveKind::INTERLEAVE_NONE) {
510  return emitError() << "supports only "
511  << stringifyTensorMapInterleaveKind(
512  TensorMapInterleaveKind::INTERLEAVE_NONE)
513  << " is supported for the time being";
514  }
515 
516  return success();
517 }
518 
519 //===----------------------------------------------------------------------===//
520 // WarpgroupMmaOp
521 //===----------------------------------------------------------------------===//
522 
523 LogicalResult isAllowedWGMMADataType(Type typeD, Type typeA, Type typeB) {
524  // F32 += F16 + F16
525  // F16 += F16 + F16
526  if (typeA.isF16() && typeB.isF16() && (typeD.isF32() || typeD.isF16()))
527  return success();
528  // F32 += TF32 + TF32
529  if (typeA.isTF32() && typeD.isF32() && typeB.isTF32())
530  return success();
531  // s32 += i8 + i8
532  if (typeA.isInteger(16) && typeB.isInteger(16) && typeD.isInteger(32))
533  return success();
534  // s32 += i1 + i1
535  if (typeA.isInteger(1) && typeB.isInteger(1) && typeD.isInteger(32))
536  return success();
537  // F32 += BF16 + BF16
538  // F16 += BF16 + BF16
539  if (typeA.isBF16() && typeB.isBF16() && (typeD.isF32() || typeD.isF16()))
540  return success();
541  // F16 += f8 + f8
542  // F32 += f8 + f8
543  if (isa<Float8E5M2Type, Float8E4M3FNType>(typeA) &&
544  isa<Float8E5M2Type, Float8E4M3FNType>(typeB) &&
545  (typeD.isF32() || typeD.isF16()))
546  return success();
547 
548  return failure();
549 }
550 
551 LogicalResult isAllowedSizeM(int sizeM) {
552  if (sizeM % kWgmmaSizeM)
553  return failure();
554  return success();
555 }
556 
557 LogicalResult isAllowedSizeN(int sizeN, Type typeA) {
558  SmallVector<int> allowedN = {8, 16, 24, 32, 40, 48, 56, 64,
559  72, 80, 88, 96, 104, 112, 120, 128,
560  136, 144, 152, 160, 168, 176, 184, 192,
561  200, 208, 216, 224, 232, 240, 248, 256};
562  SmallVector<int> allowedNshort = {8, 16, 24, 32, 48, 64,
563  80, 96, 112, 128, 144, 160,
564  176, 192, 208, 224, 240, 256};
565  if (typeA.isBF16() || typeA.isF16() || typeA.isF32() || typeA.isTF32() ||
566  isa<Float8E5M2Type, Float8E4M3FNType>(typeA))
567  if (llvm::is_contained(allowedN, sizeN))
568  return success();
569 
570  if (typeA.isInteger(8) || typeA.isInteger(1))
571  if (llvm::is_contained(allowedNshort, sizeN))
572  return success();
573  return failure();
574 }
575 
576 LogicalResult WarpgroupMmaOp::verify() {
577  if (getTransposeA() && !getTransposeB())
578  return emitOpError()
579  << "supports non-transpose A (Row Major) "
580  "and transpose B (Column Major) for the time being ";
581  MemRefType matrixA = getDescriptorA().getType().getTensor();
582  MemRefType matrixB = getDescriptorB().getType().getTensor();
583  VectorType matrixC = getMatrixC().getType().getFragmented();
584  VectorType matrixD = getMatrixD().getType().getFragmented();
585 
586  if (matrixC != matrixD)
587  return emitOpError() << "type of matrix C and matrix D must be the same";
588 
589  if (matrixA.getRank() != 2 || matrixB.getRank() != 2 ||
590  matrixC.getRank() != 2 || matrixD.getRank() != 2) {
591  return emitOpError()
592  << "has matrices A, B, C and D, they must be 2 dimensional";
593  }
594 
595  if (matrixA.getShape()[1] != matrixB.getShape()[0])
596  return emitOpError() << "2nd dim matrix-A (" << matrixA.getShape()[1]
597  << ")!= 1st dim matrix-B (" << matrixB.getShape()[0]
598  << " )";
599  if (matrixA.getShape()[0] != matrixC.getShape()[0])
600  return emitOpError() << "1st dim matrix-A ( " << matrixA.getShape()[0]
601  << " )!= 1st dim matrix-C ( " << matrixC.getShape()[0]
602  << " )";
603  if (matrixB.getShape()[1] != matrixC.getShape()[1])
604  return emitOpError() << "2nd dim matrix-B ( " << matrixB.getShape()[1]
605  << " ) != 2nd dim matrix-C ( " << matrixC.getShape()[1]
606  << " )";
607 
608  if (failed(isAllowedWGMMADataType(matrixC.getElementType(),
609  matrixA.getElementType(),
610  matrixB.getElementType())))
611  return emitOpError() << matrixC.getElementType()
612  << " += " << matrixA.getElementType() << " * "
613  << matrixB.getElementType()
614  << ", it is not supported.";
615  // Check N
616  if (failed(isAllowedSizeN(matrixB.getDimSize(1), matrixA.getElementType()))) {
617  return emitOpError() << "has input type " << matrixB << " n is set to "
618  << matrixB.getDimSize(1) << ", it is not supported";
619  }
620 
621  // Currently, f16/bf16 supported
622  if (!matrixC.getElementType().isF32() && !matrixA.getElementType().isF16() &&
623  !matrixA.getElementType().isBF16()) {
624  return emitOpError() << "hit a limitation: " << matrixC.getElementType()
625  << " += " << matrixA.getElementType() << " * "
626  << matrixB.getElementType()
627  << ", it is not supported yet";
628  }
629 
630  return success();
631 }
632 
633 LogicalResult WarpgroupMmaStoreOp::verify() {
634  MemRefType dstMemrefType = getDstMemref().getType();
635  VectorType vtype = getMatrixD().getType().getFragmented();
636 
637  // Limitation
638  if (!vtype.getElementType().isF32()) {
639  return emitOpError()
640  << "hit a limitation: only f32 results for the time being";
641  }
642  if (vtype.getDimSize(0) != dstMemrefType.getDimSize(0) ||
643  vtype.getDimSize(1) != dstMemrefType.getDimSize(1)) {
644  return emitOpError() << "results [" << vtype << "][" << vtype.getDimSize(1)
645  << "] values. However, destination memref["
646  << dstMemrefType.getDimSize(0) << "]["
647  << dstMemrefType.getDimSize(1)
648  << "] does not have same size as results";
649  }
650  return success();
651 }
652 
653 //===----------------------------------------------------------------------===//
654 // WarpgroupMmaInitAccumulatorOp
655 //===----------------------------------------------------------------------===//
656 
658 
659  nvgpu::WarpgroupAccumulatorType accType = getMatrixC().getType();
660  int64_t sizeM = accType.getFragmented().getDimSize(0);
661  int64_t sizeN = accType.getFragmented().getDimSize(1);
662  Type elemType = accType.getFragmented().getElementType();
663 
664  if (failed(isAllowedSizeM(sizeM)) ||
665  failed(isAllowedSizeN(sizeN, elemType))) {
666  return emitOpError() << "has type " << accType.getFragmented()
667  << ". It does not fit into warp-group "
668  "level (wgmma) matrix multiplication instruction "
669  "(or not supported yet)";
670  }
671  return success();
672 }
673 
674 //===----------------------------------------------------------------------===//
675 // RcpOp
676 //===----------------------------------------------------------------------===//
677 
678 LogicalResult RcpOp::verify() {
679  RcpRoundingModeAttr rounding = getRoundingAttr();
680  bool ftz = getFtz();
681  // Currently, only `rcp_approx` and `ftz` is supported.
682  if (rounding.getValue() != RcpRoundingMode::APPROX || !ftz) {
683  return emitOpError() << "has a limitation. " << rounding
684  << " or non-ftz is not supported yet.";
685  }
686  return success();
687 }
688 
689 //===----------------------------------------------------------------------===//
690 // TableGen'd dialect, type, and op definitions
691 //===----------------------------------------------------------------------===//
692 
693 #define GET_ATTRDEF_CLASSES
694 #include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
695 
696 #include "mlir/Dialect/NVGPU/IR/NVGPUEnums.cpp.inc"
697 
698 #define GET_OP_CLASSES
699 #include "mlir/Dialect/NVGPU/IR/NVGPUOps.cpp.inc"
700 
701 #define GET_TYPEDEF_CLASSES
702 #include "mlir/Dialect/NVGPU/IR/NVGPUTypeDefs.cpp.inc"
union mlir::linalg::@1242::ArityGroupAndKind::Kind kind
static std::string diag(const llvm::Value &value)
LogicalResult isAllowedSizeM(int sizeM)
static LogicalResult verifyMmaSyncOp(Operation *op, TypedValue< VectorType > matrixA, TypedValue< VectorType > matrixB, TypedValue< VectorType > matrixC, const std::array< int64_t, 3 > &mmaShape, bool tf32Enabled, bool sparse=false)
Performs verification for MmaSyncOp and MmaSparseSyncOp.
LogicalResult isAllowedSizeN(int sizeN, Type typeA)
LogicalResult isAllowedWGMMADataType(Type typeD, Type typeA, Type typeB)
unsigned getSwizzleBytes(TensorMapSwizzleKind kind)
std::optional< InFlightDiagnostic > verifyTmaDescriptorWithMemref(Operation *op, nvgpu::TensorMapDescriptorType descType, std::optional< MemRefType > memrefType=std::nullopt)
constexpr int kWgmmaSizeM
M size of wgmma.mma_async instruction.
Definition: NVGPUDialect.h:40
constexpr int kWarpSize
Definition: NVGPUDialect.h:26
constexpr unsigned kMaxTMATensorDimension
Maximum TMA tile dimension (tensorRank) must be non-zero and less than or equal to the maximum suppor...
Definition: NVGPUDialect.h:44
constexpr unsigned kMaxTMADimension
Maximum TMA tile size (boxDim), which specifies number of elements to be traversed along each of the ...
Definition: NVGPUDialect.h:48
Attributes are known-constant values of operations.
Definition: Attributes.h:25
UnitAttr getUnitAttr()
Definition: Builders.cpp:93
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
Definition: Builders.cpp:276
This class represents a diagnostic that is inflight and set to be reported.
Definition: Diagnostics.h:314
This class helps build Operations.
Definition: Builders.h:205
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:267
OperationName getName()
The name of an operation is the key identifier for it.
Definition: Operation.h:119
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
Definition: Operation.cpp:672
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
bool isF64() const
Definition: Types.cpp:41
bool isTF32() const
Definition: Types.cpp:39
bool isF32() const
Definition: Types.cpp:40
bool isInteger() const
Return true if this is an integer type (with the specified width).
Definition: Types.cpp:56
bool isF16() const
Definition: Types.cpp:38
unsigned getIntOrFloatBitWidth() const
Return the bit width of an integer or a float type, assert failure on other types.
Definition: Types.cpp:122
bool isBF16() const
Definition: Types.cpp:37
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:105
SmallVector< int64_t, 4 > getCoordinates(ArrayRef< int64_t > basis, unsigned linearIndex)
detail::InFlightRemark failed(Location loc, RemarkOpts opts)
Report an optimization remark that failed.
Definition: Remarks.h:491
Include the generated interface declarations.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
Definition: Utils.cpp:304
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
Definition: Value.h:488
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
LogicalResult verify(Operation *op, bool verifyRecursively=true)
Perform (potentially expensive) checks of invariants, used to detect compiler bugs,...
Definition: Verifier.cpp:423
This represents an operation in an abstracted form, suitable for use with the builder APIs.