14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Support/LogicalResult.h"
23 std::optional<SmallVector<ReassociationIndices>>
25 ShapedType targetType) {
26 if (sourceType.getRank() > targetType.getRank())
28 targetType.getShape());
29 if (sourceType.getRank() < targetType.getRank())
31 sourceType.getShape());
39 struct ReassociationIndexRange {
43 int64_t leftIdx = 0, rightIdx = 0;
46 LogicalResult
verify()
const {
47 return leftIdx >= 0 && (leftIdx <= rightIdx) ? success() : failure();
52 bool isInRange(
const ReassociationIndexRange &outerRange)
const {
53 return leftIdx >= outerRange.leftIdx && rightIdx <= outerRange.rightIdx;
56 unsigned size()
const {
57 assert(succeeded(
verify()));
58 return rightIdx - leftIdx + 1;
60 bool containsSingleIndex()
const {
return size() == 1; }
64 getNonOverlappingIndicesWith(ReassociationIndexRange &rhs)
const {
65 if (rightIdx < rhs.leftIdx) {
67 auto jointFullIndices = getFullIndices();
68 jointFullIndices.append(rhs.getFullIndices());
69 return jointFullIndices;
73 int64_t leftStart =
std::min(leftIdx, rhs.leftIdx);
74 int64_t leftEnd =
std::max(leftIdx, rhs.leftIdx);
75 llvm::append_range(result, llvm::seq(leftStart, leftEnd));
78 int64_t rightStart =
std::min(rightIdx, rhs.rightIdx) + 1;
79 int64_t rightEnd =
std::max(rightIdx, rhs.rightIdx);
80 if (rightStart < rightEnd)
81 llvm::append_range(result, llvm::seq_inclusive(rightStart, rightEnd));
88 for (int64_t idx = leftIdx; idx <= rightIdx; ++idx) {
89 result.push_back(idx);
102 static FailureOr<ReassociationIndexRange>
104 int64_t sourceStartIdx,
105 bool matchGreedily =
false) {
106 const unsigned numSourceDims = sourceShape.size();
107 ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
108 std::optional<ReassociationIndexRange> resultRange = std::nullopt;
110 ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
111 for (; iterationRange.isInRange(sourceShapeAsRange);
112 iterationRange.rightIdx++) {
113 int64_t sourceSize = sourceShape[iterationRange.rightIdx];
114 if (sourceSize == ShapedType::kDynamic) {
115 resultRange = iterationRange;
122 resultRange->rightIdx = sourceShapeAsRange.rightIdx;
131 static FailureOr<ReassociationIndexRange>
133 int64_t sourceStartIdx, int64_t targetSize,
134 bool matchGreedily =
false) {
135 const unsigned numSourceDims = sourceShape.size();
136 ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
137 std::optional<ReassociationIndexRange> resultRange = std::nullopt;
139 ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
140 int64_t prodOfCollapsedDims = 1;
141 while (iterationRange.isInRange(sourceShapeAsRange)) {
142 int64_t sourceSize = sourceShape[iterationRange.rightIdx];
143 if (sourceSize == ShapedType::kDynamic) {
147 prodOfCollapsedDims = 1;
148 iterationRange = {iterationRange.rightIdx + 1,
149 iterationRange.rightIdx + 1};
152 prodOfCollapsedDims *= sourceSize;
156 while (prodOfCollapsedDims > targetSize &&
157 !iterationRange.containsSingleIndex()) {
158 int64_t frontSourceSize = sourceShape[iterationRange.leftIdx];
159 prodOfCollapsedDims /= frontSourceSize;
161 iterationRange.leftIdx++;
165 if (prodOfCollapsedDims == targetSize) {
166 resultRange = iterationRange;
170 iterationRange.rightIdx++;
178 iterationRange.rightIdx++;
179 while (iterationRange.isInRange(sourceShapeAsRange) &&
180 sourceShape[iterationRange.rightIdx] == 1) {
181 resultRange = iterationRange;
182 iterationRange.rightIdx++;
201 static FailureOr<SmallVector<ReassociationIndexRange>>
204 unsigned numSourceDims = sourceShape.size(),
205 numTargetDims = targetShape.size();
206 assert(numSourceDims > numTargetDims);
207 ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
210 reassocRanges.reserve(numTargetDims);
214 std::optional<int64_t> prevTargetSize = std::nullopt;
215 for (
unsigned targetDimIdx = 0, sourceDimIdx = 0;
216 targetDimIdx < numTargetDims; ++targetDimIdx) {
217 int64_t targetSize = targetShape[targetDimIdx];
220 bool shouldMatchGreedily = targetDimIdx == numTargetDims - 1;
221 FailureOr<ReassociationIndexRange> sourceRange;
222 if (targetSize == ShapedType::kDynamic) {
224 sourceShape, sourceDimIdx, shouldMatchGreedily);
227 sourceShape, sourceDimIdx, targetSize, shouldMatchGreedily);
231 if (failed(sourceRange) || failed(sourceRange->verify()) ||
232 !sourceRange->isInRange(sourceShapeAsRange))
234 if (sourceRange->leftIdx > sourceDimIdx) {
237 if (!prevTargetSize || prevTargetSize != ShapedType::kDynamic)
239 reassocRanges.back().rightIdx = sourceRange->leftIdx - 1;
243 prevTargetSize = targetSize;
244 sourceDimIdx = sourceRange->rightIdx + 1;
245 reassocRanges.push_back(*sourceRange);
250 if (reassocRanges.back().rightIdx < sourceShapeAsRange.rightIdx)
252 return reassocRanges;
257 static FailureOr<SmallVector<ReassociationIndexRange>>
260 bool iterateRightToLeft) {
261 if (!iterateRightToLeft)
268 std::vector<int64_t> sourceToReverse = sourceShape.vec(),
269 targetToReverse = targetShape.vec();
270 std::reverse(sourceToReverse.begin(), sourceToReverse.end());
271 std::reverse(targetToReverse.begin(), targetToReverse.end());
272 auto invertedRanges =
274 if (failed(invertedRanges))
277 unsigned numSourceDims = sourceShape.size();
280 for (
auto &range : rangesToInvert) {
281 int64_t invLeftIdx = range.leftIdx, invRightIdx = range.rightIdx;
282 range.leftIdx = numSourceDims - 1 - invRightIdx;
283 range.rightIdx = numSourceDims - 1 - invLeftIdx;
287 std::reverse(rangesToInvert.begin(), rangesToInvert.end());
288 return rangesToInvert;
291 std::optional<SmallVector<ReassociationIndices>>
294 unsigned numSourceDims = sourceShape.size(),
295 numTargetDims = targetShape.size();
300 if (numSourceDims <= numTargetDims)
305 if (numTargetDims == 0) {
306 for (
unsigned sourceDimIdx = 0; sourceDimIdx < numSourceDims;
308 int64_t sourceSize = sourceShape[sourceDimIdx];
309 if (sourceSize != 1 && sourceSize != ShapedType::kDynamic)
316 FailureOr<SmallVector<ReassociationIndexRange>> maybeForwardRanges =
318 if (failed(maybeForwardRanges))
320 auto &ranges = *maybeForwardRanges;
329 FailureOr<SmallVector<ReassociationIndexRange>> maybeReverseRanges =
332 if (failed(maybeReverseRanges))
334 auto &reverseRanges = *maybeReverseRanges;
336 if (ranges.size() != numTargetDims || reverseRanges.size() != numTargetDims)
342 for (
unsigned targetDimIdx = 0; targetDimIdx < numTargetDims;
344 ReassociationIndexRange &range = ranges[targetDimIdx];
345 ReassociationIndexRange &reverseRange = reverseRanges[targetDimIdx];
348 range.getNonOverlappingIndicesWith(reverseRange);
351 for (int64_t sourceDimIdx : nonMatchingIndices) {
352 if (sourceShape[sourceDimIdx] != 1)
355 reassociationMap[targetDimIdx] = range.getFullIndices();
357 return reassociationMap;
360 std::optional<SmallVector<ReassociationIndices>>
368 if (producerReassociations.size() == consumerReassociations.size())
370 if (producerReassociations.size() < consumerReassociations.size())
371 std::swap(producerReassociations, consumerReassociations);
375 if (consumerReassociations.empty())
376 return composedIndices;
378 size_t consumerDims = std::accumulate(
379 consumerReassociations.begin(), consumerReassociations.end(), 0,
381 return all + indices.size();
383 if (producerReassociations.size() != consumerDims)
388 for (int64_t consumerIndex : consumerIndices) {
389 llvm::append_range(reassociations, producerReassociations[consumerIndex]);
391 composedIndices.push_back(std::move(reassociations));
393 return composedIndices;
400 for (
const auto &indices : reassociationIndices) {
402 reassociationMap.reserve(indices.size());
403 for (int64_t index : indices)
405 reassociationMaps.push_back(std::move(reassociationMap));
407 return reassociationMaps;
410 template <
typename AffineExprTy>
413 for (
const auto &exprs : exprArrays) {
414 for (
auto expr : exprs) {
416 if (
auto d = dyn_cast<AffineExprTy>(e))
417 pos =
std::max(pos, d.getPosition());
427 llvm::to_vector<4>(llvm::map_range(
437 for (
const auto &exprs : reassociationExprs) {
439 indices.reserve(exprs.size());
440 for (
const auto &expr : exprs)
441 indices.push_back(cast<AffineDimExpr>(expr).getPosition());
442 reassociationIndices.push_back(indices);
444 return reassociationIndices;
449 unsigned maxDim = getMaxPosOfType<AffineDimExpr>(reassociation);
450 assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 &&
451 "Expected symbol-less expressions");
453 maps.reserve(reassociation.size());
454 for (
const auto &exprs : reassociation) {
455 assert(!exprs.empty());
463 if (reassociation.empty())
465 unsigned nDims = reassociation[0].getNumDims();
466 unsigned nextExpectedDim = 0;
469 if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
471 *invalidIndex = it.index();
474 for (
auto e : m.getResults()) {
475 auto d = dyn_cast<AffineDimExpr>(e);
476 if (!d || d.getPosition() != nextExpectedDim++) {
478 *invalidIndex = it.index();
483 if (nextExpectedDim != nDims) {
485 *invalidIndex = reassociation.size() - 1;
495 unsigned expandedDimStart = 0;
497 bool foundDynamicShape =
false;
498 int64_t linearizedStaticShape = 1;
501 expandedShape.slice(expandedDimStart, map.value().size()))) {
502 if (ShapedType::isDynamic(dim.value()))
503 foundDynamicShape =
true;
505 linearizedStaticShape *= dim.value();
507 if (foundDynamicShape) {
508 if (ShapedType::isStatic(collapsedShape[map.index()])) {
510 "expected dimension " + Twine(map.index()) +
511 " of collapsed type to be dynamic since one or more of the "
512 "corresponding dimensions in the expanded type is dynamic");
515 if (collapsedShape[map.index()] != linearizedStaticShape) {
516 return emitError(
"expected dimension " + Twine(map.index()) +
517 " of collapsed type to be static value of " +
518 Twine(linearizedStaticShape));
521 expandedDimStart += map.value().size();
527 if (
auto memrefType = dyn_cast<MemRefType>(type))
528 return !memrefType.getLayout().isIdentity();
535 assert(sliceParams.size() == sliceInputShape.size() &&
536 "only supports non rank-reducing case");
537 llvm::SmallBitVector mask(sliceInputShape.size());
539 for (
const auto &[offset, size, stride] : sliceParams) {
543 (!strideConst || *strideConst != 1) ||
544 (!offsetConst || *offsetConst != 0);
552 llvm::SmallBitVector result(reassociationIndices.size());
554 result[it.index()] = it.value().size() > 1;
560 unsigned loopIdx = 0;
564 offsetsSizesAndStrides.reserve(collapseShapeInputShape.size());
569 if (slicedDimensions[it.index()] && linearizedDimensions[it.index()]) {
571 offsetsSizesAndStrides,
572 llvm::map_range(multiIndices[loopIdx++], [&](
Value v) ->
Range {
581 if (linearizedDimensions[it.index()]) {
582 llvm::append_range(offsetsSizesAndStrides,
583 llvm::map_range(it.value(), [&](int64_t idx) ->
Range {
584 return {zeroAttr, collapseShapeInputShape[idx],
591 offsetsSizesAndStrides.push_back(sliceParams[it.index()]);
593 return offsetsSizesAndStrides;
597 SliceFromCollapseHelper::getInsertSliceParams(
MLIRContext *ctx,
602 insertParams.reserve(linearizedDimensions.size());
603 unsigned loopIdx = 0;
604 for (
unsigned i = 0; i < linearizedDimensions.size(); i++) {
605 if (linearizedDimensions[i] && slicedDimensions[i]) {
606 insertParams.push_back(
Range{tileIndices[loopIdx++], one, one});
609 insertParams.push_back(
Range{zero, sliceParams[i].
size, one});
620 std::optional<int64_t> dimIndex;
621 if (indices.size() < 2)
623 for (int64_t idx : indices) {
624 if (shape[idx] != 1) {
625 if (dimIndex != std::nullopt)
637 RankedTensorType sourceType,
640 for (
const auto &indices : reassociationIndices)
641 trivialSegments.push_back(
643 return trivialSegments;
648 static FailureOr<SmallVector<std::optional<int64_t>>>
650 RankedTensorType sourceType,
654 if (!llvm::any_of(trivialSegments, [](
const std::optional<int64_t> &idx) {
655 return idx.has_value();
658 return trivialSegments;
661 FailureOr<CollapseShapeRankReducingSliceSimplificationInfo>
662 mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo(
663 RankedTensorType sourceType,
665 FailureOr<SmallVector<std::optional<int64_t>>> trivialSegments =
667 reassociationIndices);
668 if (failed(trivialSegments))
673 for (
const auto &[nonUnitDim, indices] :
674 llvm::zip(*trivialSegments, reassociationIndices)) {
676 sliceShape.push_back(sourceType.getDimSize(*nonUnitDim));
679 llvm::append_range(sliceShape, llvm::map_range(indices, [&](int64_t idx) {
680 return sourceType.getDimSize(idx);
687 if (sliceShape.size() == reassociationIndices.size())
688 return CollapseShapeRankReducingSliceSimplificationInfo{sliceType,
696 int64_t groupIdx = 0;
697 for (int64_t dimIdx = 0; dimIdx < sliceType.getRank(); dimIdx++) {
698 reassociation.push_back(dimIdx);
699 if ((*trivialSegments)[groupIdx] ||
700 reassociation.size() == reassociationIndices[groupIdx].size()) {
701 newReassociationIndices.push_back(reassociation);
702 reassociation.clear();
707 return CollapseShapeRankReducingSliceSimplificationInfo{
708 sliceType, newReassociationIndices};
711 PackingMetadata mlir::computePackingMetadata(int64_t packedRank,
714 res.insertPositions.reserve(innerDimPos.size());
730 for (int64_t pos : innerDimPos) {
731 int64_t numInsertedBefore = llvm::count_if(
732 innerDimPos, [&pos](int64_t pos2) {
return pos > pos2; });
733 res.insertPositions.push_back(pos + numInsertedBefore + offset);
737 res.insertPositions.end());
738 res.reassociations.reserve(packedRank);
739 for (int64_t i = 1; i <= packedRank; ++i) {
740 res.outerPositions.push_back(i - 1);
741 if (!posSet.contains(i)) {
753 std::optional<Attribute> cst) {
754 if (source && source.
isSplat() && result.hasStaticShape() &&
static MLIRContext * getContext(OpFoldResult val)
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
unsigned getMaxPosOfType(ArrayRef< ReassociationExprs > exprArrays)
static FailureOr< ReassociationIndexRange > findReassociationRangeForSize(ArrayRef< int64_t > sourceShape, int64_t sourceStartIdx, int64_t targetSize, bool matchGreedily=false)
Starting from sourceStartIdx, searches sourceShape for the first sequence of static dimensions such t...
static SmallVector< std::optional< int64_t > > getCollapseShapeTrivialSegments(RankedTensorType sourceType, ArrayRef< ReassociationIndices > reassociationIndices)
static FailureOr< ReassociationIndexRange > findReassociationRangeForDynamicDim(ArrayRef< int64_t > sourceShape, int64_t sourceStartIdx, bool matchGreedily=false)
Starting from sourceStartIdx, searches sourceShape for the first sequence that can be collapsed into ...
static std::optional< int64_t > getUniqueNonUnitDim(ArrayRef< int64_t > indices, ArrayRef< int64_t > shape)
Returns the index of the only non-unit dimension among indices of shape, if such a dimension exists a...
static FailureOr< SmallVector< ReassociationIndexRange > > findReassociationRangesForCollapse(ArrayRef< int64_t > sourceShape, ArrayRef< int64_t > targetShape)
Attempts to find a valid collapsing reassociation of sourceShape into targetShape through a simple tr...
static FailureOr< SmallVector< std::optional< int64_t > > > canCollapseShapeBeSimplifiedByRankReducingSlice(RankedTensorType sourceType, ArrayRef< ReassociationIndices > reassociationIndices)
Returns true if any of the segments of the reassociation indices for a collapsing reshape can be simp...
Base type for affine expression.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
Attributes are known-constant values of operations.
This class is a general helper class for creating context-global objects like types,...
ArrayAttr getArrayAttr(ArrayRef< Attribute > value)
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
An attribute that represents a reference to a dense vector or tensor object.
std::enable_if_t<!std::is_base_of< Attribute, T >::value||std::is_same< Attribute, T >::value, T > getSplatValue() const
Return the splat value for this attribute.
DenseElementsAttr resizeSplat(ShapedType newType)
Return a new DenseElementsAttr that has the same data as the current attribute, but with a different ...
bool isSplat() const
Returns true if this attribute corresponds to a splat, i.e.
MLIRContext is the top-level object for a collection of MLIR operations.
This class represents a single result from folding an operation.
Tensor types represent multi-dimensional arrays, and have two variants: RankedTensorType and Unranked...
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Include the generated interface declarations.
llvm::SmallBitVector getSlicedDimensions(ArrayRef< OpFoldResult > sliceInputShape, ArrayRef< Range > sliceParams)
The input parameters offsets, sizes, strides specify a rectangular non rank-reducing slice of the col...
bool hasNonIdentityLayout(Type type)
Returns true iff the type is a MemRefType and has a non-identity layout.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
bool isEqualConstantIntOrValue(OpFoldResult ofr1, OpFoldResult ofr2)
Return true if ofr1 and ofr2 are the same integer constant attribute values or the same SSA value.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
SmallVector< AffineMap, 4 > getSymbolLessAffineMaps(ArrayRef< ReassociationExprs > reassociation)
Constructs affine maps out of Array<Array<AffineExpr>>.
SmallVector< ReassociationIndices, 2 > convertReassociationMapsToIndices(ArrayRef< ReassociationExprs > reassociationExprs)
Convert Array<Array<AffineExpr>> to Array<Array<int64_t>>.
LogicalResult reshapeLikeShapesAreCompatible(function_ref< LogicalResult(const Twine &)> emitError, ArrayRef< int64_t > collapsedShape, ArrayRef< int64_t > expandedShape, ArrayRef< ReassociationIndices > reassociationMaps, bool isExpandingReshape)
Verify that shapes of the reshaped types using following rule: if a dimension in the collapsed type i...
std::optional< SmallVector< ReassociationIndices > > getReassociationIndicesForReshape(ShapedType sourceType, ShapedType targetType)
Return the reassociations maps to use to reshape given the source type and the target type when possi...
std::optional< SmallVector< ReassociationIndices > > getReassociationIndicesForCollapse(ArrayRef< int64_t > sourceShape, ArrayRef< int64_t > targetShape)
Returns the reassociation maps to collapse sourceShape to targetShape if possible.
ArrayRef< int64_t > ReassociationIndicesRef
SmallVector< SmallVector< AffineExpr, 2 >, 2 > convertReassociationIndicesToExprs(MLIRContext *context, ArrayRef< ReassociationIndices > reassociationIndices)
Convert reassociation indices to affine expressions.
bool isReassociationValid(ArrayRef< AffineMap > reassociation, int *invalidIndex=nullptr)
Return true if the reassociation specification is valid, false otherwise.
std::optional< SmallVector< ReassociationIndices > > composeReassociationIndices(ArrayRef< ReassociationIndices > producerReassociations, ArrayRef< ReassociationIndices > consumerReassociations, MLIRContext *context)
Compose reassociation maps that are used in pair of reshape ops where one is a producer and other is ...
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
OpFoldResult getAsOpFoldResult(Value val)
Given a value, try to extract a constant Attribute.
llvm::SmallBitVector getLinearizedDimensions(ArrayRef< ReassociationIndices > reassociationIndices)
Determine which dimensions are linearized by a tensor.collapse_shape op by inspecting its reassociati...
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
LogicalResult verify(Operation *op, bool verifyRecursively=true)
Perform (potentially expensive) checks of invariants, used to detect compiler bugs,...
ArrayAttr getReassociationIndicesAttribute(Builder &b, ArrayRef< ReassociationIndices > reassociation)
Wraps a list of reassociations in an ArrayAttr.
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...