MLIR 22.0.0git
LivenessAnalysis.cpp
Go to the documentation of this file.
1//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include <cassert>
12
13#include <llvm/Support/DebugLog.h>
17#include <mlir/IR/Operation.h>
18#include <mlir/IR/Value.h>
21#include <mlir/Support/LLVM.h>
22
23#define DEBUG_TYPE "liveness-analysis"
24
25using namespace mlir;
26using namespace mlir::dataflow;
27
28//===----------------------------------------------------------------------===//
29// Liveness
30//===----------------------------------------------------------------------===//
31
33 os << (isLive ? "live" : "not live");
34}
35
37 bool wasLive = isLive;
38 isLive = true;
40}
41
43 const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
44 return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
45}
46
47//===----------------------------------------------------------------------===//
48// LivenessAnalysis
49//===----------------------------------------------------------------------===//
50
51/// For every value, liveness analysis determines whether or not it is "live".
52///
53/// A value is considered "live" iff it:
54/// (1) has memory effects OR
55/// (2) is returned by a public function OR
56/// (3) is used to compute a value of type (1) or (2) OR
57/// (4) is returned by a return-like op whose parent isn't a callable
58/// nor a RegionBranchOpInterface (e.g.: linalg.yield, gpu.yield,...)
59/// These ops have their own semantics, so we conservatively mark the
60/// the yield value as live.
61/// It is also to be noted that a value could be of multiple types (1/2/3) at
62/// the same time.
63///
64/// A value "has memory effects" iff it:
65/// (1.a) is an operand of an op with memory effects OR
66/// (1.b) is a non-forwarded branch operand and its branch op could take the
67/// control to a block that has an op with memory effects OR
68/// (1.c) is a non-forwarded branch operand and its branch op could result
69/// in different live result OR
70/// (1.d) is a non-forwarded call operand.
71///
72/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
73/// computed in the absence of `A`. Thus, in this implementation, we say that
74/// value `A` is used to compute value `B` iff:
75/// (3.a) `B` is a result of an op with operand `A` OR
76/// (3.b) `A` is used to compute some value `C` and `C` is used to compute
77/// `B`.
78
79LogicalResult
82 LDBG() << "[visitOperation] Enter: "
83 << OpWithFlags(op, OpPrintingFlags().skipRegions());
84 // This marks values of type (1.a) and (4) liveness as "live".
86 LDBG() << "[visitOperation] Operation has memory effects or is "
87 "return-like, marking operands live";
88 for (auto *operand : operands) {
89 LDBG() << " [visitOperation] Marking operand live: " << operand << " ("
90 << operand->isLive << ")";
91 propagateIfChanged(operand, operand->markLive());
92 }
93 }
94
95 // This marks values of type (3) liveness as "live".
96 bool foundLiveResult = false;
97 for (const Liveness *r : results) {
98 if (r->isLive && !foundLiveResult) {
99 LDBG() << "[visitOperation] Found live result, "
100 "meeting all operands with result: "
101 << r;
102 // It is assumed that each operand is used to compute each result of an
103 // op. Thus, if at least one result is live, each operand is live.
104 for (Liveness *operand : operands) {
105 LDBG() << " [visitOperation] Meeting operand: " << operand
106 << " with result: " << r;
107 meet(operand, *r);
108 }
109 foundLiveResult = true;
110 }
111 LDBG() << "[visitOperation] Adding dependency for result: " << r
112 << " after op: " << OpWithFlags(op, OpPrintingFlags().skipRegions());
113 addDependency(const_cast<Liveness *>(r), getProgramPointAfter(op));
114 }
115 return success();
116}
117
119 Operation *op = operand.getOwner();
120 LDBG() << "Visiting branch operand: " << operand.get()
121 << " in op: " << OpWithFlags(op, OpPrintingFlags().skipRegions());
122 // We know (at the moment) and assume (for the future) that `operand` is a
123 // non-forwarded branch operand of a `RegionBranchOpInterface`,
124 // `BranchOpInterface`, `RegionBranchTerminatorOpInterface` or return-like op.
125 assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
126 isa<RegionBranchTerminatorOpInterface>(op)) &&
127 "expected the op to be `RegionBranchOpInterface`, "
128 "`BranchOpInterface` or `RegionBranchTerminatorOpInterface`");
129
130 // The lattices of the non-forwarded branch operands don't get updated like
131 // the forwarded branch operands or the non-branch operands. Thus they need
132 // to be handled separately. This is where we handle them.
133
134 // This marks values of type (1.b/1.c) liveness as "live". A non-forwarded
135 // branch operand will be live if a block where its op could take the control
136 // has an op with memory effects or could result in different results.
137 // Populating such blocks in `blocks`.
138 bool mayLive = false;
140 SmallVector<BlockArgument> argumentNotOperand;
141 if (auto regionBranchOp = dyn_cast<RegionBranchOpInterface>(op)) {
142 if (op->getNumResults() != 0) {
143 // This mark value of type 1.c liveness as may live, because the region
144 // branch operation has a return value, and the non-forwarded operand can
145 // determine the region to jump to, it can thereby control the result of
146 // the region branch operation.
147 // Therefore, if the result value is live, we conservatively consider the
148 // non-forwarded operand of the region branch operation with result may
149 // live and record all result.
150 for (auto [resultIndex, result] : llvm::enumerate(op->getResults())) {
151 if (getLatticeElement(result)->isLive) {
152 mayLive = true;
153 LDBG() << "[visitBranchOperand] Non-forwarded branch operand may be "
154 "live due to live result #"
155 << resultIndex << ": "
156 << OpWithFlags(op, OpPrintingFlags().skipRegions());
157 break;
158 }
159 }
160 } else {
161 // When the op is a `RegionBranchOpInterface`, like an `scf.for` or an
162 // `scf.index_switch` op, its branch operand controls the flow into this
163 // op's regions.
164 for (Region &region : op->getRegions()) {
165 for (Block &block : region)
166 blocks.push_back(&block);
167 }
168 }
169
170 // In the block of the successor block argument of RegionBranchOpInterface,
171 // there may be arguments of RegionBranchOpInterface, such as the IV of
172 // scf.forOp. Explicitly set this argument to live.
173 for (Region &region : op->getRegions()) {
175 regionBranchOp.getSuccessorRegions(region, successors);
176 for (RegionSuccessor successor : successors) {
177 if (successor.isParent())
178 continue;
179 auto arguments = successor.getSuccessor()->getArguments();
180 ValueRange regionInputs = successor.getSuccessorInputs();
181 for (auto argument : arguments) {
182 if (llvm::find(regionInputs, argument) == regionInputs.end()) {
183 argumentNotOperand.push_back(argument);
184 }
185 }
186 }
187 }
188 } else if (isa<BranchOpInterface>(op)) {
189 // We cannot track all successor blocks of the branch operation(More
190 // specifically, it's the successor's successor). Additionally, different
191 // blocks might also lead to the different block argument described in 1.c.
192 // Therefore, we conservatively consider the non-forwarded operand of the
193 // branch operation may live.
194 mayLive = true;
195 LDBG() << "[visitBranchOperand] Non-forwarded branch operand may "
196 "be live due to branch op interface";
197 } else {
198 Operation *parentOp = op->getParentOp();
199 assert(isa<RegionBranchOpInterface>(parentOp) &&
200 "expected parent op to implement `RegionBranchOpInterface`");
201 if (parentOp->getNumResults() != 0) {
202 // This mark value of type 1.c liveness as may live, because the region
203 // branch operation has a return value, and the non-forwarded operand can
204 // determine the region to jump to, it can thereby control the result of
205 // the region branch operation.
206 // Therefore, if the result value is live, we conservatively consider the
207 // non-forwarded operand of the region branch operation with result may
208 // live and record all result.
209 for (Value result : parentOp->getResults()) {
210 if (getLatticeElement(result)->isLive) {
211 mayLive = true;
212 LDBG() << "[visitBranchOperand] Non-forwarded branch "
213 "operand may be live due to parent live result: "
214 << result;
215 break;
216 }
217 }
218 } else {
219 // When the op is a `RegionBranchTerminatorOpInterface`, like an
220 // `scf.condition` op or return-like, like an `scf.yield` op, its branch
221 // operand controls the flow into this op's parent's (which is a
222 // `RegionBranchOpInterface`'s) regions.
223 for (Region &region : parentOp->getRegions()) {
224 for (Block &block : region)
225 blocks.push_back(&block);
226 }
227 }
228 }
229 for (Block *block : blocks) {
230 if (mayLive)
231 break;
232 for (Operation &nestedOp : *block) {
233 if (!isMemoryEffectFree(&nestedOp)) {
234 mayLive = true;
235 LDBG() << "Non-forwarded branch operand may be "
236 "live due to memory effect in block: "
237 << block;
238 break;
239 }
240 }
241 }
242
243 if (mayLive) {
244 Liveness *operandLiveness = getLatticeElement(operand.get());
245 LDBG() << "Marking branch operand live: " << operand.get();
246 propagateIfChanged(operandLiveness, operandLiveness->markLive());
247 for (BlockArgument argument : argumentNotOperand) {
248 Liveness *argumentLiveness = getLatticeElement(argument);
249 LDBG() << "Marking RegionBranchOp's argument live: " << argument;
250 // TODO: this is overly conservative: we should be able to eliminate
251 // unused values in a RegionBranchOpInterface operation but that may
252 // requires removing operation results which is beyond current
253 // capabilities of this pass right now.
254 propagateIfChanged(argumentLiveness, argumentLiveness->markLive());
255 }
256 }
257
258 // Now that we have checked for memory-effecting ops in the blocks of concern,
259 // we will simply visit the op with this non-forwarded operand to potentially
260 // mark it "live" due to type (1.a/3) liveness.
261 SmallVector<Liveness *, 4> operandLiveness;
262 operandLiveness.push_back(getLatticeElement(operand.get()));
263 for (BlockArgument argument : argumentNotOperand)
264 operandLiveness.push_back(getLatticeElement(argument));
265 SmallVector<const Liveness *, 4> resultsLiveness;
266 for (const Value result : op->getResults())
267 resultsLiveness.push_back(getLatticeElement(result));
268 LDBG() << "Visiting operation for non-forwarded branch operand: "
269 << OpWithFlags(op, OpPrintingFlags().skipRegions());
270 (void)visitOperation(op, operandLiveness, resultsLiveness);
271
272 // We also visit the parent op with the parent's results and this operand if
273 // `op` is a `RegionBranchTerminatorOpInterface` because its non-forwarded
274 // operand depends on not only its memory effects/results but also on those of
275 // its parent's.
276 if (!isa<RegionBranchTerminatorOpInterface>(op))
277 return;
278 Operation *parentOp = op->getParentOp();
279 SmallVector<const Liveness *, 4> parentResultsLiveness;
280 for (const Value parentResult : parentOp->getResults())
281 parentResultsLiveness.push_back(getLatticeElement(parentResult));
282 LDBG() << "Visiting parent operation for non-forwarded branch operand: "
283 << *parentOp;
284 (void)visitOperation(parentOp, operandLiveness, parentResultsLiveness);
285}
286
288 LDBG() << "Visiting call operand: " << operand.get()
289 << " in op: " << *operand.getOwner();
290 // We know (at the moment) and assume (for the future) that `operand` is a
291 // non-forwarded call operand of an op implementing `CallOpInterface`.
292 assert(isa<CallOpInterface>(operand.getOwner()) &&
293 "expected the op to implement `CallOpInterface`");
294
295 // The lattices of the non-forwarded call operands don't get updated like the
296 // forwarded call operands or the non-call operands. Thus they need to be
297 // handled separately. This is where we handle them.
298
299 // This marks values of type (1.c) liveness as "live". A non-forwarded
300 // call operand is live.
301 Liveness *operandLiveness = getLatticeElement(operand.get());
302 LDBG() << "Marking call operand live: " << operand.get();
303 propagateIfChanged(operandLiveness, operandLiveness->markLive());
304}
305
307 LDBG() << "setToExitState for lattice: " << lattice;
308 if (lattice->isLive) {
309 LDBG() << "Lattice already live, nothing to do";
310 return;
311 }
312 // This marks values of type (2) liveness as "live".
313 LDBG() << "Marking lattice live due to exit state";
314 (void)lattice->markLive();
316}
317
318//===----------------------------------------------------------------------===//
319// RunLivenessAnalysis
320//===----------------------------------------------------------------------===//
321
323 LDBG() << "Constructing RunLivenessAnalysis for op: " << op->getName();
324 SymbolTableCollection symbolTable;
325
326 loadBaselineAnalyses(solver);
327 solver.load<LivenessAnalysis>(symbolTable);
328 LDBG() << "Initializing and running solver";
329 (void)solver.initializeAndRun(op);
330 LDBG() << "RunLivenessAnalysis initialized for op: " << op->getName()
331 << " check on unreachable code now:";
332 // The framework doesn't visit operations in dead blocks, so we need to
333 // explicitly mark them as dead.
334 op->walk([&](Operation *op) {
335 for (auto result : llvm::enumerate(op->getResults())) {
336 if (getLiveness(result.value()))
337 continue;
338 LDBG() << "Result: " << result.index() << " of "
339 << OpWithFlags(op, OpPrintingFlags().skipRegions())
340 << " has no liveness info (unreachable), mark dead";
341 solver.getOrCreateState<Liveness>(result.value());
342 }
343 for (auto &region : op->getRegions()) {
344 for (auto &block : region) {
345 for (auto blockArg : llvm::enumerate(block.getArguments())) {
346 if (getLiveness(blockArg.value()))
347 continue;
348 LDBG() << "Block argument: " << blockArg.index() << " of "
349 << OpWithFlags(op, OpPrintingFlags().skipRegions())
350 << " has no liveness info, mark dead";
351 solver.getOrCreateState<Liveness>(blockArg.value());
352 }
353 }
354 }
355 });
356}
357
359 return solver.lookupState<Liveness>(val);
360}
return success()
This class represents an argument of a Block.
Definition Value.h:309
Block represents an ordered list of Operations.
Definition Block.h:33
void addDependency(AnalysisState *state, ProgramPoint *point)
Create a dependency between the given analysis state and lattice anchor on this analysis.
void propagateIfChanged(AnalysisState *state, ChangeResult changed)
Propagate an update to a state if it changed.
ProgramPoint * getProgramPointAfter(Operation *op)
IRValueT get() const
Return the current value being used by this operand.
This class represents an operand of an operation.
Definition Value.h:257
Set of flags used to control the behavior of the various IR print methods (e.g.
A wrapper class that allows for printing an operation with a set of flags, useful to act as a "stream...
Definition Operation.h:1111
Operation is the basic unit of execution within MLIR.
Definition Operation.h:88
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
Definition Operation.h:749
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
Definition Operation.h:234
OperationName getName()
The name of an operation is the key identifier for it.
Definition Operation.h:119
MutableArrayRef< Region > getRegions()
Returns the regions held by this operation.
Definition Operation.h:677
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Definition Operation.h:797
result_range getResults()
Definition Operation.h:415
unsigned getNumResults()
Return the number of results held by this operation.
Definition Operation.h:404
This class represents a successor of a region.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Definition Region.h:26
This class represents a collection of SymbolTables.
This class provides an abstraction over the different types of ranges over Values.
Definition ValueRange.h:387
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
void meet(AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs)
Join the lattice element and propagate and update if it changed.
An analysis that, by going backwards along the dataflow graph, annotates each value with a boolean st...
void setToExitState(Liveness *lattice) override
Set the given lattice element(s) at control flow exit point(s).
void visitBranchOperand(OpOperand &operand) override
void visitCallOperand(OpOperand &operand) override
LogicalResult visitOperation(Operation *op, ArrayRef< Liveness * > operands, ArrayRef< const Liveness * > results) override
For every value, liveness analysis determines whether or not it is "live".
Operation * getOwner() const
Return the owner of this operand.
Definition UseDefLists.h:38
void loadBaselineAnalyses(DataFlowSolver &solver)
Populates a DataFlowSolver with analyses that are required to ensure user-defined analyses are run pr...
Definition Utils.h:29
Include the generated interface declarations.
ChangeResult
A result type used to indicate if a change happened.
bool isMemoryEffectFree(Operation *op)
Returns true if the given operation is free of memory effects.
This trait indicates that a terminator operation is "return-like".
This lattice represents, for a given value, whether or not it is "live".
void print(raw_ostream &os) const override
AbstractSparseLattice(Value value)
Lattices can only be created for values.
ChangeResult meet(const AbstractSparseLattice &other) override
Meet (intersect) the information in this lattice with 'rhs'.
const Liveness * getLiveness(Value val)