MLIR  22.0.0git
XeGPUBlocking.cpp
Go to the documentation of this file.
1 //===---- XeGPUBlocking.cpp ---- XeGPU Blocking Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 
17 #include "mlir/Pass/PassManager.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Support/DebugLog.h"
22 
23 namespace mlir {
24 namespace xegpu {
25 #define GEN_PASS_DEF_XEGPUBLOCKING
26 #include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
27 } // namespace xegpu
28 } // namespace mlir
29 
30 #define DEBUG_TYPE "xegpu-blocking"
31 
32 using namespace mlir;
33 
34 namespace {
35 
36 // reslove the unrealized conversion cast ops generated when doing SCF
37 // Structural Type Conversion. It will have two formats, N:1 vector
38 // cast and 1:N vector cast. vector::insert_strided_slice ops will be
39 // used for the first case, and vector::extract_strided_slice ops will be
40 // used for the second case.
41 static void
42 resolveUnrealizedConversionCastOp(UnrealizedConversionCastOp castOp) {
43  ValueRange inputs = castOp.getInputs();
44  ValueRange outputs = castOp.getOutputs();
45 
46  auto hasIdenticalVectorTypes = [](ValueRange values) {
47  auto types = values.getTypes();
48  return llvm::all_of(types, [&](Type type) {
49  return isa<VectorType>(type) && type == types.front();
50  });
51  };
52 
53  // We only interest in the case where all inputs and outputs have the
54  // identical VectorTypes
55  if (!hasIdenticalVectorTypes(inputs) || !hasIdenticalVectorTypes(outputs)) {
56  LDBG() << "skip unrealized conversion cast op not emulating pack/unpack.";
57  return;
58  }
59 
60  VectorType outputTy = dyn_cast<VectorType>(outputs[0].getType());
61  OpBuilder builder(castOp);
62  if (inputs.size() > 1 && outputs.size() == 1) {
63  // the castOp is emulating an unpack op
64  ArrayRef<int64_t> shape = outputTy.getShape();
66  builder, castOp.getLoc(), inputs, shape);
67  castOp->replaceAllUsesWith(ValueRange(result));
68  castOp->erase();
69  } else if (castOp.getNumResults() > 1 && castOp.getNumOperands() == 1) {
70  // the castOp is emulating a pack op
71  ArrayRef<int64_t> tileShape = outputTy.getShape();
73  builder, castOp.getLoc(), inputs[0], tileShape);
74  castOp->replaceAllUsesWith(results);
75  castOp->erase();
76  }
77 }
78 
79 // This pattern lowers ConvertLayoutOp by removing the inst_data field from the
80 // layout attributes. Since both producer and consumer operations handle data
81 // partitioning based on their own inst_data, while maintaining original input
82 // and output shape, ConvertLayoutOp does not need to manage inst_data.
83 struct ConvertLayoutOpPattern
84  : public OpRewritePattern<xegpu::ConvertLayoutOp> {
86  LogicalResult matchAndRewrite(xegpu::ConvertLayoutOp op,
87  PatternRewriter &rewriter) const override {
88  xegpu::DistributeLayoutAttr inputLayout = op.getInputLayoutAttr();
89  xegpu::DistributeLayoutAttr targetLayout = op.getTargetLayoutAttr();
90  if (inputLayout.getEffectiveInstDataAsInt().empty() ||
91  targetLayout.getEffectiveInstDataAsInt().empty())
92  return rewriter.notifyMatchFailure(op, "Not a target ConvertLayoutOp.");
93 
94  inputLayout = inputLayout.dropInstData();
95  targetLayout = targetLayout.dropInstData();
96  auto newOp = rewriter.createOrFold<xegpu::ConvertLayoutOp>(
97  op.getLoc(), op.getType(), op.getSource(), inputLayout, targetLayout);
98  rewriter.replaceOp(op, newOp);
99  return success();
100  }
101 };
102 
103 //===------------------------------------------------------------------------===//
104 // The XeGPUBlockingPass leverages the unroll patterns for XeGPU and Vector ops
105 // to partition operations that process large shapes into multiple operations on
106 // smaller shapes, as specified by the inst_data in the layout attribute. This
107 // enables each resulting operation to be efficiently mapped to a hardware
108 // instruction.
109 //===------------------------------------------------------------------------===//
110 
111 class XeGPUBlockingPass final
112  : public xegpu::impl::XeGPUBlockingBase<XeGPUBlockingPass> {
113 public:
114  void runOnOperation() override;
115 
116 private:
117  // Get the tile shape for a given OpOperand or OpResult by examining the
118  // corresponding layout attribute. If layout is not present or is not a
119  // subgroup level layout, it returns std::nullopt.
120  template <typename T,
121  typename = std::enable_if_t<std::is_same_v<T, OpOperand> ||
122  std::is_same_v<T, OpResult>>>
123  std::optional<SmallVector<int64_t>>
124  getTileShape(const T &operandOrResult) const;
125 
126  // Get the tile shape for a given operation.
127  std::optional<SmallVector<int64_t>> getTileShape(Operation *op) const;
128 
129  // Determine if the operation requires unrolling. Return false if all operands
130  // and results have tile shapes identical to their original types. Otherwise,
131  // return true.
132  bool needsUnroll(Operation *op) const;
133 };
134 } // namespace
135 
136 template <typename T, typename>
137 std::optional<SmallVector<int64_t>>
138 XeGPUBlockingPass::getTileShape(const T &operandOrResult) const {
139  Value value;
140  if constexpr (std::is_same_v<T, OpOperand>)
141  value = operandOrResult.get();
142  else
143  value = (Value)operandOrResult;
144 
145  xegpu::DistributeLayoutAttr layout =
146  xegpu::getDistributeLayoutAttr(operandOrResult);
147  if (layout && layout.isForSubgroup()) {
148  if (!layout.getEffectiveInstDataAsInt().empty()) {
149  SmallVector<int64_t> instData = layout.getEffectiveInstDataAsInt();
150  // Remove leading unit dimensions from inst_data
151  // For example, if the inst_data is [1, 1, 32]
152  // it will pass [32] as the unroll/blocking size.
153  // Skip it for xegpu nd ops since it will be 2D
154  // TODO: For vectors ops, experiment with the
155  // upstream vector remove leading unit dims patterns,
156  // populateCastAwayVectorLeadingOneDimPatterns.
157  Operation *definingOp = value.getDefiningOp();
158  bool skipLeadingUnitDimRemoval =
159  definingOp &&
160  (isa<xegpu::CreateNdDescOp, xegpu::LoadNdOp, xegpu::DpasOp,
161  xegpu::StoreNdOp, xegpu::PrefetchNdOp>(definingOp));
162  if (!skipLeadingUnitDimRemoval) {
163  auto it = llvm::find_if(instData, [](auto val) { return val != 1; });
164  instData.erase(instData.begin(), it);
165  }
166  return instData;
167  }
168 
169  if (auto type = dyn_cast<ShapedType>(value.getType()))
170  return llvm::to_vector(type.getShape());
171  }
172  LDBG() << "failed to getTileShape for: " << value;
173  return std::nullopt;
174 }
175 
176 std::optional<SmallVector<int64_t>>
178  if (isa<xegpu::CreateNdDescOp, xegpu::UpdateNdOffsetOp, xegpu::CreateDescOp,
179  xegpu::UpdateOffsetOp, xegpu::LoadMatrixOp>(op))
180  return getTileShape(op->getOpResult(0));
181  if (isa<xegpu::PrefetchNdOp, xegpu::LoadNdOp, xegpu::PrefetchOp,
182  xegpu::StoreMatrixOp>(op))
183  return getTileShape(op->getOpOperand(0));
184  if (isa<xegpu::StoreNdOp>(op))
185  return getTileShape(op->getOpOperand(1));
186 
187  // Handle LoadGatherOp and StoreScatterOp (with and without offset)
188  if (auto loadGatherOp = dyn_cast<xegpu::LoadGatherOp>(op)) {
189  if (loadGatherOp.getOffsets())
190  return getTileShape(loadGatherOp->getOpResult(0));
191  else
192  return getTileShape(loadGatherOp->getOpOperand(0));
193  }
194 
195  if (auto storeScatterOp = dyn_cast<xegpu::StoreScatterOp>(op))
196  return getTileShape(storeScatterOp.getOffsets()
197  ? storeScatterOp->getOpOperand(0)
198  : storeScatterOp->getOpOperand(1));
199 
200  if (isa<xegpu::DpasOp>(op)) {
201  std::optional<SmallVector<int64_t>> aTile =
202  getTileShape(op->getOpOperand(0));
203  std::optional<SmallVector<int64_t>> bTile =
204  getTileShape(op->getOpOperand(1));
205 
206  if (!aTile || aTile->size() != 2 || !bTile || bTile->size() != 2)
207  return std::nullopt;
208 
209  // semantic check for A and B
210  if ((*aTile)[1] != (*bTile)[0])
211  return std::nullopt;
212 
213  // semantic check for C
214  if (op->getNumOperands() == 3) {
215  std::optional<SmallVector<int64_t>> cTile =
216  getTileShape(op->getOpOperand(2));
217  int64_t expectedCTile[2] = {(*aTile)[0], (*bTile)[1]};
218  if (!cTile || !llvm::equal(*cTile, expectedCTile))
219  return std::nullopt;
220  }
221 
222  return SmallVector<int64_t>({(*aTile)[0], (*aTile)[1], (*bTile)[1]});
223  }
224 
226  return getTileShape(op->getOpResult(0));
227 
228  if (isa<vector::MultiDimReductionOp>(op))
229  return getTileShape(op->getOpOperand(0));
230 
231  if (isa<vector::TransposeOp, vector::BroadcastOp>(op))
232  return getTileShape(op->getOpResult(0));
233 
234  return std::nullopt;
235 }
236 
237 bool XeGPUBlockingPass::needsUnroll(Operation *op) const {
238  // skip the op if any of its operands or results has workgroup level layouts
239  bool hasWgLayoutOperands =
240  llvm::any_of(op->getOpOperands(), [](OpOperand &opr) {
241  xegpu::DistributeLayoutAttr layout =
242  xegpu::getDistributeLayoutAttr(opr);
243  return layout && layout.isForWorkgroup();
244  });
245  bool hasWgLayoutResults =
246  llvm::any_of(op->getOpResults(), [](OpResult result) {
247  xegpu::DistributeLayoutAttr layout =
248  xegpu::getDistributeLayoutAttr(result);
249  return layout && layout.isForWorkgroup();
250  });
251  if (hasWgLayoutOperands || hasWgLayoutResults) {
252  LDBG() << "skip unrolling for op with workgroup level layout: " << *op;
253  return false;
254  }
255 
256  auto isUnrollable = [](Value value, ArrayRef<int64_t> tileShape) {
257  Type valTy = value.getType();
258  if (auto tdescTy = dyn_cast<xegpu::TensorDescType>(valTy)) {
259  xegpu::DistributeLayoutAttr layout = tdescTy.getLayoutAttr();
260  return layout && !layout.getEffectiveInstDataAsInt().empty();
261  }
262  auto shapedType = dyn_cast<ShapedType>(valTy);
263  return shapedType && !llvm::equal(tileShape, shapedType.getShape());
264  };
265 
266  bool hasUnrollableOperands =
267  llvm::any_of(op->getOpOperands(), [&](OpOperand &opr) {
268  std::optional<SmallVector<int64_t>> tileShape = getTileShape(opr);
269  return tileShape.has_value() && isUnrollable(opr.get(), *tileShape);
270  });
271  bool hasUnrollableResults =
272  llvm::any_of(op->getOpResults(), [&](OpResult result) {
273  std::optional<SmallVector<int64_t>> tileShape = getTileShape(result);
274  return tileShape.has_value() && isUnrollable(result, *tileShape);
275  });
276  return hasUnrollableOperands || hasUnrollableResults;
277 }
278 
279 void XeGPUBlockingPass::runOnOperation() {
280  MLIRContext *ctx = &getContext();
281  Operation *op = getOperation();
282 
283  // Preserve the LayoutAttr for each operand to the owner's DictionaryAttr.
284  // This ensures that the LayoutAttr remains accessible even if the defining
285  // operation is replaced.
287  op, [](Value v) { return xegpu::getDistributeLayoutAttr(v); });
288 
289  auto getTileShapeAndCount = [](llvm::ArrayRef<int64_t> shape,
290  xegpu::LayoutAttr layout) {
291  int count = 1;
292  SmallVector<int64_t> tileShape(shape);
293  if (layout && layout.getInstData()) {
294  DenseI32ArrayAttr instData = layout.getInstData();
295  tileShape = llvm::to_vector_of<int64_t>(instData.asArrayRef());
296  count = computeProduct(shape) / computeProduct(tileShape);
297  }
298  return std::make_pair(tileShape, count);
299  };
300 
301  // Perform type conversion for SCF control folow ops
302  TypeConverter converter;
303  converter.addConversion([](Type type) -> Type { return type; });
304  converter.addConversion(
305  [&](RankedTensorType type,
306  SmallVectorImpl<Type> &result) -> std::optional<LogicalResult> {
307  Type elemTy = type.getElementType();
308  ArrayRef<int64_t> shape = type.getShape();
309 
310  auto layout =
311  llvm::dyn_cast_if_present<xegpu::LayoutAttr>(type.getEncoding());
312  if (layout && layout.isForWorkgroup())
313  return failure();
314 
315  int count;
316  SmallVector<int64_t> subShape;
317  std::tie(subShape, count) = getTileShapeAndCount(shape, layout);
318  auto newTy = VectorType::get(subShape, elemTy);
319  result.append(count, newTy);
320  return success();
321  });
322  converter.addConversion(
323  [&](xegpu::TensorDescType type,
324  SmallVectorImpl<Type> &result) -> std::optional<LogicalResult> {
325  Type elemTy = type.getElementType();
326  ArrayRef<int64_t> shape = type.getShape();
327 
328  xegpu::LayoutAttr layout = type.getLayoutAttr();
329  if (layout && layout.isForWorkgroup())
330  return failure();
331 
332  int count;
333  SmallVector<int64_t> subShape;
334  std::tie(subShape, count) = getTileShapeAndCount(shape, layout);
335 
336  if (layout)
337  layout = layout.dropInstData();
338 
339  auto newTy = xegpu::TensorDescType::get(
340  type.getContext(), subShape, elemTy, type.getEncoding(), layout);
341  result.append(count, newTy);
342  return success();
343  });
344 
346 
347  // Remove leading unit dimensions from vector ops and then
348  // do the unrolling.
349  {
351  vector::populateCastAwayVectorLeadingOneDimPatterns(patterns);
352  (void)applyPatternsGreedily(op, std::move(patterns));
353  }
355  options.setFilterConstraint(
356  [&](Operation *op) -> LogicalResult { return success(needsUnroll(op)); });
357 
358  options.setNativeShapeFn([&](Operation *op) { return getTileShape(op); });
359 
360  options.setUnrolledTypesFn([&](ShapedType type, ArrayRef<int64_t> tileShape,
361  bool returnSingleType = false) {
362  Type elemTy = type.getElementType();
363  Type newTy;
364 
365  if (auto tdescTy = dyn_cast<xegpu::TensorDescType>(type)) {
366 
367  Attribute encoding = tdescTy.getEncoding();
368  // If the encoding is a ScatterTensorDescAttr, we need to
369  // potentially adjust the chunk size based on the inst_data.
370  if (tdescTy.isScattered()) {
371  int64_t chunkSize = tdescTy.getChunkSizeAsInt();
372 
373  if (chunkSize > 1) {
374  int64_t blockedChunkSize = chunkSize;
375  auto instData = tdescTy.getLayoutAttr().getInstData();
376  if (!instData.empty())
377  blockedChunkSize = instData.asArrayRef().back();
378 
379  // To create a new attribute with a different chunk_size:
380  auto newEncoding = xegpu::ScatterTensorDescAttr::get(
381  ctx, tdescTy.getMemorySpace(), blockedChunkSize);
382  encoding = newEncoding;
383  }
384  }
385 
386  newTy =
387  xegpu::TensorDescType::get(ctx, tileShape, elemTy, encoding,
388  tdescTy.getLayoutAttr().dropInstData());
389  } else {
390  newTy = VectorType::get(tileShape, elemTy);
391  }
392 
393  if (returnSingleType)
394  return SmallVector<Type>{newTy};
395  std::optional<SmallVector<int64_t>> ratio =
396  computeShapeRatio(type.getShape(), tileShape);
397  assert(ratio && "The shape of the type must be a multiple of tileShape.");
398  return SmallVector<Type>(computeProduct(*ratio), newTy);
399  });
400 
402  patterns.add<ConvertLayoutOpPattern>(ctx);
403 
404  vector::UnrollVectorOptions vectorOptions;
405  vectorOptions.setNativeShapeFn(options.nativeShape);
406 
408  vector::populateVectorUnrollPatterns(patterns, vectorOptions);
409 
410  (void)applyPatternsGreedily(op, std::move(patterns));
411 
412  op->walk([](Operation *op) {
413  // Remove the layout attributes cached per operands.
414  for (OpOperand &opr : op->getOpOperands()) {
415  std::string name = xegpu::getLayoutName(opr);
416  if (op->hasAttrOfType<xegpu::LayoutAttr>(name))
417  op->removeAttr(name);
418  }
419 
420  // Update the layout attributes per result.
421  for (OpResult result : op->getOpResults()) {
422  std::string name = xegpu::getLayoutName(result);
423  if (auto layout = op->getAttrOfType<xegpu::LayoutAttr>(name)) {
424  op->removeAttr(name);
425  if (!isa<LoopLikeOpInterface>(op))
426  xegpu::setDistributeLayoutAttr(result, layout.dropInstData());
427  }
428  }
429 
430  // Resolve unrealized conversion cast ops emulating pack/unpack
431  if (auto castOp = dyn_cast<UnrealizedConversionCastOp>(op))
432  resolveUnrealizedConversionCastOp(castOp);
433  });
434 }
static MLIRContext * getContext(OpFoldResult val)
static std::array< int64_t, 2 > getTileShape(ArrayRef< int64_t > operandShape, Type elementType, int64_t lineSizeBits)
Returns the number of 8 x [128|256|512] bit tiles that compose the given operand shape.
Definition: MMAUtils.cpp:37
static llvm::ManagedStatic< PassManagerOptions > options
Attributes are known-constant values of operations.
Definition: Attributes.h:25
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:63
This class helps build Operations.
Definition: Builders.h:207
void createOrFold(SmallVectorImpl< Value > &results, Location location, Args &&...args)
Create an operation of specific op type at the current insertion point, and immediately try to fold i...
Definition: Builders.h:526
This class represents an operand of an operation.
Definition: Value.h:257
This is a value defined by a result of an operation.
Definition: Value.h:457
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
OpResult getOpResult(unsigned idx)
Definition: Operation.h:421
AttrClass getAttrOfType(StringAttr name)
Definition: Operation.h:550
OpOperand & getOpOperand(unsigned idx)
Definition: Operation.h:388
bool hasAttrOfType(NameT &&name)
Definition: Operation.h:575
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Definition: Operation.h:797
unsigned getNumOperands()
Definition: Operation.h:346
MutableArrayRef< OpOperand > getOpOperands()
Definition: Operation.h:383
result_range getOpResults()
Definition: Operation.h:420
Attribute removeAttr(StringAttr name)
Remove the attribute with the specified name if it exists.
Definition: Operation.h:600
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:404
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:793
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:726
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
Type conversion class.
void addConversion(FnT &&callback)
Register a conversion function.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:387
type_range getTypes() const
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:105
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:18
bool hasElementwiseMappableTraits(Operation *op)
Together, Elementwise, Scalarizable, Vectorizable, and Tensorizable provide an easy way for scalar op...
Definition: Operation.cpp:1395
Value createVectorWithShapeFromValues(OpBuilder &builder, Location loc, ValueRange values, ArrayRef< int64_t > shape)
Create a vector of shape from a set of values using vector.insert_stride_slice.
Definition: XeGPUUtils.cpp:276
void setDistributeLayoutAttr(const T &operandOrResult, const DistributeLayoutAttr layout)
Sets the DistributeLayoutAttr for a given OpOperand or OpResult by attaching it to the owner's dictio...
Definition: XeGPUUtils.cpp:178
void populateXeGPUUnrollPatterns(RewritePatternSet &patterns, const UnrollOptions &options)
Collect a set of patterns to unroll xegpu operations to a smaller shapes.
void setDistributeLayoutAttrs(Operation *op, function_ref< DistributeLayoutAttr(Value)> getLayoutImpl)
Set the DistributeLayoutAttr for each OpOperand and OpResult of the given operation.
Definition: XeGPUUtils.cpp:196
std::string getLayoutName(const OpOperand &operand)
Return the attribute name for the OpOperand to attach DistributeLayoutAttr.
Definition: XeGPUUtils.cpp:105
void doSCFStructuralTypeConversionWithTensorType(Operation *op, TypeConverter converter)
Do type conversion for SCF structural ops, e.g., scf.for using SCF structure type convertion patterns...
Definition: XeGPUUtils.cpp:301
DistributeLayoutAttr getDistributeLayoutAttr(const Value value)
Retrieves the DistributeLayoutAttr associated with a given Value.
Definition: XeGPUUtils.cpp:116
SmallVector< Value > extractVectorsWithShapeFromValue(OpBuilder &builder, Location loc, Value value, ArrayRef< int64_t > shape)
Extract a set of small vectors from a value with a given shape using vector.extract_stride_slice.
Definition: XeGPUUtils.cpp:239
Include the generated interface declarations.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
Definition: Utils.cpp:304
LogicalResult applyPatternsGreedily(Region &region, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
int64_t computeProduct(ArrayRef< int64_t > basis)
Self-explicit.
const FrozenRewritePatternSet & patterns
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
std::optional< SmallVector< int64_t > > computeShapeRatio(ArrayRef< int64_t > shape, ArrayRef< int64_t > subShape)
Return the multi-dimensional integral ratio of subShape to the trailing dimensions of shape.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:314
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
Patterns must specify the root operation name they match against, and can also specify the benefit of...
Definition: PatternMatch.h:322
Options that control the vector unrolling.
UnrollVectorOptions & setNativeShapeFn(NativeShapeFnType fn)
Options to control the XeGPU unrolling.
Definition: Transforms.h:27