MLIR  22.0.0git
SparseBufferRewriting.cpp
Go to the documentation of this file.
1 //===- SparseBufferRewriting.cpp - Sparse buffer rewriting rules ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements rewriting rules that are specific to sparse tensor
10 // primitives with memref operands.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "Utils/CodegenUtils.h"
15 
24 #include "mlir/Support/LLVM.h"
25 
26 using namespace mlir;
27 using namespace mlir::sparse_tensor;
28 
29 //===---------------------------------------------------------------------===//
30 // Helper methods for the actual rewriting rules.
31 //===---------------------------------------------------------------------===//
32 
33 static constexpr uint64_t loIdx = 0;
34 static constexpr uint64_t hiIdx = 1;
35 static constexpr uint64_t xStartIdx = 2;
36 
37 static constexpr const char kPartitionFuncNamePrefix[] = "_sparse_partition_";
38 static constexpr const char kBinarySearchFuncNamePrefix[] =
39  "_sparse_binary_search_";
40 static constexpr const char kHybridQuickSortFuncNamePrefix[] =
41  "_sparse_hybrid_qsort_";
42 static constexpr const char kSortStableFuncNamePrefix[] =
43  "_sparse_sort_stable_";
44 static constexpr const char kShiftDownFuncNamePrefix[] = "_sparse_shift_down_";
45 static constexpr const char kHeapSortFuncNamePrefix[] = "_sparse_heap_sort_";
46 static constexpr const char kQuickSortFuncNamePrefix[] = "_sparse_qsort_";
47 
48 using FuncGeneratorType = function_ref<void(OpBuilder &, ModuleOp, func::FuncOp,
49  AffineMap, uint64_t, uint32_t)>;
50 
51 /// Constructs a function name with this format to facilitate quick sort:
52 /// <namePrefix><xPerm>_<x type>_<y0 type>..._<yn type> for sort
53 /// <namePrefix><xPerm>_<x type>_coo_<ny>_<y0 type>..._<yn type> for sort_coo
54 static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream,
55  StringRef namePrefix, AffineMap xPerm,
56  uint64_t ny, ValueRange operands) {
57  nameOstream << namePrefix;
58  for (auto res : xPerm.getResults())
59  nameOstream << cast<AffineDimExpr>(res).getPosition() << "_";
60 
61  nameOstream << getMemRefType(operands[xStartIdx]).getElementType();
62  nameOstream << "_coo_" << ny;
63 
64  constexpr uint64_t yBufferOffset = 1;
65  for (Value v : operands.drop_front(xStartIdx + yBufferOffset))
66  nameOstream << "_" << getMemRefType(v).getElementType();
67 }
68 
69 /// Looks up a function that is appropriate for the given operands being
70 /// sorted, and creates such a function if it doesn't exist yet. The
71 /// parameters `xPerm` and `ny` tell the number of x and y values provided
72 /// by the buffer in xStartIdx.
73 //
74 // All sorting function generators take (lo, hi, xs, ys) in `operands` as
75 // parameters for the sorting functions. Other parameters, such as the recursive
76 // call depth, are appended to the end of the parameter list as
77 // "trailing parameters".
79  OpBuilder &builder, func::FuncOp insertPoint, TypeRange resultTypes,
80  StringRef namePrefix, AffineMap xPerm, uint64_t ny, ValueRange operands,
81  FuncGeneratorType createFunc, uint32_t nTrailingP = 0) {
82  SmallString<32> nameBuffer;
83  llvm::raw_svector_ostream nameOstream(nameBuffer);
84  getMangledSortHelperFuncName(nameOstream, namePrefix, xPerm, ny,
85  operands.drop_back(nTrailingP));
86 
87  ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
88  MLIRContext *context = module.getContext();
89  auto result = SymbolRefAttr::get(context, nameOstream.str());
90  auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
91 
92  if (!func) {
93  // Create the function.
94  OpBuilder::InsertionGuard insertionGuard(builder);
95  builder.setInsertionPoint(insertPoint);
96  Location loc = insertPoint.getLoc();
97  func = func::FuncOp::create(
98  builder, loc, nameOstream.str(),
99  FunctionType::get(context, operands.getTypes(), resultTypes));
100  func.setPrivate();
101  createFunc(builder, module, func, xPerm, ny, nTrailingP);
102  }
103 
104  return result;
105 }
106 
107 /// Creates a code block to process each pair of (xs[i], xs[j]) for sorting.
108 /// The code to process the value pairs is generated by `bodyBuilder`.
109 static void forEachIJPairInXs(
110  OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm,
111  uint64_t ny,
112  function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
113  Value cstep = constantIndex(builder, loc, xPerm.getNumResults() + ny);
114  Value iOffset = arith::MulIOp::create(builder, loc, args[0], cstep);
115  Value jOffset = arith::MulIOp::create(builder, loc, args[1], cstep);
116  for (unsigned k = 0, e = xPerm.getNumResults(); k < e; k++) {
117  unsigned actualK = cast<AffineDimExpr>(xPerm.getResult(k)).getPosition();
118  Value ak = constantIndex(builder, loc, actualK);
119  Value i = arith::AddIOp::create(builder, loc, ak, iOffset);
120  Value j = arith::AddIOp::create(builder, loc, ak, jOffset);
121  Value buffer = args[xStartIdx];
122 
123  bodyBuilder(k, i, j, buffer);
124  }
125 }
126 
127 /// Creates a code block to process each pair of (xys[i], xys[j]) for sorting.
128 /// The code to process the value pairs is generated by `bodyBuilder`.
130  OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm,
131  uint64_t ny,
132  function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
133 
134  // Create code for the first (xPerm + ny) buffers.
135  SmallVector<AffineExpr> exps(xPerm.getResults());
136  for (unsigned y = 0; y < ny; y++) {
137  exps.push_back(builder.getAffineDimExpr(y + xPerm.getNumResults()));
138  }
139  AffineMap xyPerm = AffineMap::get(exps.size(), 0, exps, builder.getContext());
140  assert(xyPerm.isPermutation());
141 
142  forEachIJPairInXs(builder, loc, args, xyPerm, 0, bodyBuilder);
143 
144  constexpr uint64_t numHandledBuffers = 1;
145  // Create code for the remaining buffers.
146  Value i = args[0];
147  Value j = args[1];
148  for (const auto &arg :
149  llvm::enumerate(args.drop_front(xStartIdx + numHandledBuffers))) {
150  bodyBuilder(arg.index() + xPerm.getNumResults() + ny, i, j, arg.value());
151  }
152 }
153 
154 /// Creates a code block for swapping the values in index i and j for all the
155 /// buffers.
156 //
157 // The generated IR corresponds to this C like algorithm:
158 // swap(x0[i], x0[j]);
159 // swap(x1[i], x1[j]);
160 // ...
161 // swap(xn[i], xn[j]);
162 // swap(y0[i], y0[j]);
163 // ...
164 // swap(yn[i], yn[j]);
165 static void createSwap(OpBuilder &builder, Location loc, ValueRange args,
166  AffineMap xPerm, uint64_t ny) {
167  auto swapOnePair = [&](uint64_t unused, Value i, Value j, Value buffer) {
168  Value vi = memref::LoadOp::create(builder, loc, buffer, i);
169  Value vj = memref::LoadOp::create(builder, loc, buffer, j);
170  memref::StoreOp::create(builder, loc, vj, buffer, i);
171  memref::StoreOp::create(builder, loc, vi, buffer, j);
172  };
173 
174  forEachIJPairInAllBuffers(builder, loc, args, xPerm, ny, swapOnePair);
175 }
176 
177 /// Creates code to compare all the (xs[i], xs[j]) pairs. The method to compare
178 /// each pair is create via `compareBuilder`.
180  OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm,
181  uint64_t ny,
182  function_ref<Value(OpBuilder &, Location, Value, Value, Value, bool, bool)>
183  compareBuilder) {
184  Value result;
185  auto bodyBuilder = [&](uint64_t k, Value i, Value j, Value buffer) {
186  bool isFirstDim = (k == 0);
187  bool isLastDim = (k == xPerm.getNumResults() - 1);
188  Value val =
189  compareBuilder(builder, loc, i, j, buffer, isFirstDim, isLastDim);
190  if (isFirstDim) {
191  result = val;
192  } else if (!isLastDim) {
193  OpBuilder::InsertionGuard insertionGuard(builder);
194  auto ifOp = cast<scf::IfOp>(val.getDefiningOp());
195  builder.setInsertionPointAfter(ifOp);
196  scf::YieldOp::create(builder, loc, ifOp.getResult(0));
197  }
198  };
199 
200  forEachIJPairInXs(builder, loc, args, xPerm, ny, bodyBuilder);
201 
202  builder.setInsertionPointAfterValue(result);
203  return result;
204 }
205 
206 /// Generates code to compare whether x[i] is equal to x[j] and returns the
207 /// result of the comparison.
209  Value x, bool isFirstDim, bool isLastDim) {
210  Value vi = memref::LoadOp::create(builder, loc, x, i);
211  Value vj = memref::LoadOp::create(builder, loc, x, j);
212 
213  Value res;
214  if (isLastDim) {
215  res = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::eq, vi, vj);
216  // For 1D, we create a compare without any control flow. Otherwise, we
217  // create YieldOp to return the result in the nested if-stmt.
218  if (!isFirstDim)
219  scf::YieldOp::create(builder, loc, res);
220  } else {
221  Value ne =
222  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ne, vi, vj);
223  scf::IfOp ifOp = scf::IfOp::create(builder, loc, builder.getIntegerType(1),
224  ne, /*else=*/true);
225  // If (x[i] != x[j]).
226  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
227  Value f = constantI1(builder, loc, false);
228  scf::YieldOp::create(builder, loc, f);
229 
230  // If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
231  // checks the remaining dimensions.
232  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
233  res = ifOp.getResult(0);
234  }
235 
236  return res;
237 }
238 
239 /// Creates code to compare whether xs[i] is equal to xs[j].
240 //
241 // The generate IR corresponds to this C like algorithm:
242 // if (x0[i] != x0[j])
243 // return false;
244 // else
245 // if (x1[i] != x1[j])
246 // return false;
247 // else if (x2[2] != x2[j]))
248 // and so on ...
250  ValueRange args, AffineMap xPerm,
251  uint64_t ny, uint32_t nTrailingP = 0) {
252  // Compare functions don't use trailing parameters.
253  (void)nTrailingP;
254  assert(nTrailingP == 0);
255  return createInlinedCompareImplementation(builder, loc, args, xPerm, ny,
257 }
258 
259 /// Generates code to compare whether x[i] is less than x[j] and returns the
260 /// result of the comparison.
262  Value j, Value x, bool isFirstDim,
263  bool isLastDim) {
264  Value vi = memref::LoadOp::create(builder, loc, x, i);
265  Value vj = memref::LoadOp::create(builder, loc, x, j);
266 
267  Value res;
268  if (isLastDim) {
269  res =
270  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, vi, vj);
271  // For 1D, we create a compare without any control flow. Otherwise, we
272  // create YieldOp to return the result in the nested if-stmt.
273  if (!isFirstDim)
274  scf::YieldOp::create(builder, loc, res);
275  } else {
276  Value ne =
277  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ne, vi, vj);
278  scf::IfOp ifOp = scf::IfOp::create(builder, loc, builder.getIntegerType(1),
279  ne, /*else=*/true);
280  // If (x[i] != x[j]).
281  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
282  Value lt =
283  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, vi, vj);
284  scf::YieldOp::create(builder, loc, lt);
285 
286  // If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
287  // checks the remaining dimensions.
288  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
289  res = ifOp.getResult(0);
290  }
291 
292  return res;
293 }
294 
295 /// Creates code to compare whether xs[i] is less than xs[j].
296 //
297 // The generate IR corresponds to this C like algorithm:
298 // if (x0[i] != x0[j])
299 // return x0[i] < x0[j];
300 // else if (x1[j] != x1[i])
301 // return x1[i] < x1[j];
302 // else
303 // and so on ...
305  ValueRange args, AffineMap xPerm,
306  uint64_t ny, uint32_t nTrailingP = 0) {
307  // Compare functions don't use trailing parameters.
308  (void)nTrailingP;
309  assert(nTrailingP == 0);
310  return createInlinedCompareImplementation(builder, loc, args, xPerm, ny,
312 }
313 
314 /// Creates a function to use a binary search to find the insertion point for
315 /// inserting xs[hi] to the sorted values xs[lo..hi).
316 //
317 // The generate IR corresponds to this C like algorithm:
318 // p = hi
319 // while (lo < hi)
320 // mid = (lo + hi) >> 1
321 // if (xs[p] < xs[mid])
322 // hi = mid
323 // else
324 // lo = mid - 1
325 // return lo;
326 //
327 static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module,
328  func::FuncOp func, AffineMap xPerm,
329  uint64_t ny, uint32_t nTrailingP = 0) {
330  // Binary search doesn't use trailing parameters.
331  (void)nTrailingP;
332  assert(nTrailingP == 0);
333  OpBuilder::InsertionGuard insertionGuard(builder);
334  Block *entryBlock = func.addEntryBlock();
335  builder.setInsertionPointToStart(entryBlock);
336 
337  Location loc = func.getLoc();
338  ValueRange args = entryBlock->getArguments();
339  Value p = args[hiIdx];
340  SmallVector<Type, 2> types(2, p.getType()); // Only two types.
341  scf::WhileOp whileOp = scf::WhileOp::create(
342  builder, loc, types, SmallVector<Value, 2>{args[loIdx], args[hiIdx]});
343 
344  // The before-region of the WhileOp.
345  Block *before =
346  builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
347  builder.setInsertionPointToEnd(before);
348  Value cond1 =
349  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult,
350  before->getArgument(0), before->getArgument(1));
351  scf::ConditionOp::create(builder, loc, cond1, before->getArguments());
352 
353  // The after-region of the WhileOp.
354  Block *after =
355  builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
356  builder.setInsertionPointToEnd(after);
357  Value lo = after->getArgument(0);
358  Value hi = after->getArgument(1);
359  // Compute mid = (lo + hi) >> 1.
360  Value c1 = constantIndex(builder, loc, 1);
361  Value mid = arith::ShRUIOp::create(
362  builder, loc, arith::AddIOp::create(builder, loc, lo, hi), c1);
363  Value midp1 = arith::AddIOp::create(builder, loc, mid, c1);
364 
365  // Compare xs[p] < xs[mid].
366  SmallVector<Value> compareOperands{p, mid};
367  constexpr uint64_t numXBuffers = 1;
368  compareOperands.append(args.begin() + xStartIdx,
369  args.begin() + xStartIdx + numXBuffers);
370  Value cond2 = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
371  // Update lo and hi for the WhileOp as follows:
372  // if (xs[p] < xs[mid]))
373  // hi = mid;
374  // else
375  // lo = mid + 1;
376  Value newLo = arith::SelectOp::create(builder, loc, cond2, lo, midp1);
377  Value newHi = arith::SelectOp::create(builder, loc, cond2, mid, hi);
378  scf::YieldOp::create(builder, loc, ValueRange{newLo, newHi});
379 
380  builder.setInsertionPointAfter(whileOp);
381  func::ReturnOp::create(builder, loc, whileOp.getResult(0));
382 }
383 
384 /// Creates code to advance i in a loop based on xs[p] as follows:
385 /// while (xs[i] < xs[p]) i += step (step > 0)
386 /// or
387 /// while (xs[i] > xs[p]) i += step (step < 0)
388 /// The routine returns i as well as a boolean value to indicate whether
389 /// xs[i] == xs[p].
390 static std::pair<Value, Value> createScanLoop(OpBuilder &builder,
391  ModuleOp module,
392  func::FuncOp func, ValueRange xs,
393  Value i, Value p, AffineMap xPerm,
394  uint64_t ny, int step) {
395  Location loc = func.getLoc();
396  scf::WhileOp whileOp =
397  scf::WhileOp::create(builder, loc, TypeRange{i.getType()}, ValueRange{i});
398 
399  Block *before =
400  builder.createBlock(&whileOp.getBefore(), {}, {i.getType()}, {loc});
401  builder.setInsertionPointToEnd(before);
402  SmallVector<Value> compareOperands;
403  if (step > 0) {
404  compareOperands.push_back(before->getArgument(0));
405  compareOperands.push_back(p);
406  } else {
407  assert(step < 0);
408  compareOperands.push_back(p);
409  compareOperands.push_back(before->getArgument(0));
410  }
411  compareOperands.append(xs.begin(), xs.end());
412  Value cond = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
413  scf::ConditionOp::create(builder, loc, cond, before->getArguments());
414 
415  Block *after =
416  builder.createBlock(&whileOp.getAfter(), {}, {i.getType()}, {loc});
417  builder.setInsertionPointToEnd(after);
418  Value cs = constantIndex(builder, loc, step);
419  i = arith::AddIOp::create(builder, loc, after->getArgument(0), cs);
420  scf::YieldOp::create(builder, loc, ValueRange{i});
421  i = whileOp.getResult(0);
422 
423  builder.setInsertionPointAfter(whileOp);
424  compareOperands[0] = i;
425  compareOperands[1] = p;
426  Value compareEq =
427  createInlinedEqCompare(builder, loc, compareOperands, xPerm, ny);
428 
429  return std::make_pair(whileOp.getResult(0), compareEq);
430 }
431 
432 /// Creates and returns an IfOp to compare two elements and swap the elements
433 /// if compareFunc(data[b], data[a]) returns true. The new insertion point is
434 /// right after the swap instructions.
435 static scf::IfOp createCompareThenSwap(OpBuilder &builder, Location loc,
436  AffineMap xPerm, uint64_t ny,
437  SmallVectorImpl<Value> &swapOperands,
438  SmallVectorImpl<Value> &compareOperands,
439  Value a, Value b) {
440  // Compare(data[b], data[a]).
441  compareOperands[0] = b;
442  compareOperands[1] = a;
443  Value cond = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
444  scf::IfOp ifOp = scf::IfOp::create(builder, loc, cond, /*else=*/false);
445  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
446  swapOperands[0] = b;
447  swapOperands[1] = a;
448  createSwap(builder, loc, swapOperands, xPerm, ny);
449  return ifOp;
450 }
451 
452 /// Creates code to insert the 3rd element to a list of two sorted elements.
453 static void createInsert3rd(OpBuilder &builder, Location loc, AffineMap xPerm,
454  uint64_t ny, SmallVectorImpl<Value> &swapOperands,
455  SmallVectorImpl<Value> &compareOperands, Value v0,
456  Value v1, Value v2) {
457  scf::IfOp ifOp = createCompareThenSwap(builder, loc, xPerm, ny, swapOperands,
458  compareOperands, v1, v2);
459  createCompareThenSwap(builder, loc, xPerm, ny, swapOperands, compareOperands,
460  v0, v1);
461  builder.setInsertionPointAfter(ifOp);
462 }
463 
464 /// Creates code to sort 3 elements.
465 static void createSort3(OpBuilder &builder, Location loc, AffineMap xPerm,
466  uint64_t ny, SmallVectorImpl<Value> &swapOperands,
467  SmallVectorImpl<Value> &compareOperands, Value v0,
468  Value v1, Value v2) {
469  // Sort the first 2 elements.
470  scf::IfOp ifOp1 = createCompareThenSwap(builder, loc, xPerm, ny, swapOperands,
471  compareOperands, v0, v1);
472  builder.setInsertionPointAfter(ifOp1);
473 
474  // Insert the 3th element.
475  createInsert3rd(builder, loc, xPerm, ny, swapOperands, compareOperands, v0,
476  v1, v2);
477 }
478 
479 /// Creates code to sort 5 elements.
480 static void createSort5(OpBuilder &builder, Location loc, AffineMap xPerm,
481  uint64_t ny, SmallVectorImpl<Value> &swapOperands,
482  SmallVectorImpl<Value> &compareOperands, Value v0,
483  Value v1, Value v2, Value v3, Value v4) {
484  // Sort the first 3 elements.
485  createSort3(builder, loc, xPerm, ny, swapOperands, compareOperands, v0, v1,
486  v2);
487 
488  auto insert4th = [&]() {
489  scf::IfOp ifOp = createCompareThenSwap(
490  builder, loc, xPerm, ny, swapOperands, compareOperands, v2, v3);
491  createInsert3rd(builder, loc, xPerm, ny, swapOperands, compareOperands, v0,
492  v1, v2);
493  builder.setInsertionPointAfter(ifOp);
494  };
495 
496  // Insert the 4th element.
497  insert4th();
498 
499  // Insert the 5th element.
500  scf::IfOp ifOp = createCompareThenSwap(builder, loc, xPerm, ny, swapOperands,
501  compareOperands, v3, v4);
502  insert4th();
503  builder.setInsertionPointAfter(ifOp);
504 }
505 
506 /// Creates a code block to swap the values in indices lo, mi, and hi so that
507 /// data[lo], data[mi] and data[hi] are sorted in non-decreasing values. When
508 /// the number of values in range [lo, hi) is more than a threshold, we also
509 /// include the middle of [lo, mi) and [mi, hi) and sort a total of five values.
510 static void createChoosePivot(OpBuilder &builder, ModuleOp module,
511  func::FuncOp func, AffineMap xPerm, uint64_t ny,
512  Value lo, Value hi, Value mi, ValueRange args) {
513  SmallVector<Value> compareOperands{mi, lo};
514  constexpr uint64_t numXBuffers = 1;
515  compareOperands.append(args.begin() + xStartIdx,
516  args.begin() + xStartIdx + numXBuffers);
517  SmallVector<Value> swapOperands{mi, lo};
518  swapOperands.append(args.begin() + xStartIdx, args.end());
519  Location loc = func.getLoc();
520  Value c1 = constantIndex(builder, loc, 1);
521  Value hiP1 = arith::AddIOp::create(builder, loc, hi, c1);
522  Value len = arith::SubIOp::create(builder, loc, hiP1, lo);
523  Value lenThreshold = constantIndex(builder, loc, 1000);
524  Value lenCond = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult,
525  len, lenThreshold);
526  scf::IfOp lenIf = scf::IfOp::create(builder, loc, lenCond, /*else=*/true);
527 
528  // When len < 1000, choose pivot from median of 3 values.
529  builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
530  createSort3(builder, loc, xPerm, ny, swapOperands, compareOperands, lo, mi,
531  hi);
532 
533  // When len >= 1000, choose pivot from median of 5 values.
534  builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
535  Value miP1 = arith::AddIOp::create(builder, loc, hi, c1);
536  Value a = arith::AddIOp::create(builder, loc, lo, miP1);
537  // Value a is the middle between [loc, mi].
538  a = arith::ShRUIOp::create(builder, loc, a, c1);
539  Value b = arith::AddIOp::create(builder, loc, mi, hiP1);
540  // Value b is the middle between [mi, hi].
541  b = arith::ShRUIOp::create(builder, loc, b, c1);
542  createSort5(builder, loc, xPerm, ny, swapOperands, compareOperands, lo, a, mi,
543  b, hi);
544 
545  builder.setInsertionPointAfter(lenIf);
546 }
547 
548 /// Creates a function to perform quick sort partition on the values in the
549 /// range of index [lo, hi), assuming lo < hi.
550 //
551 // The generated IR corresponds to this C like algorithm:
552 // int partition(lo, hi, xs) {
553 // p = (lo+hi)/2 // pivot index
554 // i = lo
555 // j = hi-1
556 // while (true) do {
557 // while (xs[i] < xs[p]) i ++;
558 // i_eq = (xs[i] == xs[p]);
559 // while (xs[j] > xs[p]) j --;
560 // j_eq = (xs[j] == xs[p]);
561 //
562 // if (i >= j) return j + 1;
563 //
564 // if (i < j) {
565 // swap(xs[i], xs[j])
566 // if (i == p) {
567 // p = j;
568 // } else if (j == p) {
569 // p = i;
570 // }
571 // if (i_eq && j_eq) {
572 // ++i;
573 // --j;
574 // }
575 // }
576 // }
577 // }
578 static void createPartitionFunc(OpBuilder &builder, ModuleOp module,
579  func::FuncOp func, AffineMap xPerm, uint64_t ny,
580  uint32_t nTrailingP = 0) {
581  // Quick sort partition doesn't use trailing parameters.
582  (void)nTrailingP;
583  assert(nTrailingP == 0);
584  OpBuilder::InsertionGuard insertionGuard(builder);
585 
586  Block *entryBlock = func.addEntryBlock();
587  builder.setInsertionPointToStart(entryBlock);
588 
589  Location loc = func.getLoc();
590  ValueRange args = entryBlock->getArguments();
591  Value lo = args[loIdx];
592  Value hi = args[hiIdx];
593  Value sum = arith::AddIOp::create(builder, loc, lo, hi);
594  Value c1 = constantIndex(builder, loc, 1);
595  Value p = arith::ShRUIOp::create(builder, loc, sum, c1);
596 
597  Value i = lo;
598  Value j = arith::SubIOp::create(builder, loc, hi, c1);
599  createChoosePivot(builder, module, func, xPerm, ny, i, j, p, args);
600  Value trueVal = constantI1(builder, loc, true); // The value for while (true)
601  SmallVector<Value, 4> operands{i, j, p, trueVal}; // Exactly four values.
602  SmallVector<Type, 4> types{i.getType(), j.getType(), p.getType(),
603  trueVal.getType()};
604  scf::WhileOp whileOp = scf::WhileOp::create(builder, loc, types, operands);
605 
606  // The before-region of the WhileOp.
607  Block *before = builder.createBlock(&whileOp.getBefore(), {}, types,
608  {loc, loc, loc, loc});
609  builder.setInsertionPointToEnd(before);
610  scf::ConditionOp::create(builder, loc, before->getArgument(3),
611  before->getArguments());
612 
613  // The after-region of the WhileOp.
614  Block *after =
615  builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc, loc, loc});
616  builder.setInsertionPointToEnd(after);
617  i = after->getArgument(0);
618  j = after->getArgument(1);
619  p = after->getArgument(2);
620 
621  constexpr uint64_t numXBuffers = 1;
622  auto [iresult, iCompareEq] =
623  createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
624  i, p, xPerm, ny, 1);
625  i = iresult;
626  auto [jresult, jCompareEq] =
627  createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
628  j, p, xPerm, ny, -1);
629  j = jresult;
630 
631  // If i < j:
632  Value cond =
633  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, i, j);
634  scf::IfOp ifOp = scf::IfOp::create(builder, loc, types, cond, /*else=*/true);
635  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
636  SmallVector<Value> swapOperands{i, j};
637  swapOperands.append(args.begin() + xStartIdx, args.end());
638  createSwap(builder, loc, swapOperands, xPerm, ny);
639  // If the pivot is moved, update p with the new pivot.
640  Value icond =
641  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::eq, i, p);
642  scf::IfOp ifOpI = scf::IfOp::create(builder, loc, TypeRange{p.getType()},
643  icond, /*else=*/true);
644  builder.setInsertionPointToStart(&ifOpI.getThenRegion().front());
645  scf::YieldOp::create(builder, loc, ValueRange{j});
646  builder.setInsertionPointToStart(&ifOpI.getElseRegion().front());
647  Value jcond =
648  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::eq, j, p);
649  scf::IfOp ifOpJ = scf::IfOp::create(builder, loc, TypeRange{p.getType()},
650  jcond, /*else=*/true);
651  builder.setInsertionPointToStart(&ifOpJ.getThenRegion().front());
652  scf::YieldOp::create(builder, loc, ValueRange{i});
653  builder.setInsertionPointToStart(&ifOpJ.getElseRegion().front());
654  scf::YieldOp::create(builder, loc, ValueRange{p});
655  builder.setInsertionPointAfter(ifOpJ);
656  scf::YieldOp::create(builder, loc, ifOpJ.getResults());
657  builder.setInsertionPointAfter(ifOpI);
658  Value compareEqIJ =
659  arith::AndIOp::create(builder, loc, iCompareEq, jCompareEq);
660  scf::IfOp ifOp2 =
661  scf::IfOp::create(builder, loc, TypeRange{i.getType(), j.getType()},
662  compareEqIJ, /*else=*/true);
663  builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
664  Value i2 = arith::AddIOp::create(builder, loc, i, c1);
665  Value j2 = arith::SubIOp::create(builder, loc, j, c1);
666  scf::YieldOp::create(builder, loc, ValueRange{i2, j2});
667  builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
668  scf::YieldOp::create(builder, loc, ValueRange{i, j});
669  builder.setInsertionPointAfter(ifOp2);
670  scf::YieldOp::create(builder, loc,
671  ValueRange{ifOp2.getResult(0), ifOp2.getResult(1),
672  ifOpI.getResult(0),
673  /*cont=*/constantI1(builder, loc, true)});
674 
675  // False branch for if i < j (i.e., i >= j):
676  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
677  p = arith::AddIOp::create(builder, loc, j,
678  constantOne(builder, loc, j.getType()));
679  scf::YieldOp::create(
680  builder, loc,
681  ValueRange{i, j, p, /*cont=*/constantI1(builder, loc, false)});
682 
683  // Return for the whileOp.
684  builder.setInsertionPointAfter(ifOp);
685  scf::YieldOp::create(builder, loc, ifOp.getResults());
686 
687  // Return for the function.
688  builder.setInsertionPointAfter(whileOp);
689  func::ReturnOp::create(builder, loc, whileOp.getResult(2));
690 }
691 
692 /// Computes (n-2)/n, assuming n has index type.
694  Value n) {
695  Value i2 = constantIndex(builder, loc, 2);
696  Value res = arith::SubIOp::create(builder, loc, n, i2);
697  Value i1 = constantIndex(builder, loc, 1);
698  return arith::ShRUIOp::create(builder, loc, res, i1);
699 }
700 
701 /// Creates a function to heapify the subtree with root `start` within the full
702 /// binary tree in the range of index [first, first + n).
703 //
704 // The generated IR corresponds to this C like algorithm:
705 // void shiftDown(first, start, n, data) {
706 // if (n >= 2) {
707 // child = start - first
708 // if ((n-2)/2 >= child) {
709 // // Left child exists.
710 // child = child * 2 + 1 // Initialize the bigger child to left child.
711 // childIndex = child + first
712 // if (child+1 < n && data[childIndex] < data[childIndex+1])
713 // // Right child exits and is bigger.
714 // childIndex++; child++;
715 // // Shift data[start] down to where it belongs in the subtree.
716 // while (data[start] < data[childIndex) {
717 // swap(data[start], data[childIndex])
718 // start = childIndex
719 // if ((n - 2)/2 >= child) {
720 // // Left child exists.
721 // child = 2*child + 1
722 // childIndex = child + 1
723 // if (child + 1) < n && data[childIndex] < data[childIndex+1]
724 // childIndex++; child++;
725 // }
726 // }
727 // }
728 // }
729 // }
730 //
731 static void createShiftDownFunc(OpBuilder &builder, ModuleOp module,
732  func::FuncOp func, AffineMap xPerm, uint64_t ny,
733  uint32_t nTrailingP) {
734  // The value n is passed in as a trailing parameter.
735  assert(nTrailingP == 1);
736  OpBuilder::InsertionGuard insertionGuard(builder);
737  Block *entryBlock = func.addEntryBlock();
738  builder.setInsertionPointToStart(entryBlock);
739 
740  Location loc = func.getLoc();
741  Value n = entryBlock->getArguments().back();
742  ValueRange args = entryBlock->getArguments().drop_back();
743  Value first = args[loIdx];
744  Value start = args[hiIdx];
745 
746  // If (n >= 2).
747  Value c2 = constantIndex(builder, loc, 2);
748  Value condN =
749  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::uge, n, c2);
750  scf::IfOp ifN = scf::IfOp::create(builder, loc, condN, /*else=*/false);
751  builder.setInsertionPointToStart(&ifN.getThenRegion().front());
752  Value child = arith::SubIOp::create(builder, loc, start, first);
753 
754  // If ((n-2)/2 >= child).
755  Value t = createSubTwoDividedByTwo(builder, loc, n);
756  Value condNc =
757  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::uge, t, child);
758  scf::IfOp ifNc = scf::IfOp::create(builder, loc, condNc, /*else=*/false);
759 
760  builder.setInsertionPointToStart(&ifNc.getThenRegion().front());
761  Value c1 = constantIndex(builder, loc, 1);
762  SmallVector<Value> compareOperands{start, start};
763  constexpr uint64_t numXBuffers = 1;
764  compareOperands.append(args.begin() + xStartIdx,
765  args.begin() + xStartIdx + numXBuffers);
766 
767  // Generate code to inspect the children of 'r' and return the larger child
768  // as follows:
769  // child = r * 2 + 1 // Left child.
770  // childIndex = child + first
771  // if (child+1 < n && data[childIndex] < data[childIndex+1])
772  // childIndex ++; child ++ // Right child is bigger.
773  auto getLargerChild = [&](Value r) -> std::pair<Value, Value> {
774  Value lChild = arith::ShLIOp::create(builder, loc, r, c1);
775  lChild = arith::AddIOp::create(builder, loc, lChild, c1);
776  Value lChildIdx = arith::AddIOp::create(builder, loc, lChild, first);
777  Value rChild = arith::AddIOp::create(builder, loc, lChild, c1);
778  Value cond1 = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult,
779  rChild, n);
780  SmallVector<Type, 2> ifTypes(2, r.getType());
781  scf::IfOp if1 =
782  scf::IfOp::create(builder, loc, ifTypes, cond1, /*else=*/true);
783  builder.setInsertionPointToStart(&if1.getThenRegion().front());
784  Value rChildIdx = arith::AddIOp::create(builder, loc, rChild, first);
785  // Compare data[left] < data[right].
786  compareOperands[0] = lChildIdx;
787  compareOperands[1] = rChildIdx;
788  Value cond2 =
789  createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
790  scf::IfOp if2 =
791  scf::IfOp::create(builder, loc, ifTypes, cond2, /*else=*/true);
792  builder.setInsertionPointToStart(&if2.getThenRegion().front());
793  scf::YieldOp::create(builder, loc, ValueRange{rChild, rChildIdx});
794  builder.setInsertionPointToStart(&if2.getElseRegion().front());
795  scf::YieldOp::create(builder, loc, ValueRange{lChild, lChildIdx});
796  builder.setInsertionPointAfter(if2);
797  scf::YieldOp::create(builder, loc, if2.getResults());
798  builder.setInsertionPointToStart(&if1.getElseRegion().front());
799  scf::YieldOp::create(builder, loc, ValueRange{lChild, lChildIdx});
800  builder.setInsertionPointAfter(if1);
801  return std::make_pair(if1.getResult(0), if1.getResult(1));
802  };
803 
804  Value childIdx;
805  std::tie(child, childIdx) = getLargerChild(child);
806 
807  // While (data[start] < data[childIndex]).
808  SmallVector<Type, 3> types(3, child.getType());
809  scf::WhileOp whileOp = scf::WhileOp::create(
810  builder, loc, types, SmallVector<Value, 2>{start, child, childIdx});
811 
812  // The before-region of the WhileOp.
813  SmallVector<Location, 3> locs(3, loc);
814  Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
815  builder.setInsertionPointToEnd(before);
816  start = before->getArgument(0);
817  childIdx = before->getArgument(2);
818  compareOperands[0] = start;
819  compareOperands[1] = childIdx;
820  Value cond = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
821  scf::ConditionOp::create(builder, loc, cond, before->getArguments());
822 
823  // The after-region of the WhileOp.
824  Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
825  start = after->getArgument(0);
826  child = after->getArgument(1);
827  childIdx = after->getArgument(2);
828  SmallVector<Value> swapOperands{start, childIdx};
829  swapOperands.append(args.begin() + xStartIdx, args.end());
830  createSwap(builder, loc, swapOperands, xPerm, ny);
831  start = childIdx;
832  Value cond2 =
833  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::uge, t, child);
834  scf::IfOp if2 = scf::IfOp::create(builder, loc,
835  TypeRange{child.getType(), child.getType()},
836  cond2, /*else=*/true);
837  builder.setInsertionPointToStart(&if2.getThenRegion().front());
838  auto [newChild, newChildIdx] = getLargerChild(child);
839  scf::YieldOp::create(builder, loc, ValueRange{newChild, newChildIdx});
840  builder.setInsertionPointToStart(&if2.getElseRegion().front());
841  scf::YieldOp::create(builder, loc, ValueRange{child, childIdx});
842  builder.setInsertionPointAfter(if2);
843  scf::YieldOp::create(builder, loc,
844  ValueRange{start, if2.getResult(0), if2.getResult(1)});
845 
846  builder.setInsertionPointAfter(ifN);
847  func::ReturnOp::create(builder, loc);
848 }
849 
850 /// Creates a function to perform heap sort on the values in the range of index
851 /// [lo, hi) with the assumption hi - lo >= 2.
852 //
853 // The generate IR corresponds to this C like algorithm:
854 // void heapSort(lo, hi, data) {
855 // n = hi - lo
856 // for i = (n-2)/2 downto 0
857 // shiftDown(lo, lo+i, n)
858 //
859 // for l = n downto 2
860 // swap(lo, lo+l-1)
861 // shiftdown(lo, lo, l-1)
862 // }
863 static void createHeapSortFunc(OpBuilder &builder, ModuleOp module,
864  func::FuncOp func, AffineMap xPerm, uint64_t ny,
865  uint32_t nTrailingP) {
866  // Heap sort function doesn't have trailing parameters.
867  (void)nTrailingP;
868  assert(nTrailingP == 0);
869  OpBuilder::InsertionGuard insertionGuard(builder);
870  Block *entryBlock = func.addEntryBlock();
871  builder.setInsertionPointToStart(entryBlock);
872 
873  Location loc = func.getLoc();
874  ValueRange args = entryBlock->getArguments();
875  Value lo = args[loIdx];
876  Value hi = args[hiIdx];
877  Value n = arith::SubIOp::create(builder, loc, hi, lo);
878 
879  // For i = (n-2)/2 downto 0.
880  Value c0 = constantIndex(builder, loc, 0);
881  Value c1 = constantIndex(builder, loc, 1);
882  Value s = createSubTwoDividedByTwo(builder, loc, n);
883  Value up = arith::AddIOp::create(builder, loc, s, c1);
884  scf::ForOp forI = scf::ForOp::create(builder, loc, c0, up, c1);
885  builder.setInsertionPointToStart(forI.getBody());
886  Value i = arith::SubIOp::create(builder, loc, s, forI.getInductionVar());
887  Value lopi = arith::AddIOp::create(builder, loc, lo, i);
888  SmallVector<Value> shiftDownOperands = {lo, lopi};
889  shiftDownOperands.append(args.begin() + xStartIdx, args.end());
890  shiftDownOperands.push_back(n);
892  builder, func, TypeRange(), kShiftDownFuncNamePrefix, xPerm, ny,
893  shiftDownOperands, createShiftDownFunc, /*nTrailingP=*/1);
894  func::CallOp::create(builder, loc, shiftDownFunc, TypeRange(),
895  shiftDownOperands);
896 
897  builder.setInsertionPointAfter(forI);
898  // For l = n downto 2.
899  up = arith::SubIOp::create(builder, loc, n, c1);
900  scf::ForOp forL = scf::ForOp::create(builder, loc, c0, up, c1);
901  builder.setInsertionPointToStart(forL.getBody());
902  Value l = arith::SubIOp::create(builder, loc, n, forL.getInductionVar());
903  Value loplm1 = arith::AddIOp::create(builder, loc, lo, l);
904  loplm1 = arith::SubIOp::create(builder, loc, loplm1, c1);
905  SmallVector<Value> swapOperands{lo, loplm1};
906  swapOperands.append(args.begin() + xStartIdx, args.end());
907  createSwap(builder, loc, swapOperands, xPerm, ny);
908  shiftDownOperands[1] = lo;
909  shiftDownOperands[shiftDownOperands.size() - 1] =
910  arith::SubIOp::create(builder, loc, l, c1);
911  func::CallOp::create(builder, loc, shiftDownFunc, TypeRange(),
912  shiftDownOperands);
913 
914  builder.setInsertionPointAfter(forL);
915  func::ReturnOp::create(builder, loc);
916 }
917 
918 /// A helper for generating code to perform quick sort. It partitions [lo, hi),
919 /// recursively calls quick sort to process the smaller partition and returns
920 /// the bigger partition to be processed by the enclosed while-loop.
921 static std::pair<Value, Value>
922 createQuickSort(OpBuilder &builder, ModuleOp module, func::FuncOp func,
923  ValueRange args, AffineMap xPerm, uint64_t ny,
924  uint32_t nTrailingP) {
925  MLIRContext *context = module.getContext();
926  Location loc = func.getLoc();
927  Value lo = args[loIdx];
928  Value hi = args[hiIdx];
929  SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
930 
932  builder, func, {IndexType::get(context)}, kPartitionFuncNamePrefix, xPerm,
933  ny, args.drop_back(nTrailingP), createPartitionFunc);
934  Value p = func::CallOp::create(builder, loc, partitionFunc,
935  TypeRange{IndexType::get(context)},
936  args.drop_back(nTrailingP))
937  .getResult(0);
938 
939  Value lenLow = arith::SubIOp::create(builder, loc, p, lo);
940  Value lenHigh = arith::SubIOp::create(builder, loc, hi, p);
941  // Partition already sorts array with len <= 2
942  Value c2 = constantIndex(builder, loc, 2);
943  Value len = arith::SubIOp::create(builder, loc, hi, lo);
944  Value lenGtTwo =
945  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ugt, len, c2);
946  scf::IfOp ifLenGtTwo =
947  scf::IfOp::create(builder, loc, types, lenGtTwo, /*else=*/true);
948  builder.setInsertionPointToStart(&ifLenGtTwo.getElseRegion().front());
949  // Returns an empty range to mark the entire region is fully sorted.
950  scf::YieldOp::create(builder, loc, ValueRange{lo, lo});
951 
952  // Else len > 2, need recursion.
953  builder.setInsertionPointToStart(&ifLenGtTwo.getThenRegion().front());
954  Value cond = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ule,
955  lenLow, lenHigh);
956 
957  Value c0 = constantIndex(builder, loc, 0);
958  scf::IfOp ifOp = scf::IfOp::create(builder, loc, types, cond, /*else=*/true);
959 
960  auto mayRecursion = [&](Value low, Value high, Value len) {
961  Value cond =
962  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ne, len, c0);
963  scf::IfOp ifOp = scf::IfOp::create(builder, loc, cond, /*else=*/false);
964  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
965  SmallVector<Value> operands{low, high};
966  operands.append(args.begin() + xStartIdx, args.end());
967  func::CallOp::create(builder, loc, func, operands);
968  builder.setInsertionPointAfter(ifOp);
969  };
970 
971  // Recursively call quickSort to process the smaller partition and return
972  // the bigger partition to be processed by the enclosed while-loop.
973  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
974  mayRecursion(lo, p, lenLow);
975  scf::YieldOp::create(builder, loc, ValueRange{p, hi});
976 
977  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
978  mayRecursion(p, hi, lenHigh);
979  scf::YieldOp::create(builder, loc, ValueRange{lo, p});
980 
981  builder.setInsertionPointAfter(ifOp);
982  scf::YieldOp::create(builder, loc, ifOp.getResults());
983 
984  builder.setInsertionPointAfter(ifLenGtTwo);
985  return std::make_pair(ifLenGtTwo.getResult(0), ifLenGtTwo.getResult(1));
986 }
987 
988 /// Creates a function to perform insertion sort on the values in the range of
989 /// index [lo, hi).
990 //
991 // The generate IR corresponds to this C like algorithm:
992 // void insertionSort(lo, hi, data) {
993 // for (i = lo+1; i < hi; i++) {
994 // d = data[i];
995 // p = binarySearch(lo, i-1, data)
996 // for (j = 0; j > i - p; j++)
997 // data[i-j] = data[i-j-1]
998 // data[p] = d
999 // }
1000 // }
1001 static void createSortStableFunc(OpBuilder &builder, ModuleOp module,
1002  func::FuncOp func, AffineMap xPerm,
1003  uint64_t ny, uint32_t nTrailingP) {
1004  // Stable sort function doesn't use trailing parameters.
1005  (void)nTrailingP;
1006  assert(nTrailingP == 0);
1007  OpBuilder::InsertionGuard insertionGuard(builder);
1008  Block *entryBlock = func.addEntryBlock();
1009  builder.setInsertionPointToStart(entryBlock);
1010 
1011  MLIRContext *context = module.getContext();
1012  Location loc = func.getLoc();
1013  ValueRange args = entryBlock->getArguments();
1014  Value c1 = constantIndex(builder, loc, 1);
1015  Value lo = args[loIdx];
1016  Value hi = args[hiIdx];
1017  Value lop1 = arith::AddIOp::create(builder, loc, lo, c1);
1018 
1019  // Start the outer for-stmt with induction variable i.
1020  scf::ForOp forOpI = scf::ForOp::create(builder, loc, lop1, hi, c1);
1021  builder.setInsertionPointToStart(forOpI.getBody());
1022  Value i = forOpI.getInductionVar();
1023 
1024  // Binary search to find the insertion point p.
1025  SmallVector<Value> operands{lo, i};
1026  operands.append(args.begin() + xStartIdx, args.end());
1028  builder, func, {IndexType::get(context)}, kBinarySearchFuncNamePrefix,
1029  xPerm, ny, operands, createBinarySearchFunc);
1030  Value p = func::CallOp::create(builder, loc, searchFunc,
1031  TypeRange{c1.getType()}, operands)
1032  .getResult(0);
1033 
1034  // Move the value at data[i] to a temporary location.
1035  operands[0] = operands[1] = i;
1038  builder, loc, operands, xPerm, ny,
1039  [&](uint64_t unused, Value i, Value unused2, Value buffer) {
1040  d.push_back(memref::LoadOp::create(builder, loc, buffer, i));
1041  });
1042 
1043  // Start the inner for-stmt with induction variable j, for moving data[p..i)
1044  // to data[p+1..i+1).
1045  Value imp = arith::SubIOp::create(builder, loc, i, p);
1046  Value c0 = constantIndex(builder, loc, 0);
1047  scf::ForOp forOpJ = scf::ForOp::create(builder, loc, c0, imp, c1);
1048  builder.setInsertionPointToStart(forOpJ.getBody());
1049  Value j = forOpJ.getInductionVar();
1050  Value imj = arith::SubIOp::create(builder, loc, i, j);
1051  operands[1] = imj;
1052  operands[0] = arith::SubIOp::create(builder, loc, imj, c1);
1054  builder, loc, operands, xPerm, ny,
1055  [&](uint64_t unused, Value imjm1, Value imj, Value buffer) {
1056  Value t = memref::LoadOp::create(builder, loc, buffer, imjm1);
1057  memref::StoreOp::create(builder, loc, t, buffer, imj);
1058  });
1059 
1060  // Store the value at data[i] to data[p].
1061  builder.setInsertionPointAfter(forOpJ);
1062  operands[0] = operands[1] = p;
1064  builder, loc, operands, xPerm, ny,
1065  [&](uint64_t k, Value p, Value usused, Value buffer) {
1066  memref::StoreOp::create(builder, loc, d[k], buffer, p);
1067  });
1068 
1069  builder.setInsertionPointAfter(forOpI);
1070  func::ReturnOp::create(builder, loc);
1071 }
1072 
1073 /// Creates a function to perform quick sort or a hybrid quick sort on the
1074 /// values in the range of index [lo, hi).
1075 //
1076 //
1077 // When nTrailingP == 0, the generated IR corresponds to this C like algorithm:
1078 // void quickSort(lo, hi, data) {
1079 // while (lo + 1 < hi) {
1080 // p = partition(low, high, data);
1081 // if (len(lo, p) < len(p+1, hi)) {
1082 // quickSort(lo, p, data);
1083 // lo = p+1;
1084 // } else {
1085 // quickSort(p + 1, hi, data);
1086 // hi = p;
1087 // }
1088 // }
1089 // }
1090 //
1091 // When nTrailingP == 1, the generated IR corresponds to this C like algorithm:
1092 // void hybridQuickSort(lo, hi, data, depthLimit) {
1093 // while (lo + 1 < hi) {
1094 // len = hi - lo;
1095 // if (len <= limit) {
1096 // insertionSort(lo, hi, data);
1097 // } else {
1098 // depthLimit --;
1099 // if (depthLimit <= 0) {
1100 // heapSort(lo, hi, data);
1101 // } else {
1102 // p = partition(low, high, data);
1103 // if (len(lo, p) < len(p+1, hi)) {
1104 // quickSort(lo, p, data, depthLimit);
1105 // lo = p+1;
1106 // } else {
1107 // quickSort(p + 1, hi, data, depthLimit);
1108 // hi = p;
1109 // }
1110 // }
1111 // }
1112 // }
1113 // }
1114 //
1115 static void createQuickSortFunc(OpBuilder &builder, ModuleOp module,
1116  func::FuncOp func, AffineMap xPerm, uint64_t ny,
1117  uint32_t nTrailingP) {
1118  assert(nTrailingP == 1 || nTrailingP == 0);
1119  bool isHybrid = (nTrailingP == 1);
1120  OpBuilder::InsertionGuard insertionGuard(builder);
1121  Block *entryBlock = func.addEntryBlock();
1122  builder.setInsertionPointToStart(entryBlock);
1123 
1124  Location loc = func.getLoc();
1125  SmallVector<Value> args;
1126  args.append(entryBlock->getArguments().begin(),
1127  entryBlock->getArguments().end());
1128  Value lo = args[loIdx];
1129  Value hi = args[hiIdx];
1130  SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
1131  scf::WhileOp whileOp =
1132  scf::WhileOp::create(builder, loc, types, SmallVector<Value, 2>{lo, hi});
1133 
1134  // The before-region of the WhileOp.
1135  Block *before =
1136  builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
1137  builder.setInsertionPointToEnd(before);
1138  lo = before->getArgument(0);
1139  hi = before->getArgument(1);
1140  Value loP1 =
1141  arith::AddIOp::create(builder, loc, lo, constantIndex(builder, loc, 1));
1142  Value needSort =
1143  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, loP1, hi);
1144  scf::ConditionOp::create(builder, loc, needSort, before->getArguments());
1145 
1146  // The after-region of the WhileOp.
1147  Block *after =
1148  builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
1149  builder.setInsertionPointToEnd(after);
1150  lo = after->getArgument(0);
1151  hi = after->getArgument(1);
1152  args[0] = lo;
1153  args[1] = hi;
1154 
1155  if (isHybrid) {
1156  Value len = arith::SubIOp::create(builder, loc, hi, lo);
1157  Value lenLimit = constantIndex(builder, loc, 30);
1158  Value lenCond = arith::CmpIOp::create(
1159  builder, loc, arith::CmpIPredicate::ule, len, lenLimit);
1160  scf::IfOp lenIf =
1161  scf::IfOp::create(builder, loc, types, lenCond, /*else=*/true);
1162 
1163  // When len <= limit.
1164  builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
1165  FlatSymbolRefAttr insertionSortFunc = getMangledSortHelperFunc(
1166  builder, func, TypeRange(), kSortStableFuncNamePrefix, xPerm, ny,
1167  ValueRange(args).drop_back(nTrailingP), createSortStableFunc);
1168  func::CallOp::create(builder, loc, insertionSortFunc, TypeRange(),
1169  ValueRange(args).drop_back(nTrailingP));
1170  scf::YieldOp::create(builder, loc, ValueRange{lo, lo});
1171 
1172  // When len > limit.
1173  builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
1174  Value depthLimit = args.back();
1175  depthLimit = arith::SubIOp::create(builder, loc, depthLimit,
1176  constantI64(builder, loc, 1));
1177  Value depthCond =
1178  arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ule,
1179  depthLimit, constantI64(builder, loc, 0));
1180  scf::IfOp depthIf =
1181  scf::IfOp::create(builder, loc, types, depthCond, /*else=*/true);
1182 
1183  // When depth exceeds limit.
1184  builder.setInsertionPointToStart(&depthIf.getThenRegion().front());
1186  builder, func, TypeRange(), kHeapSortFuncNamePrefix, xPerm, ny,
1187  ValueRange(args).drop_back(nTrailingP), createHeapSortFunc);
1188  func::CallOp::create(builder, loc, heapSortFunc, TypeRange(),
1189  ValueRange(args).drop_back(nTrailingP));
1190  scf::YieldOp::create(builder, loc, ValueRange{lo, lo});
1191 
1192  // When depth doesn't exceed limit.
1193  builder.setInsertionPointToStart(&depthIf.getElseRegion().front());
1194  args.back() = depthLimit;
1195  std::tie(lo, hi) =
1196  createQuickSort(builder, module, func, args, xPerm, ny, nTrailingP);
1197  scf::YieldOp::create(builder, loc, ValueRange{lo, hi});
1198 
1199  builder.setInsertionPointAfter(depthIf);
1200  lo = depthIf.getResult(0);
1201  hi = depthIf.getResult(1);
1202  scf::YieldOp::create(builder, loc, ValueRange{lo, hi});
1203 
1204  builder.setInsertionPointAfter(lenIf);
1205  lo = lenIf.getResult(0);
1206  hi = lenIf.getResult(1);
1207  } else {
1208  std::tie(lo, hi) =
1209  createQuickSort(builder, module, func, args, xPerm, ny, nTrailingP);
1210  }
1211 
1212  // New [lo, hi) for the next while-loop iteration.
1213  scf::YieldOp::create(builder, loc, ValueRange{lo, hi});
1214 
1215  // After the while-loop.
1216  builder.setInsertionPointAfter(whileOp);
1217  func::ReturnOp::create(builder, loc);
1218 }
1219 
1220 /// Implements the rewriting for operator sort and sort_coo.
1221 template <typename OpTy>
1222 static LogicalResult matchAndRewriteSortOp(OpTy op, ValueRange xys,
1223  AffineMap xPerm, uint64_t ny,
1224  PatternRewriter &rewriter) {
1225  Location loc = op.getLoc();
1226  SmallVector<Value> operands{constantIndex(rewriter, loc, 0), op.getN()};
1227 
1228  // Convert `values` to have dynamic shape and append them to `operands`.
1229  for (Value v : xys) {
1230  auto mtp = getMemRefType(v);
1231  if (!mtp.isDynamicDim(0)) {
1232  auto newMtp =
1233  MemRefType::get({ShapedType::kDynamic}, mtp.getElementType());
1234  v = memref::CastOp::create(rewriter, loc, newMtp, v);
1235  }
1236  operands.push_back(v);
1237  }
1238 
1239  auto insertPoint = op->template getParentOfType<func::FuncOp>();
1240  if (!insertPoint)
1241  return failure();
1242 
1243  SmallString<32> funcName;
1244  FuncGeneratorType funcGenerator;
1245  uint32_t nTrailingP = 0;
1246  switch (op.getAlgorithm()) {
1247  case SparseTensorSortKind::HybridQuickSort: {
1248  funcName = kHybridQuickSortFuncNamePrefix;
1249  funcGenerator = createQuickSortFunc;
1250  nTrailingP = 1;
1251  // As a heuristics, set depthLimit = 2 * log2(n).
1252  Value lo = operands[loIdx];
1253  Value hi = operands[hiIdx];
1254  Value len = arith::IndexCastOp::create(
1255  rewriter, loc, rewriter.getI64Type(),
1256  arith::SubIOp::create(rewriter, loc, hi, lo));
1257  Value depthLimit = arith::SubIOp::create(
1258  rewriter, loc, constantI64(rewriter, loc, 64),
1259  math::CountLeadingZerosOp::create(rewriter, loc, len));
1260  operands.push_back(depthLimit);
1261  break;
1262  }
1263  case SparseTensorSortKind::QuickSort:
1264  funcName = kQuickSortFuncNamePrefix;
1265  funcGenerator = createQuickSortFunc;
1266  break;
1267  case SparseTensorSortKind::InsertionSortStable:
1268  funcName = kSortStableFuncNamePrefix;
1269  funcGenerator = createSortStableFunc;
1270  break;
1271  case SparseTensorSortKind::HeapSort:
1272  funcName = kHeapSortFuncNamePrefix;
1273  funcGenerator = createHeapSortFunc;
1274  break;
1275  }
1276 
1277  FlatSymbolRefAttr func =
1278  getMangledSortHelperFunc(rewriter, insertPoint, TypeRange(), funcName,
1279  xPerm, ny, operands, funcGenerator, nTrailingP);
1280  rewriter.replaceOpWithNewOp<func::CallOp>(op, func, TypeRange(), operands);
1281  return success();
1282 }
1283 
1284 //===---------------------------------------------------------------------===//
1285 // The actual sparse buffer rewriting rules.
1286 //===---------------------------------------------------------------------===//
1287 
1288 namespace {
1289 /// Sparse rewriting rule for the push_back operator.
1290 struct PushBackRewriter : OpRewritePattern<PushBackOp> {
1291 public:
1293  PushBackRewriter(MLIRContext *context, bool enableInit)
1294  : OpRewritePattern(context), enableBufferInitialization(enableInit) {}
1295  LogicalResult matchAndRewrite(PushBackOp op,
1296  PatternRewriter &rewriter) const override {
1297  // Rewrite push_back(buffer, value, n) to:
1298  // new_size = size(buffer) + n
1299  // if (new_size > capacity(buffer))
1300  // while new_size > new_capacity
1301  // new_capacity = new_capacity*2
1302  // new_buffer = realloc(buffer, new_capacity)
1303  // buffer = new_buffer
1304  // subBuffer = subviewof(buffer)
1305  // linalg.fill subBuffer value
1306  //
1307  // size(buffer) += n
1308  //
1309  // The capacity check is skipped when the attribute inbounds is presented.
1310  Location loc = op->getLoc();
1311  Value c0 = constantIndex(rewriter, loc, 0);
1312  Value buffer = op.getInBuffer();
1313  Value capacity = memref::DimOp::create(rewriter, loc, buffer, c0);
1314  Value size = op.getCurSize();
1315  Value value = op.getValue();
1316 
1317  Value n = op.getN() ? op.getN() : constantIndex(rewriter, loc, 1);
1318  Value newSize = arith::AddIOp::create(rewriter, loc, size, n);
1319  auto nValue = n.getDefiningOp<arith::ConstantIndexOp>();
1320  bool nIsOne = (nValue && nValue.value() == 1);
1321 
1322  if (!op.getInbounds()) {
1323  Value cond = arith::CmpIOp::create(
1324  rewriter, loc, arith::CmpIPredicate::ugt, newSize, capacity);
1325 
1326  Value c2 = constantIndex(rewriter, loc, 2);
1327  auto bufferType =
1328  MemRefType::get({ShapedType::kDynamic}, value.getType());
1329  scf::IfOp ifOp = scf::IfOp::create(rewriter, loc, bufferType, cond,
1330  /*else=*/true);
1331  // True branch.
1332  rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1333  if (nIsOne) {
1334  capacity = arith::MulIOp::create(rewriter, loc, capacity, c2);
1335  } else {
1336  // Use a do-while loop to calculate the new capacity as follows:
1337  // do { new_capacity *= 2 } while (size > new_capacity)
1338  scf::WhileOp whileOp =
1339  scf::WhileOp::create(rewriter, loc, capacity.getType(), capacity);
1340 
1341  // The before-region of the WhileOp.
1342  Block *before = rewriter.createBlock(&whileOp.getBefore(), {},
1343  {capacity.getType()}, {loc});
1344  rewriter.setInsertionPointToEnd(before);
1345 
1346  capacity =
1347  arith::MulIOp::create(rewriter, loc, before->getArgument(0), c2);
1348  cond = arith::CmpIOp::create(rewriter, loc, arith::CmpIPredicate::ugt,
1349  newSize, capacity);
1350  scf::ConditionOp::create(rewriter, loc, cond, ValueRange{capacity});
1351  // The after-region of the WhileOp.
1352  Block *after = rewriter.createBlock(&whileOp.getAfter(), {},
1353  {capacity.getType()}, {loc});
1354  rewriter.setInsertionPointToEnd(after);
1355  scf::YieldOp::create(rewriter, loc, after->getArguments());
1356 
1357  rewriter.setInsertionPointAfter(whileOp);
1358  capacity = whileOp.getResult(0);
1359  }
1360 
1361  Value newBuffer = memref::ReallocOp::create(rewriter, loc, bufferType,
1362  buffer, capacity);
1363  if (enableBufferInitialization) {
1364  Value fillSize =
1365  arith::SubIOp::create(rewriter, loc, capacity, newSize);
1366  Value fillValue = constantZero(rewriter, loc, value.getType());
1367  Value subBuffer = memref::SubViewOp::create(
1368  rewriter, loc, newBuffer, /*offset=*/ValueRange{newSize},
1369  /*size=*/ValueRange{fillSize},
1370  /*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
1371  linalg::FillOp::create(rewriter, loc, fillValue, subBuffer);
1372  }
1373  scf::YieldOp::create(rewriter, loc, newBuffer);
1374 
1375  // False branch.
1376  rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
1377  scf::YieldOp::create(rewriter, loc, buffer);
1378 
1379  // Prepare for adding the value to the end of the buffer.
1380  rewriter.setInsertionPointAfter(ifOp);
1381  buffer = ifOp.getResult(0);
1382  }
1383 
1384  // Add the value to the end of the buffer.
1385  if (nIsOne) {
1386  memref::StoreOp::create(rewriter, loc, value, buffer, size);
1387  } else {
1388  Value subBuffer = memref::SubViewOp::create(
1389  rewriter, loc, buffer, /*offset=*/ValueRange{size},
1390  /*size=*/ValueRange{n},
1391  /*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
1392  linalg::FillOp::create(rewriter, loc, value, subBuffer);
1393  }
1394 
1395  // Update the buffer size.
1396  rewriter.replaceOp(op, {buffer, newSize});
1397  return success();
1398  }
1399 
1400 private:
1401  bool enableBufferInitialization;
1402 };
1403 
1404 /// Sparse rewriting rule for the sort_coo operator.
1405 struct SortRewriter : public OpRewritePattern<SortOp> {
1406 public:
1408 
1409  LogicalResult matchAndRewrite(SortOp op,
1410  PatternRewriter &rewriter) const override {
1411  SmallVector<Value> xys;
1412  xys.push_back(op.getXy());
1413  xys.append(op.getYs().begin(), op.getYs().end());
1414 
1415  auto xPerm = op.getPermMap();
1416  uint64_t ny = 0;
1417  if (auto nyAttr = op.getNyAttr())
1418  ny = nyAttr.getInt();
1419 
1420  return matchAndRewriteSortOp(op, xys, xPerm, ny, rewriter);
1421  }
1422 };
1423 
1424 } // namespace
1425 
1426 //===---------------------------------------------------------------------===//
1427 // Methods that add patterns described in this file to a pattern list.
1428 //===---------------------------------------------------------------------===//
1429 
1431  bool enableBufferInitialization) {
1432  patterns.add<PushBackRewriter>(patterns.getContext(),
1433  enableBufferInitialization);
1434  patterns.add<SortRewriter>(patterns.getContext());
1435 }
static void createHeapSortFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP)
Creates a function to perform heap sort on the values in the range of index [lo, hi) with the assumpt...
static void forEachIJPairInXs(OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm, uint64_t ny, function_ref< void(uint64_t, Value, Value, Value)> bodyBuilder)
Creates a code block to process each pair of (xs[i], xs[j]) for sorting.
static Value createInlinedCompareImplementation(OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm, uint64_t ny, function_ref< Value(OpBuilder &, Location, Value, Value, Value, bool, bool)> compareBuilder)
Creates code to compare all the (xs[i], xs[j]) pairs.
static constexpr const char kQuickSortFuncNamePrefix[]
static constexpr uint64_t hiIdx
static constexpr const char kHeapSortFuncNamePrefix[]
static Value createEqCompare(OpBuilder &builder, Location loc, Value i, Value j, Value x, bool isFirstDim, bool isLastDim)
Generates code to compare whether x[i] is equal to x[j] and returns the result of the comparison.
static constexpr const char kHybridQuickSortFuncNamePrefix[]
static void createInsert3rd(OpBuilder &builder, Location loc, AffineMap xPerm, uint64_t ny, SmallVectorImpl< Value > &swapOperands, SmallVectorImpl< Value > &compareOperands, Value v0, Value v1, Value v2)
Creates code to insert the 3rd element to a list of two sorted elements.
static constexpr const char kSortStableFuncNamePrefix[]
static FlatSymbolRefAttr getMangledSortHelperFunc(OpBuilder &builder, func::FuncOp insertPoint, TypeRange resultTypes, StringRef namePrefix, AffineMap xPerm, uint64_t ny, ValueRange operands, FuncGeneratorType createFunc, uint32_t nTrailingP=0)
Looks up a function that is appropriate for the given operands being sorted, and creates such a funct...
static constexpr uint64_t loIdx
static void forEachIJPairInAllBuffers(OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm, uint64_t ny, function_ref< void(uint64_t, Value, Value, Value)> bodyBuilder)
Creates a code block to process each pair of (xys[i], xys[j]) for sorting.
static Value createInlinedLessThan(OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP=0)
Creates code to compare whether xs[i] is less than xs[j].
static LogicalResult matchAndRewriteSortOp(OpTy op, ValueRange xys, AffineMap xPerm, uint64_t ny, PatternRewriter &rewriter)
Implements the rewriting for operator sort and sort_coo.
static std::pair< Value, Value > createQuickSort(OpBuilder &builder, ModuleOp module, func::FuncOp func, ValueRange args, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP)
A helper for generating code to perform quick sort.
static void createPartitionFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP=0)
Creates a function to perform quick sort partition on the values in the range of index [lo,...
static void createSort5(OpBuilder &builder, Location loc, AffineMap xPerm, uint64_t ny, SmallVectorImpl< Value > &swapOperands, SmallVectorImpl< Value > &compareOperands, Value v0, Value v1, Value v2, Value v3, Value v4)
Creates code to sort 5 elements.
static Value createSubTwoDividedByTwo(OpBuilder &builder, Location loc, Value n)
Computes (n-2)/n, assuming n has index type.
static Value createInlinedEqCompare(OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP=0)
Creates code to compare whether xs[i] is equal to xs[j].
static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream, StringRef namePrefix, AffineMap xPerm, uint64_t ny, ValueRange operands)
Constructs a function name with this format to facilitate quick sort: <namePrefix><xPerm>_<x type>_<y...
static void createChoosePivot(OpBuilder &builder, ModuleOp module, func::FuncOp func, AffineMap xPerm, uint64_t ny, Value lo, Value hi, Value mi, ValueRange args)
Creates a code block to swap the values in indices lo, mi, and hi so that data[lo],...
static void createQuickSortFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP)
Creates a function to perform quick sort or a hybrid quick sort on the values in the range of index [...
static void createSort3(OpBuilder &builder, Location loc, AffineMap xPerm, uint64_t ny, SmallVectorImpl< Value > &swapOperands, SmallVectorImpl< Value > &compareOperands, Value v0, Value v1, Value v2)
Creates code to sort 3 elements.
static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP=0)
Creates a function to use a binary search to find the insertion point for inserting xs[hi] to the sor...
static constexpr const char kBinarySearchFuncNamePrefix[]
static constexpr const char kPartitionFuncNamePrefix[]
static constexpr uint64_t xStartIdx
static std::pair< Value, Value > createScanLoop(OpBuilder &builder, ModuleOp module, func::FuncOp func, ValueRange xs, Value i, Value p, AffineMap xPerm, uint64_t ny, int step)
Creates code to advance i in a loop based on xs[p] as follows: while (xs[i] < xs[p]) i += step (step ...
static constexpr const char kShiftDownFuncNamePrefix[]
static void createShiftDownFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP)
Creates a function to heapify the subtree with root start within the full binary tree in the range of...
static void createSortStableFunc(OpBuilder &builder, ModuleOp module, func::FuncOp func, AffineMap xPerm, uint64_t ny, uint32_t nTrailingP)
Creates a function to perform insertion sort on the values in the range of index [lo,...
static scf::IfOp createCompareThenSwap(OpBuilder &builder, Location loc, AffineMap xPerm, uint64_t ny, SmallVectorImpl< Value > &swapOperands, SmallVectorImpl< Value > &compareOperands, Value a, Value b)
Creates and returns an IfOp to compare two elements and swap the elements if compareFunc(data[b],...
static void createSwap(OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm, uint64_t ny)
Creates a code block for swapping the values in index i and j for all the buffers.
static Value createLessThanCompare(OpBuilder &builder, Location loc, Value i, Value j, Value x, bool isFirstDim, bool isLastDim)
Generates code to compare whether x[i] is less than x[j] and returns the result of the comparison.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
ArrayRef< AffineExpr > getResults() const
Definition: AffineMap.cpp:403
unsigned getNumResults() const
Definition: AffineMap.cpp:398
AffineExpr getResult(unsigned idx) const
Definition: AffineMap.cpp:407
bool isPermutation() const
Returns true if the AffineMap represents a symbol-less permutation map.
Definition: AffineMap.cpp:641
Block represents an ordered list of Operations.
Definition: Block.h:33
BlockArgument getArgument(unsigned i)
Definition: Block.h:129
BlockArgListType getArguments()
Definition: Block.h:87
IntegerType getI64Type()
Definition: Builders.cpp:64
IntegerType getIntegerType(unsigned width)
Definition: Builders.cpp:66
AffineExpr getAffineDimExpr(unsigned position)
Definition: Builders.cpp:359
MLIRContext * getContext() const
Definition: Builders.h:55
A symbol reference with a reference path containing a single element.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:76
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:63
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:346
This class helps build Operations.
Definition: Builders.h:205
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes={}, ArrayRef< Location > locs={})
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Definition: Builders.cpp:425
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:429
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Definition: Builders.h:396
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Definition: Builders.h:434
void setInsertionPointAfterValue(Value val)
Sets the insertion point to the node after the specified value.
Definition: Builders.h:419
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:410
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:783
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:519
This class provides an abstraction over the various different ranges of value types.
Definition: TypeRange.h:37
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:387
type_range getTypes() const
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:105
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:18
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
Value constantIndex(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of index type.
Definition: CodegenUtils.h:331
Value constantZero(OpBuilder &builder, Location loc, Type tp)
Generates a 0-valued constant of the given type.
Definition: CodegenUtils.h:309
Value constantOne(OpBuilder &builder, Location loc, Type tp)
Generates a 1-valued constant of the given type.
Definition: CodegenUtils.h:320
Value constantI1(OpBuilder &builder, Location loc, bool b)
Generates a constant of i1 type.
Definition: CodegenUtils.h:356
MemRefType getMemRefType(T &&t)
Convenience method to abbreviate casting getType().
Definition: SparseTensor.h:168
Value constantI64(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of i64 type.
Definition: CodegenUtils.h:336
Include the generated interface declarations.
void populateSparseBufferRewriting(RewritePatternSet &patterns, bool enableBufferInitialization)
const FrozenRewritePatternSet & patterns
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:314
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.