MLIR  20.0.0git
SparseTensor.h
Go to the documentation of this file.
1 //===- SparseTensor.h - Sparse tensor dialect -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_
10 #define MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_
11 
15 #include "mlir/IR/BuiltinTypes.h"
16 #include "mlir/IR/Dialect.h"
17 #include "mlir/IR/OpDefinition.h"
19 #include "mlir/IR/TensorEncoding.h"
24 
25 #include "llvm/ADT/bit.h"
26 
27 //===----------------------------------------------------------------------===//
28 //
29 // Type aliases to help code be more self-documenting. Unfortunately
30 // these are not type-checked, so they only provide documentation rather
31 // than doing anything to prevent mixups.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 namespace mlir {
36 namespace sparse_tensor {
37 
38 /// The type of dimension identifiers and dimension-ranks.
39 using Dimension = uint64_t;
40 
41 /// The type of level identifiers and level-ranks.
42 using Level = uint64_t;
43 
44 /// The type for individual components of a compile-time shape,
45 /// including the value `ShapedType::kDynamic` (for shapes).
46 using Size = int64_t;
47 
48 /// A simple structure that encodes a range of levels in the sparse tensors
49 /// that forms a COO segment.
50 struct COOSegment {
51  std::pair<Level, Level> lvlRange; // [low, high)
52  bool isSoA;
53 
54  bool isAoS() const { return !isSoA; }
55  bool isSegmentStart(Level l) const { return l == lvlRange.first; }
56  bool inSegment(Level l) const {
57  return l >= lvlRange.first && l < lvlRange.second;
58  }
59 };
60 
61 /// A simple wrapper to encode a bitset of (at most 64) levels, currently used
62 /// by `sparse_tensor.iterate` operation for the set of levels on which the
63 /// coordinates should be loaded.
64 class I64BitSet {
65  uint64_t storage = 0;
66 
67 public:
68  using const_set_bits_iterator = llvm::const_set_bits_iterator_impl<I64BitSet>;
70  return const_set_bits_iterator(*this);
71  }
73  return const_set_bits_iterator(*this, -1);
74  }
76  return make_range(begin(), end());
77  }
78 
79  I64BitSet() = default;
80  explicit I64BitSet(uint64_t bits) : storage(bits) {}
81  operator uint64_t() const { return storage; }
82 
83  I64BitSet &set(unsigned i) {
84  assert(i < 64);
85  storage |= static_cast<uint64_t>(0x01u) << i;
86  return *this;
87  }
88 
90  storage |= static_cast<uint64_t>(lhs);
91  return *this;
92  }
93 
94  I64BitSet &lshift(unsigned offset) {
95  storage = storage << offset;
96  return *this;
97  }
98 
99  bool isSubSetOf(const I64BitSet p) const {
100  I64BitSet tmp = *this;
101  tmp |= p;
102  return tmp == p;
103  }
104 
105  // Needed by `llvm::const_set_bits_iterator_impl`.
106  int find_first() const { return min(); }
107  int find_next(unsigned prev) const {
108  if (prev >= max() - 1)
109  return -1;
110 
111  uint64_t b = storage >> (prev + static_cast<int64_t>(1));
112  assert(b != 0);
113 
114  return llvm::countr_zero(b) + prev + static_cast<int64_t>(1);
115  }
116 
117  bool operator[](unsigned i) const {
118  assert(i < 64);
119  return (storage & (static_cast<int64_t>(1) << i)) != 0;
120  }
121  unsigned min() const {
122  unsigned m = llvm::countr_zero(storage);
123  return m == 64 ? -1 : m;
124  }
125  unsigned max() const { return 64 - llvm::countl_zero(storage); }
126  unsigned count() const { return llvm::popcount(storage); }
127  bool empty() const { return storage == 0; }
128 };
129 
130 } // namespace sparse_tensor
131 } // namespace mlir
132 
133 //===----------------------------------------------------------------------===//
134 // TableGen-defined classes
135 //===----------------------------------------------------------------------===//
136 
137 #define GET_ATTRDEF_CLASSES
138 #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.h.inc"
139 
140 #define GET_ATTRDEF_CLASSES
141 #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.h.inc"
142 
143 #define GET_TYPEDEF_CLASSES
144 #include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.h.inc"
145 
146 #define GET_OP_CLASSES
147 #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.h.inc"
148 
149 #include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.h.inc"
150 
151 //===----------------------------------------------------------------------===//
152 // Additional convenience methods.
153 //===----------------------------------------------------------------------===//
154 
155 namespace mlir {
156 namespace sparse_tensor {
157 
158 /// Convenience method to abbreviate casting `getType()`.
159 template <typename T>
160 inline RankedTensorType getRankedTensorType(T &&t) {
161  assert(static_cast<bool>(std::forward<T>(t)) &&
162  "getRankedTensorType got null argument");
163  return dyn_cast<RankedTensorType>(std::forward<T>(t).getType());
164 }
165 
166 /// Convenience method to abbreviate casting `getType()`.
167 template <typename T>
168 inline MemRefType getMemRefType(T &&t) {
169  assert(static_cast<bool>(std::forward<T>(t)) &&
170  "getMemRefType got null argument");
171  return cast<MemRefType>(std::forward<T>(t).getType());
172 }
173 
174 /// Convenience method to get a sparse encoding attribute from a type.
175 /// Returns null-attribute for any type without an encoding.
176 SparseTensorEncodingAttr getSparseTensorEncoding(Type type);
177 
178 /// Returns true iff the type range has any sparse tensor type.
179 inline bool hasAnySparseType(TypeRange types) {
180  return llvm::any_of(types, [](Type type) {
181  return getSparseTensorEncoding(type) != nullptr;
182  });
183 }
184 
185 /// Returns true iff MLIR operand has any sparse operand.
186 inline bool hasAnySparseOperand(Operation *op) {
187  return hasAnySparseType(op->getOperands().getTypes());
188 }
189 
190 /// Returns true iff MLIR operand has any sparse result.
191 inline bool hasAnySparseResult(Operation *op) {
192  return hasAnySparseType(op->getResults().getTypes());
193 }
194 
195 /// Returns true iff MLIR operand has any sparse operand or result.
197  return hasAnySparseOperand(op) || hasAnySparseResult(op);
198 }
199 
200 /// Returns true iff MLIR operation has any sparse tensor with non-identity
201 /// dim2lvl maps.
203 
204 //
205 // Inference.
206 //
207 
208 /// Given the dimToLvl map, infers the lvlToDim map, or returns
209 /// empty Affine map when inference fails.
210 AffineMap inferLvlToDim(AffineMap dimToLvl, MLIRContext *context);
211 
212 /// Returns the lvlToDim map for the given dimToLvl map specific
213 /// to the block sparse cases.
214 /// Asserts on failure (so only use when known to succeed).
216 
217 /// Given the dimToLvl map, returns the block sizes in a vector.
218 /// For instance, a 2x3 block will return [2, 3]. Unblocked dimension i
219 /// will return 0, and i floordiv 1, i mod 1 will return 1. Therefore,
220 /// the example below will return [0, 1].
221 /// map = ( i, j ) ->
222 /// ( i : dense,
223 /// j floordiv 1 : compressed,
224 /// j mod 1 : dense
225 /// )
226 /// Only valid block sparsity will be accepted.
228 
229 /// Given the dimToLvl map, returns if it's block sparsity.
230 bool isBlockSparsity(AffineMap dimToLvl);
231 
232 //
233 // Reordering.
234 //
235 
236 /// Convenience method to translate the given level to the corresponding
237 /// dimension.
238 /// Requires: `enc` has a permuted dim2lvl map and `0 <= l < lvlRank`.
239 Dimension toDim(SparseTensorEncodingAttr enc, Level l);
240 
241 /// Convenience method to translate the given dimension to the corresponding
242 /// level.
243 /// Requires: `enc` has a permuted dim2lvl map and `0 <= d < dimRank`.
244 Level toLvl(SparseTensorEncodingAttr enc, Dimension d);
245 
246 } // namespace sparse_tensor
247 } // namespace mlir
248 
249 #endif // MLIR_DIALECT_SPARSETENSOR_IR_SPARSETENSOR_H_
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
This class provides an abstraction over the various different ranges of value types.
Definition: TypeRange.h:36
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
A simple wrapper to encode a bitset of (at most 64) levels, currently used by sparse_tensor....
Definition: SparseTensor.h:64
iterator_range< const_set_bits_iterator > bits() const
Definition: SparseTensor.h:75
I64BitSet & lshift(unsigned offset)
Definition: SparseTensor.h:94
bool isSubSetOf(const I64BitSet p) const
Definition: SparseTensor.h:99
const_set_bits_iterator begin() const
Definition: SparseTensor.h:69
int find_next(unsigned prev) const
Definition: SparseTensor.h:107
I64BitSet & set(unsigned i)
Definition: SparseTensor.h:83
bool operator[](unsigned i) const
Definition: SparseTensor.h:117
const_set_bits_iterator end() const
Definition: SparseTensor.h:72
I64BitSet & operator|=(I64BitSet lhs)
Definition: SparseTensor.h:89
llvm::const_set_bits_iterator_impl< I64BitSet > const_set_bits_iterator
Definition: SparseTensor.h:68
bool hasAnySparseOperandOrResult(Operation *op)
Returns true iff MLIR operand has any sparse operand or result.
Definition: SparseTensor.h:196
Dimension toDim(SparseTensorEncodingAttr enc, Level l)
Convenience method to translate the given level to the corresponding dimension.
uint64_t Dimension
The type of dimension identifiers and dimension-ranks.
Definition: SparseTensor.h:39
uint64_t Level
The type of level identifiers and level-ranks.
Definition: SparseTensor.h:42
int64_t Size
The type for individual components of a compile-time shape, including the value ShapedType::kDynamic ...
Definition: SparseTensor.h:46
RankedTensorType getRankedTensorType(T &&t)
Convenience method to abbreviate casting getType().
Definition: SparseTensor.h:160
AffineMap inferLvlToDim(AffineMap dimToLvl, MLIRContext *context)
Given the dimToLvl map, infers the lvlToDim map, or returns empty Affine map when inference fails.
SparseTensorEncodingAttr getSparseTensorEncoding(Type type)
Convenience method to get a sparse encoding attribute from a type.
MemRefType getMemRefType(T &&t)
Convenience method to abbreviate casting getType().
Definition: SparseTensor.h:168
bool hasAnySparseType(TypeRange types)
Returns true iff the type range has any sparse tensor type.
Definition: SparseTensor.h:179
Level toLvl(SparseTensorEncodingAttr enc, Dimension d)
Convenience method to translate the given dimension to the corresponding level.
bool isBlockSparsity(AffineMap dimToLvl)
Given the dimToLvl map, returns if it's block sparsity.
bool hasAnyNonIdentityOperandsOrResults(Operation *op)
Returns true iff MLIR operation has any sparse tensor with non-identity dim2lvl maps.
bool hasAnySparseResult(Operation *op)
Returns true iff MLIR operand has any sparse result.
Definition: SparseTensor.h:191
bool hasAnySparseOperand(Operation *op)
Returns true iff MLIR operand has any sparse operand.
Definition: SparseTensor.h:186
SmallVector< unsigned > getBlockSize(AffineMap dimToLvl)
Given the dimToLvl map, returns the block sizes in a vector.
AffineMap inverseBlockSparsity(AffineMap dimToLvl, MLIRContext *context)
Returns the lvlToDim map for the given dimToLvl map specific to the block sparse cases.
Include the generated interface declarations.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
Definition: Utils.cpp:305
A simple structure that encodes a range of levels in the sparse tensors that forms a COO segment.
Definition: SparseTensor.h:50
bool inSegment(Level l) const
Definition: SparseTensor.h:56
bool isSegmentStart(Level l) const
Definition: SparseTensor.h:55
std::pair< Level, Level > lvlRange
Definition: SparseTensor.h:51