26#include "llvm/ADT/TypeSwitch.h"
27#include "llvm/Support/FormatVariadic.h"
29#define GET_ATTRDEF_CLASSES
30#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
31#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc"
41#define GET_TYPEDEF_CLASSES
42#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
51 return llvm::hash_value(
static_cast<uint64_t
>(lt));
79 if (dimShape.has_value()) {
83 enc.translateShape(*dimShape, CrdTransDirectionKind::dim2lvl);
84 memrefShape.assign(lvlShape.begin(),
85 lvlShape.begin() + enc.getBatchLvlRank());
88 memrefShape.push_back(ShapedType::kDynamic);
104 const auto lvlTypes = enc.getLvlTypes();
105 const Level lvlRank = enc.getLvlRank();
111 for (
Level l = 0; l < lvlRank; ) {
112 const auto lt = lvlTypes[l];
121 if (!cooSegsRef.empty() && cooSegsRef.front().isSegmentStart(l)) {
122 if (!cooSegsRef.front().isSoA) {
125 l = cooSegsRef.front().lvlRange.second;
131 cooSegsRef = cooSegsRef.drop_front();
159 const Type posMemType = MemRefType::get(memrefShape, stt.
getPosType());
161 const Type crdMemType = MemRefType::get(memrefShape, stt.
getCrdType());
171 return callback(specType, fieldIdx, fieldKind, lvl, lt);
173 return callback(posMemType, fieldIdx, fieldKind, lvl, lt);
175 return callback(crdMemType, fieldIdx, fieldKind, lvl, lt);
177 return callback(valMemType, fieldIdx, fieldKind, lvl, lt);
179 llvm_unreachable(
"unrecognized field kind");
184 unsigned numFields = 0;
194 unsigned numFields = 0;
206std::pair<FieldIndex, unsigned>
208 std::optional<Level> lvl)
const {
212 assert(lvl.has_value());
213 const Level cooStart = enc.getAoSCOOStart();
214 const Level lvlRank = enc.getLvlRank();
215 if (lvl.value() >= cooStart && lvl.value() < lvlRank) {
217 stride = lvlRank - cooStart;
223 if ((lvl && fLvl == lvl.value() && kind == fKind) ||
232 return std::pair<FieldIndex, unsigned>(fieldIdx, stride);
239std::optional<uint64_t> SparseTensorDimSliceAttr::getStatic(
int64_t v) {
240 return isDynamic(v) ? std::nullopt
241 : std::make_optional(
static_cast<uint64_t
>(v));
244std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticOffset()
const {
245 return getStatic(getOffset());
248std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticStride()
const {
249 return getStatic(getStride());
252std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticSize()
const {
253 return getStatic(getSize());
256bool SparseTensorDimSliceAttr::isCompletelyDynamic()
const {
257 return isDynamic(getOffset()) && isDynamic(getStride()) &&
258 isDynamic(getSize());
261std::string SparseTensorDimSliceAttr::getStaticString(int64_t v) {
262 return isDynamic(v) ?
"?" : std::to_string(v);
265void SparseTensorDimSliceAttr::print(llvm::raw_ostream &os)
const {
266 assert(getImpl() &&
"Uninitialized SparseTensorDimSliceAttr");
268 os << getStaticString(getOffset());
270 os << getStaticString(getSize());
272 os << getStaticString(getStride());
276void SparseTensorDimSliceAttr::print(AsmPrinter &printer)
const {
283 if (parseResult.has_value()) {
284 if (parseResult.value().succeeded() &&
result < 0) {
287 "expect positive value or ? for slice offset/size/stride");
290 return parseResult.value();
294 result = SparseTensorDimSliceAttr::kDynamic;
298Attribute SparseTensorDimSliceAttr::parse(AsmParser &parser, Type type) {
299 int64_t offset = kDynamic, size = kDynamic, stride = kDynamic;
311 offset, size, stride);
316 int64_t offset, int64_t size, int64_t stride) {
317 if (!isDynamic(offset) && offset < 0)
318 return emitError() <<
"expect non-negative value or ? for slice offset";
319 if (!isDynamic(size) && size <= 0)
320 return emitError() <<
"expect positive value or ? for slice size";
321 if (!isDynamic(stride) && stride <= 0)
322 return emitError() <<
"expect positive value or ? for slice stride";
326SparseTensorEncodingAttr
327SparseTensorEncodingAttr::withDimToLvl(AffineMap dimToLvl)
const {
328 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
329 return SparseTensorEncodingAttr::get(
330 getContext(), getLvlTypes(), dimToLvl, AffineMap(), getPosWidth(),
331 getCrdWidth(), getExplicitVal(), getImplicitVal());
334SparseTensorEncodingAttr
335SparseTensorEncodingAttr::withDimToLvl(SparseTensorEncodingAttr enc)
const {
336 return withDimToLvl(enc ? enc.getDimToLvl() : AffineMap());
339SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimToLvl()
const {
340 return withDimToLvl(AffineMap());
343SparseTensorEncodingAttr
344SparseTensorEncodingAttr::withBitWidths(
unsigned posWidth,
345 unsigned crdWidth)
const {
346 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
347 return SparseTensorEncodingAttr::get(
348 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), posWidth,
349 crdWidth, getExplicitVal(), getImplicitVal());
352SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths()
const {
353 return withBitWidths(0, 0);
356SparseTensorEncodingAttr
357SparseTensorEncodingAttr::withExplicitVal(Attribute explicitVal)
const {
358 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
359 return SparseTensorEncodingAttr::get(
360 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
361 getCrdWidth(), explicitVal, getImplicitVal());
364SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutExplicitVal()
const {
365 return withExplicitVal(Attribute());
368SparseTensorEncodingAttr
369SparseTensorEncodingAttr::withImplicitVal(Attribute implicitVal)
const {
370 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
371 return SparseTensorEncodingAttr::get(
372 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
373 getCrdWidth(), getExplicitVal(), implicitVal);
376SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutImplicitVal()
const {
377 return withImplicitVal(Attribute());
380SparseTensorEncodingAttr SparseTensorEncodingAttr::withDimSlices(
381 ArrayRef<SparseTensorDimSliceAttr> dimSlices)
const {
382 return SparseTensorEncodingAttr::get(
383 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
384 getCrdWidth(), getExplicitVal(), getImplicitVal(), dimSlices);
387SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimSlices()
const {
388 return withDimSlices(ArrayRef<SparseTensorDimSliceAttr>{});
391uint64_t SparseTensorEncodingAttr::getBatchLvlRank()
const {
392 ArrayRef<LevelType> lvlTypes = getLvlTypes();
393 auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(),
isBatchLT);
394 return std::distance(lastBatch, lvlTypes.rend());
397bool SparseTensorEncodingAttr::isAllDense()
const {
398 return !getImpl() || llvm::all_of(getLvlTypes(),
isDenseLT);
401bool SparseTensorEncodingAttr::isAllOrdered()
const {
402 return !getImpl() || llvm::all_of(getLvlTypes(),
isOrderedLT);
405Type SparseTensorEncodingAttr::getCrdElemType()
const {
409 return IntegerType::get(
getContext(), getCrdWidth());
413Type SparseTensorEncodingAttr::getPosElemType()
const {
417 return IntegerType::get(
getContext(), getPosWidth());
421MemRefType SparseTensorEncodingAttr::getCrdMemRefType(
422 std::optional<ArrayRef<int64_t>> dimShape)
const {
424 return MemRefType::get(shape, getCrdElemType());
427MemRefType SparseTensorEncodingAttr::getPosMemRefType(
428 std::optional<ArrayRef<int64_t>> dimShape)
const {
430 return MemRefType::get(shape, getPosElemType());
433bool SparseTensorEncodingAttr::isIdentity()
const {
434 return !getImpl() || !getDimToLvl() || getDimToLvl().isIdentity();
437bool SparseTensorEncodingAttr::isPermutation()
const {
438 return !getImpl() || !getDimToLvl() || getDimToLvl().isPermutation();
441Dimension SparseTensorEncodingAttr::getDimRank()
const {
442 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
443 const auto dimToLvl = getDimToLvl();
444 return dimToLvl ? dimToLvl.
getNumDims() : getLvlRank();
447Level SparseTensorEncodingAttr::getLvlRank()
const {
448 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
449 return getLvlTypes().size();
455 assert(l < getLvlRank() &&
"Level is out of bounds");
456 return getLvlTypes()[l];
459bool SparseTensorEncodingAttr::isSlice()
const {
460 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
461 return !getDimSlices().empty();
464SparseTensorDimSliceAttr
465SparseTensorEncodingAttr::getDimSlice(
Dimension dim)
const {
466 assert(isSlice() &&
"Is not a slice");
467 const auto dimSlices = getDimSlices();
468 assert(dim < dimSlices.size() &&
"Dimension is out of bounds");
469 return dimSlices[dim];
472std::optional<uint64_t>
473SparseTensorEncodingAttr::getStaticDimSliceOffset(
Dimension dim)
const {
474 return getDimSlice(dim).getStaticOffset();
477std::optional<uint64_t>
478SparseTensorEncodingAttr::getStaticDimSliceStride(
Dimension dim)
const {
479 return getDimSlice(dim).getStaticStride();
482std::optional<uint64_t>
483SparseTensorEncodingAttr::getStaticLvlSliceOffset(
Level lvl)
const {
484 return getStaticDimSliceOffset(
toDim(*
this, lvl));
487std::optional<uint64_t>
488SparseTensorEncodingAttr::getStaticLvlSliceStride(
Level lvl)
const {
489 return getStaticDimSliceStride(
toDim(*
this, lvl));
493SparseTensorEncodingAttr::translateShape(ArrayRef<int64_t> srcShape,
494 CrdTransDirectionKind dir)
const {
496 return SmallVector<int64_t>(srcShape);
498 SmallVector<int64_t> ret;
500 dir == CrdTransDirectionKind::dim2lvl ? getLvlRank() : getDimRank();
504 for (
unsigned r = 0; r < rank; r++) {
505 unsigned trans = dir == CrdTransDirectionKind::dim2lvl ?
toDim(*
this, r)
507 ret.push_back(srcShape[trans]);
514 dir == CrdTransDirectionKind::dim2lvl ? getDimToLvl() : getLvlToDim();
516 SmallVector<AffineExpr> dimRep;
517 dimRep.reserve(srcShape.size());
518 for (int64_t sz : srcShape) {
519 if (ShapedType::isStatic(sz)) {
528 for (AffineExpr exp : transMap.
getResults()) {
531 simplifyAffineExpr(exp.replaceDims(dimRep), srcShape.size(), 0);
533 if (auto c = llvm::dyn_cast<AffineConstantExpr>(evalExp)) {
534 ret.push_back(c.getValue() + 1);
536 if (auto mod = llvm::dyn_cast<AffineBinaryOpExpr>(evalExp);
537 mod && mod.getKind() == AffineExprKind::Mod) {
540 if (auto bound = llvm::dyn_cast<AffineConstantExpr>(mod.getRHS())) {
541 ret.push_back(bound.getValue());
545 ret.push_back(ShapedType::kDynamic);
548 assert(ret.size() == rank);
553SparseTensorEncodingAttr::translateCrds(OpBuilder &builder, Location loc,
555 CrdTransDirectionKind dir)
const {
559 SmallVector<Type> retType(
560 dir == CrdTransDirectionKind::lvl2dim ? getDimRank() : getLvlRank(),
563 CrdTranslateOp::create(builder, loc, retType, crds, dir, *
this);
564 return transOp.getOutCrds();
567Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
575 SmallVector<LevelType> lvlTypes;
576 SmallVector<SparseTensorDimSliceAttr> dimSlices;
577 AffineMap dimToLvl = {};
578 AffineMap lvlToDim = {};
579 unsigned posWidth = 0;
580 unsigned crdWidth = 0;
581 Attribute explicitVal;
582 Attribute implicitVal;
584 SmallVector<StringRef, 5> keys = {
"map",
"posWidth",
"crdWidth",
585 "explicitVal",
"implicitVal"};
588 auto *it = find(keys, attrName);
589 if (it == keys.end()) {
593 unsigned keyWordIndex = it - keys.begin();
598 switch (keyWordIndex) {
601 auto res = cParser.parseDimLvlMap();
604 const auto &dlm = *res;
606 const Level lvlRank = dlm.getLvlRank();
607 for (
Level lvl = 0; lvl < lvlRank; lvl++)
608 lvlTypes.push_back(dlm.getLvlType(lvl));
610 const Dimension dimRank = dlm.getDimRank();
611 for (
Dimension dim = 0; dim < dimRank; dim++)
612 dimSlices.push_back(dlm.getDimSlice(dim));
616 const auto isDefined = [](SparseTensorDimSliceAttr slice) {
617 return static_cast<bool>(slice.getImpl());
619 if (llvm::any_of(dimSlices, isDefined)) {
620 const auto defaultSlice =
621 SparseTensorDimSliceAttr::get(parser.
getContext());
622 for (
Dimension dim = 0; dim < dimRank; dim++)
623 if (!isDefined(dimSlices[dim]))
624 dimSlices[dim] = defaultSlice;
629 dimToLvl = dlm.getDimToLvlMap(parser.
getContext());
630 lvlToDim = dlm.getLvlToDimMap(parser.
getContext());
637 auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
640 "expected an integral position bitwidth");
643 posWidth = intAttr.getInt();
650 auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
653 "expected an integral index bitwidth");
656 crdWidth = intAttr.getInt();
663 if (
auto result = llvm::dyn_cast<FloatAttr>(attr)) {
665 }
else if (
auto result = llvm::dyn_cast<IntegerAttr>(attr)) {
667 }
else if (
auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) {
671 "expected a numeric value for explicitVal");
680 if (
auto result = llvm::dyn_cast<FloatAttr>(attr)) {
682 }
else if (
auto result = llvm::dyn_cast<IntegerAttr>(attr)) {
684 }
else if (
auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) {
688 "expected a numeric value for implicitVal");
706 if (!lvlToDim || lvlToDim.
isEmpty()) {
709 return parser.
getChecked<SparseTensorEncodingAttr>(
710 parser.
getContext(), lvlTypes, dimToLvl, lvlToDim, posWidth, crdWidth,
711 explicitVal, implicitVal, dimSlices);
714void SparseTensorEncodingAttr::print(AsmPrinter &printer)
const {
715 auto map =
static_cast<AffineMap
>(getDimToLvl());
719 printer <<
"<{ map = ";
720 printSymbols(map, printer);
722 printDimensions(map, printer, getDimSlices());
724 printLevels(map, printer, getLvlTypes());
728 printer <<
", posWidth = " << getPosWidth();
730 printer <<
", crdWidth = " << getCrdWidth();
731 if (getExplicitVal()) {
732 printer <<
", explicitVal = " << getExplicitVal();
734 if (getImplicitVal())
735 printer <<
", implicitVal = " << getImplicitVal();
739void SparseTensorEncodingAttr::printSymbols(AffineMap &map,
740 AsmPrinter &printer)
const {
744 for (
unsigned i = 0, n = map.
getNumSymbols() - 1; i < n; i++)
745 printer <<
's' << i <<
", ";
751void SparseTensorEncodingAttr::printDimensions(
752 AffineMap &map, AsmPrinter &printer,
753 ArrayRef<SparseTensorDimSliceAttr> dimSlices)
const {
754 if (!dimSlices.empty()) {
755 for (
unsigned i = 0, n = map.
getNumDims() - 1; i < n; i++)
756 printer <<
'd' << i <<
" : " << dimSlices[i] <<
", ";
758 printer <<
'd' << map.
getNumDims() - 1 <<
" : "
762 for (
unsigned i = 0, n = map.
getNumDims() - 1; i < n; i++)
763 printer <<
'd' << i <<
", ";
769void SparseTensorEncodingAttr::printLevels(AffineMap &map, AsmPrinter &printer,
770 ArrayRef<LevelType> lvlTypes)
const {
771 for (
unsigned i = 0, n = map.
getNumResults() - 1; i < n; i++) {
782LogicalResult SparseTensorEncodingAttr::verify(
784 AffineMap dimToLvl, AffineMap lvlToDim,
unsigned posWidth,
785 unsigned crdWidth, Attribute explicitVal, Attribute implicitVal,
786 ArrayRef<SparseTensorDimSliceAttr> dimSlices) {
788 return emitError() <<
"unexpected position bitwidth: " << posWidth;
790 return emitError() <<
"unexpected coordinate bitwidth: " << crdWidth;
794 while (it != lvlTypes.end()) {
795 if (it == lvlTypes.begin() ||
797 return emitError() <<
"expected compressed or loose_compressed level "
798 "before singleton level";
800 auto *curCOOEnd = std::find_if_not(it, lvlTypes.end(),
isSingletonLT);
802 return emitError() <<
"expected all singleton lvlTypes "
803 "following a singleton level";
805 if (!std::all_of(it, curCOOEnd, [it](
LevelType i) {
809 return emitError() <<
"expected all singleton lvlTypes stored in the "
810 "same memory layout (SoA vs AoS).";
815 auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(),
isBatchLT);
816 if (!std::all_of(lastBatch, lvlTypes.rend(),
isBatchLT))
817 return emitError() <<
"Batch lvlType can only be leading levels.";
820 auto soaLvls = llvm::make_filter_range(lvlTypes, [](
LevelType lt) {
823 if (llvm::any_of(soaLvls, [](
LevelType lt) {
826 return emitError() <<
"SoA is only applicable to singleton lvlTypes.";
830 if (
auto it = llvm::find_if(lvlTypes,
isNOutOfMLT);
831 it != std::end(lvlTypes)) {
832 if (it != lvlTypes.end() - 1)
833 return emitError() <<
"expected n_out_of_m to be the last level type";
834 if (!std::all_of(lvlTypes.begin(), it,
isDenseLT))
835 return emitError() <<
"expected all dense lvlTypes "
836 "before a n_out_of_m level";
840 <<
"expected 1xm block structure for n_out_of_m level";
843 unsigned coefficient = 0;
844 for (
const auto &elem : sizes) {
846 if (elem != coefficient && coefficient != 0) {
847 return emitError() <<
"expected only one blocked level "
848 "with the same coefficients";
853 if (coefficient !=
getM(*it)) {
854 return emitError() <<
"expected coeffiencts of Affine expressions "
855 "to be equal to m of n_out_of_m level";
864 const Level lvlRank = lvlTypes.size();
866 return emitError() <<
"expected a non-empty array for lvlTypes";
872 <<
"level-rank mismatch between dimToLvl and lvlTypes: "
877 return emitError() <<
"failed to infer lvlToDim from dimToLvl";
878 if (lvlToDim && (inferRes != lvlToDim))
879 return emitError() <<
"expected lvlToDim to be an inverse of dimToLvl";
880 if (dimRank > lvlRank)
881 return emitError() <<
"unexpected dimToLvl mapping from " << dimRank
882 <<
" to " << lvlRank;
884 if (!dimSlices.empty()) {
885 if (dimSlices.size() != dimRank)
887 <<
"dimension-rank mismatch between dimSlices and dimToLvl: "
888 << dimSlices.size() <<
" != " << dimRank;
891 if (dimRank != lvlRank)
893 <<
"dimSlices expected dimension-rank to match level-rank: "
894 << dimRank <<
" != " << lvlRank;
899LogicalResult SparseTensorEncodingAttr::verifyEncoding(
900 ArrayRef<Size> dimShape, Type elementType,
905 getPosWidth(), getCrdWidth(), getExplicitVal(),
906 getImplicitVal(), getDimSlices())))
911 const Dimension dimRank = dimShape.size();
913 return emitError() <<
"expected non-scalar sparse tensor";
914 if (getDimRank() != dimRank)
916 <<
"dimension-rank mismatch between encoding and tensor shape: "
917 << getDimRank() <<
" != " << dimRank;
918 if (
auto expVal = getExplicitVal()) {
919 Type attrType = llvm::dyn_cast<TypedAttr>(expVal).getType();
920 if (attrType != elementType) {
921 return emitError() <<
"explicit value type mismatch between encoding and "
922 <<
"tensor element type: " << attrType
923 <<
" != " << elementType;
926 if (
auto impVal = getImplicitVal()) {
927 Type attrType = llvm::dyn_cast<TypedAttr>(impVal).getType();
928 if (attrType != elementType) {
929 return emitError() <<
"implicit value type mismatch between encoding and "
930 <<
"tensor element type: " << attrType
931 <<
" != " << elementType;
934 auto impFVal = llvm::dyn_cast<FloatAttr>(impVal);
935 auto impIntVal = llvm::dyn_cast<IntegerAttr>(impVal);
936 auto impComplexVal = llvm::dyn_cast<complex::NumberAttr>(impVal);
937 if ((impFVal && impFVal.getValue().isNonZero()) ||
938 (impIntVal && !impIntVal.getValue().isZero()) ||
939 (impComplexVal && (impComplexVal.getImag().isNonZero() ||
940 impComplexVal.getReal().isNonZero()))) {
941 return emitError() <<
"implicit value must be zero";
947Level mlir::sparse_tensor::SparseTensorEncodingAttr::getAoSCOOStart()
const {
948 SmallVector<COOSegment> coo = getCOOSegments();
949 assert(coo.size() == 1 || coo.empty());
950 if (!coo.empty() && coo.front().isAoS()) {
951 return coo.front().lvlRange.first;
956SmallVector<COOSegment>
957mlir::sparse_tensor::SparseTensorEncodingAttr::getCOOSegments()
const {
958 SmallVector<COOSegment> ret;
959 if (getLvlRank() <= 1)
962 ArrayRef<LevelType> lts = getLvlTypes();
964 while (l < getLvlRank()) {
967 auto cur = lts.begin() + l;
968 auto end = std::find_if(cur + 1, lts.end(), [](
LevelType lt) {
969 return !lt.isa<LevelFormat::Singleton>();
971 unsigned cooLen = std::distance(cur, end);
977 ret.push_back(
COOSegment{std::make_pair(l, l + cooLen),
998 for (
Level l = startLvl + 1; l < lvlRank; ++l)
1010 lvlTypes.reserve(lvlRank);
1017 std::fill_n(std::back_inserter(lvlTypes), lvlRank - 2,
1022 auto enc = SparseTensorEncodingAttr::get(
1032SparseTensorEncodingAttr
1034 if (
auto ttp = llvm::dyn_cast<RankedTensorType>(type))
1035 return llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(ttp.getEncoding());
1036 if (
auto mdtp = llvm::dyn_cast<StorageSpecifierType>(type))
1037 return mdtp.getEncoding();
1043 auto map =
static_cast<AffineMap>(dimToLvl);
1060 lvlExprs.reserve(numLvls);
1063 std::map<unsigned, SmallVector<AffineExpr, 3>> lvlExprComponents;
1064 for (
unsigned i = 0, n = numLvls; i < n; i++) {
1066 if (
auto binOp = dyn_cast<AffineBinaryOpExpr>(
result)) {
1069 auto pos = dyn_cast<AffineDimExpr>(binOp.getLHS()).getPosition();
1070 assert(lvlExprComponents.find(pos) == lvlExprComponents.end() &&
1071 "expected only one floordiv for each dimension");
1076 components.push_back(binOp.getRHS());
1078 lvlExprComponents[pos] = components;
1080 auto pos = dyn_cast<AffineDimExpr>(binOp.getLHS()).getPosition();
1081 assert(lvlExprComponents.find(pos) != lvlExprComponents.end() &&
1082 "expected floordiv before mod");
1087 assert(
false &&
"expected floordiv or mod");
1097 for (
auto &components : lvlExprComponents) {
1098 assert(components.second.size() == 3 &&
1099 "expected 3 components to build lvlExprs");
1104 lvlExprs.push_back(addOp);
1111 "expected dimToLvl to be block sparsity for calling getBlockSize");
1114 if (
auto binOp = dyn_cast<AffineBinaryOpExpr>(
result)) {
1116 blockSize.push_back(
1117 dyn_cast<AffineConstantExpr>(binOp.getRHS()).getValue());
1120 blockSize.push_back(0);
1129 std::map<unsigned, int64_t> coeffientMap;
1130 bool hasBlock =
false;
1132 if (
auto binOp = dyn_cast<AffineBinaryOpExpr>(
result)) {
1134 auto dimOp = dyn_cast<AffineDimExpr>(binOp.getLHS());
1135 auto conOp = dyn_cast<AffineConstantExpr>(binOp.getRHS());
1136 if (!dimOp || !conOp || conOp.getValue() <= 0)
1139 auto pos = dimOp.getPosition();
1142 auto [it,
inserted] = coeffientMap.try_emplace(pos);
1146 it->second = conOp.getValue();
1149 auto it = coeffientMap.find(pos);
1150 if (it == coeffientMap.end())
1153 if (conOp.getValue() != it->second)
1159 }
else if (
auto dimOp = dyn_cast<AffineDimExpr>(
result)) {
1160 auto pos = dimOp.getPosition();
1162 if (!coeffientMap.try_emplace(pos, 0).second)
1172 auto hasNonIdentityMap = [](
Value v) {
1177 return llvm::any_of(op->
getOperands(), hasNonIdentityMap) ||
1178 llvm::any_of(op->
getResults(), hasNonIdentityMap);
1183 assert(enc.isPermutation() &&
"Non permutation map not supported");
1184 if (
const auto dimToLvl = enc.getDimToLvl())
1192 assert(enc.isPermutation() &&
"Non permutation map not supported");
1193 if (
const auto lvlToDim = enc.getLvlToDim())
1203static SparseTensorEncodingAttr
1206 for (
auto lt : enc.getLvlTypes())
1209 return SparseTensorEncodingAttr::get(
1210 enc.getContext(), lts,
1220 enc.getDimSlices());
1224StorageSpecifierType::get(MLIRContext *ctx, SparseTensorEncodingAttr encoding) {
1231 SparseTensorEncodingAttr encoding) {
1250 StorageSpecifierKind mdKind, std::optional<Level> lvl,
1252 if (mdKind == StorageSpecifierKind::ValMemSize && lvl) {
1254 "redundant level argument for querying value memory size");
1257 const auto enc = md.getType().getEncoding();
1258 const Level lvlRank = enc.getLvlRank();
1260 if (mdKind == StorageSpecifierKind::DimOffset ||
1261 mdKind == StorageSpecifierKind::DimStride)
1263 return op->
emitError(
"requested slice data on non-slice tensor");
1265 if (mdKind != StorageSpecifierKind::ValMemSize) {
1267 return op->
emitError(
"missing level argument");
1269 const Level l = lvl.value();
1271 return op->
emitError(
"requested level is out of bounds");
1273 if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l))
1275 "requested position memory size on a singleton level");
1291 llvm_unreachable(
"Unrecognizable FieldKind");
1296 RankedTensorType valTp,
1299 return op->
emitError(
"the sparse-tensor must have static shape");
1301 return op->
emitError(
"the sparse-tensor must have an encoding attribute");
1307 auto cooTp = llvm::cast<ShapedType>(lvlTps.back());
1309 unsigned expCOORank = stt.
getLvlRank() - cooStartLvl;
1310 if (cooTp.getRank() != 2 || expCOORank != cooTp.getShape().back()) {
1311 return op->
emitError(
"input/output trailing COO level-ranks don't match");
1318 return op->
emitError(
"inconsistent number of fields between input/output");
1321 bool misMatch =
false;
1328 Type inputTp =
nullptr;
1332 assert(fid == idx && stt.
getLvlType(lvl) == lt);
1333 inputTp = lvlTps[idx++];
1336 Type inpElemTp = llvm::cast<TensorType>(inputTp).getElementType();
1338 if (inpElemTp != expElemTp) {
1346 return op->
emitError(
"input/output element-types don't match");
1350LogicalResult AssembleOp::verify() {
1351 RankedTensorType valuesTp = getValues().getType();
1352 const auto lvlsTp = getLevels().getTypes();
1357LogicalResult DisassembleOp::verify() {
1359 return emitError(
"output values and return value type mismatch");
1361 for (
auto [ot, rt] : llvm::zip_equal(getOutLevels(), getRetLevels()))
1362 if (ot.getType() != rt.getType())
1363 return emitError(
"output levels and return levels type mismatch");
1365 RankedTensorType valuesTp = getRetValues().getType();
1366 const auto lvlsTp = getRetLevels().getTypes();
1371LogicalResult ConvertOp::verify() {
1372 RankedTensorType tp1 = getSource().getType();
1373 RankedTensorType tp2 = getDest().getType();
1374 if (tp1.getRank() != tp2.getRank())
1375 return emitError(
"unexpected conversion mismatch in rank");
1377 llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(tp2.getEncoding());
1378 if (dstEnc && dstEnc.isSlice())
1379 return emitError(
"cannot convert to a sparse tensor slice");
1381 auto shape1 = tp1.getShape();
1382 auto shape2 = tp2.getShape();
1386 for (
Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++)
1387 if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
1388 return emitError(
"unexpected conversion mismatch in dimension ") << d;
1392OpFoldResult ConvertOp::fold(FoldAdaptor adaptor) {
1398bool ConvertOp::needsExtraSort() {
1417 if (
auto constOp = getSource().getDefiningOp<arith::ConstantOp>())
1418 if (isa<SparseElementsAttr>(constOp.getValue()))
1424LogicalResult CrdTranslateOp::verify() {
1425 uint64_t inRank = getEncoder().getLvlRank();
1426 uint64_t outRank = getEncoder().getDimRank();
1428 if (getDirection() == CrdTransDirectionKind::dim2lvl)
1429 std::swap(inRank, outRank);
1431 if (inRank != getInCrds().size() || outRank != getOutCrds().size())
1432 return emitError(
"Coordinate rank mismatch with encoding");
1437LogicalResult CrdTranslateOp::fold(FoldAdaptor adaptor,
1438 SmallVectorImpl<OpFoldResult> &results) {
1439 if (getEncoder().isIdentity()) {
1440 results.assign(getInCrds().begin(), getInCrds().end());
1444 AffineMap perm = getDirection() == CrdTransDirectionKind::dim2lvl
1445 ? getEncoder().getDimToLvl()
1446 : getEncoder().getLvlToDim();
1448 results.push_back(getInCrds()[cast<AffineDimExpr>(exp).getPosition()]);
1453 auto def = getInCrds()[0].getDefiningOp<CrdTranslateOp>();
1454 bool sameDef = def && llvm::all_of(getInCrds(), [def](Value v) {
1460 bool oppositeDir = def.getDirection() != getDirection();
1462 def.getEncoder().getDimToLvl() == getEncoder().getDimToLvl();
1463 bool sameCount = def.getNumResults() == getInCrds().size();
1464 if (!oppositeDir || !sameOracle || !sameCount)
1469 bool sameOrder = llvm::all_of(llvm::zip_equal(def.getOutCrds(), getInCrds()),
1470 [](
auto valuePair) {
1471 auto [
lhs,
rhs] = valuePair;
1479 results.append(def.getInCrds().begin(), def.getInCrds().end());
1483void LvlOp::build(OpBuilder &builder, OperationState &state, Value source,
1486 return build(builder, state, source, val);
1489LogicalResult LvlOp::verify() {
1490 if (std::optional<uint64_t> lvl = getConstantLvlIndex()) {
1492 if (
static_cast<uint64_t
>(lvl.value()) >= stt.
getLvlRank())
1494 "Level index exceeds the rank of the input sparse tensor");
1499std::optional<uint64_t> LvlOp::getConstantLvlIndex() {
1509 cast<RankedTensorType>(getSource().
getType()).getRank());
1513OpFoldResult LvlOp::fold(FoldAdaptor adaptor) {
1514 auto lvlIndex = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex());
1518 Level lvl = lvlIndex.getAPSInt().getZExtValue();
1528 auto getIndexAttr = [
this](int64_t lvlSz) {
1529 return IntegerAttr::get(IndexType::get(
getContext()), APInt(64, lvlSz));
1533 if (ShapedType::isStatic(lvlShape[lvl]))
1534 return getIndexAttr(lvlShape[lvl]);
1539void ReinterpretMapOp::build(OpBuilder &odsBuilder, OperationState &odsState,
1540 SparseTensorEncodingAttr dstEnc, Value source) {
1542 SmallVector<int64_t> srcLvlShape = srcStt.
getLvlShape();
1543 SmallVector<int64_t> dstDimShape =
1544 dstEnc.translateShape(srcLvlShape, CrdTransDirectionKind::lvl2dim);
1546 RankedTensorType::get(dstDimShape, srcStt.
getElementType(), dstEnc);
1547 return build(odsBuilder, odsState, dstTp, source);
1550LogicalResult ReinterpretMapOp::verify() {
1553 ArrayRef<LevelType> srcLvlTps = srcStt.
getLvlTypes();
1554 ArrayRef<LevelType> dstLvlTps = dstStt.
getLvlTypes();
1556 if (srcLvlTps.size() != dstLvlTps.size())
1557 return emitError(
"Level rank mismatch between source/dest tensors");
1559 for (
auto [srcLvlTp, dstLvlTp] : llvm::zip(srcLvlTps, dstLvlTps))
1560 if (srcLvlTp != dstLvlTp)
1561 return emitError(
"Level type mismatch between source/dest tensors");
1565 return emitError(
"Crd/Pos width mismatch between source/dest tensors");
1569 return emitError(
"Element type mismatch between source/dest tensors");
1571 SmallVector<Size> srcLvlShape = srcStt.
getLvlShape();
1572 SmallVector<Size> dstLvlShape = dstStt.
getLvlShape();
1573 for (
auto [srcLvlSz, dstLvlSz] : llvm::zip(srcLvlShape, dstLvlShape)) {
1574 if (srcLvlSz != dstLvlSz) {
1578 return emitError(
"Level size mismatch between source/dest tensors");
1585OpFoldResult ReinterpretMapOp::fold(FoldAdaptor adaptor) {
1589 if (
auto def = getSource().getDefiningOp<ReinterpretMapOp>()) {
1591 if (def.getSource().getType() == getDest().
getType())
1592 return def.getSource();
1597template <
typename ToBufferOp>
1602 typename ToBufferOp::Adaptor adaptor(ops, attr, prop, region);
1604 Type elemTp =
nullptr;
1605 bool withStride =
false;
1606 if constexpr (std::is_same_v<ToBufferOp, ToPositionsOp>) {
1608 }
else if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp> ||
1609 std::is_same_v<ToBufferOp, ToCoordinatesBufferOp>) {
1611 if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp>)
1613 }
else if constexpr (std::is_same_v<ToBufferOp, ToValuesOp>) {
1617 assert(elemTp &&
"unhandled operation.");
1619 bufShape.push_back(ShapedType::kDynamic);
1621 auto layout = withStride ? StridedLayoutAttr::StridedLayoutAttr::get(
1623 {ShapedType::kDynamic})
1624 : StridedLayoutAttr();
1625 ret.emplace_back(MemRefType::get(bufShape, elemTp, layout));
1629LogicalResult ToPositionsOp::verify() {
1632 return emitError(
"requested level is out of bounds");
1634 return emitError(
"unexpected type for positions");
1639ToPositionsOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc,
1641 OpaqueProperties prop, RegionRange region,
1642 SmallVectorImpl<mlir::Type> &ret) {
1646LogicalResult ToCoordinatesOp::verify() {
1649 return emitError(
"requested level is out of bounds");
1651 return emitError(
"unexpected type for coordinates");
1656ToCoordinatesOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc,
1658 OpaqueProperties prop, RegionRange region,
1659 SmallVectorImpl<mlir::Type> &ret) {
1663LogicalResult ToCoordinatesBufferOp::verify() {
1666 return emitError(
"expected sparse tensor with a COO region");
1670LogicalResult ToCoordinatesBufferOp::inferReturnTypes(
1671 MLIRContext *ctx, std::optional<Location> loc,
ValueRange ops,
1672 DictionaryAttr attr, OpaqueProperties prop, RegionRange region,
1673 SmallVectorImpl<mlir::Type> &ret) {
1678LogicalResult ToValuesOp::verify() {
1682 return emitError(
"unexpected mismatch in element types");
1686LogicalResult ToValuesOp::inferReturnTypes(MLIRContext *ctx,
1687 std::optional<Location> loc,
1689 OpaqueProperties prop,
1691 SmallVectorImpl<mlir::Type> &ret) {
1695LogicalResult ToSliceOffsetOp::verify() {
1696 auto rank =
getSlice().getType().getRank();
1697 if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
1698 return emitError(
"requested dimension out of bound");
1702LogicalResult ToSliceStrideOp::verify() {
1703 auto rank =
getSlice().getType().getRank();
1704 if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
1705 return emitError(
"requested dimension out of bound");
1709LogicalResult GetStorageSpecifierOp::verify() {
1711 getSpecifier(), getOperation());
1714template <
typename SpecifierOp>
1716 return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>();
1719OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) {
1720 const StorageSpecifierKind kind = getSpecifierKind();
1721 const auto lvl = getLevel();
1723 if (kind == op.getSpecifierKind() && lvl == op.getLevel())
1724 return op.getValue();
1728LogicalResult SetStorageSpecifierOp::verify() {
1730 getSpecifier(), getOperation());
1735 const char *regionName,
1738 unsigned expectedNum = inputTypes.size();
1739 if (numArgs != expectedNum)
1740 return op->emitError() << regionName <<
" region must have exactly "
1741 << expectedNum <<
" arguments";
1743 for (
unsigned i = 0; i < numArgs; i++) {
1745 if (typ != inputTypes[i])
1746 return op->emitError() << regionName <<
" region argument " << (i + 1)
1747 <<
" type mismatch";
1750 YieldOp yield = dyn_cast<YieldOp>(term);
1752 return op->emitError() << regionName
1753 <<
" region must end with sparse_tensor.yield";
1754 if (!yield.hasSingleResult() ||
1755 yield.getSingleResult().getType() != outputType)
1756 return op->emitError() << regionName <<
" region yield type mismatch";
1761LogicalResult BinaryOp::verify() {
1762 NamedAttrList attrs = (*this)->getAttrs();
1763 Type leftType = getX().getType();
1764 Type rightType = getY().getType();
1765 Type outputType = getOutput().getType();
1766 Region &overlap = getOverlapRegion();
1767 Region &left = getLeftRegion();
1768 Region &right = getRightRegion();
1772 if (!overlap.
empty()) {
1774 TypeRange{leftType, rightType}, outputType)))
1777 if (!left.
empty()) {
1781 }
else if (getLeftIdentity()) {
1782 if (leftType != outputType)
1783 return emitError(
"left=identity requires first argument to have the same "
1784 "type as the output");
1786 if (!right.
empty()) {
1790 }
else if (getRightIdentity()) {
1791 if (rightType != outputType)
1792 return emitError(
"right=identity requires second argument to have the "
1793 "same type as the output");
1798LogicalResult UnaryOp::verify() {
1799 Type inputType = getX().getType();
1800 Type outputType = getOutput().getType();
1804 Region &present = getPresentRegion();
1805 if (!present.
empty()) {
1810 Region &absent = getAbsentRegion();
1811 if (!absent.
empty()) {
1817 Block *parent = getOperation()->getBlock();
1819 cast<YieldOp>(absentBlock->
getTerminator()).getSingleResult();
1820 if (
auto arg = dyn_cast<BlockArgument>(absentVal)) {
1821 if (arg.getOwner() == parent)
1822 return emitError(
"absent region cannot yield linalg argument");
1824 if (!isa<arith::ConstantOp>(def) &&
1825 (def->getBlock() == absentBlock || def->getBlock() == parent))
1826 return emitError(
"absent region cannot yield locally computed value");
1832bool ConcatenateOp::needsExtraSort() {
1837 bool allSameOrdered = llvm::all_of(getInputs(), [dstStt](Value op) {
1844 bool directLowerable =
1845 allSameOrdered && getDimension() == 0 && dstStt.
isIdentity();
1846 return !directLowerable;
1849LogicalResult ConcatenateOp::verify() {
1851 const Dimension concatDim = getDimension();
1852 const Dimension dimRank = dstTp.getDimRank();
1854 if (getInputs().size() <= 1)
1855 return emitError(
"Need at least two tensors to concatenate.");
1857 if (concatDim >= dimRank)
1859 "Concat-dimension is out of bounds for dimension-rank ({0} >= {1})",
1860 concatDim, dimRank));
1862 for (
const auto &it : llvm::enumerate(getInputs())) {
1863 const auto i = it.index();
1865 if (srcTp.hasDynamicDimShape())
1866 return emitError(llvm::formatv(
"Input tensor ${0} has dynamic shape", i));
1867 const Dimension srcDimRank = srcTp.getDimRank();
1868 if (srcDimRank != dimRank)
1870 llvm::formatv(
"Input tensor ${0} has a different rank (rank={1}) "
1871 "from the output tensor (rank={2}).",
1872 i, srcDimRank, dimRank));
1875 for (
Dimension d = 0; d < dimRank; d++) {
1876 const Size dstSh = dstTp.getDimShape()[d];
1877 if (d == concatDim) {
1878 if (ShapedType::isStatic(dstSh)) {
1883 for (
const auto src : getInputs())
1889 "The concatenation dimension of the output tensor should be the "
1890 "sum of all the concatenation dimensions of the input tensors.");
1894 for (
const auto src : getInputs()) {
1896 if (ShapedType::isStatic(prev) && sh != prev)
1897 return emitError(
"All dimensions (expect for the concatenating one) "
1898 "should be equal.");
1907void PushBackOp::build(OpBuilder &builder, OperationState &
result,
1908 Value curSize, Value inBuffer, Value value) {
1909 build(builder,
result, curSize, inBuffer, value, Value());
1912LogicalResult PushBackOp::verify() {
1913 if (Value n =
getN()) {
1915 if (nValue && nValue.value() < 1)
1921LogicalResult CompressOp::verify() {
1923 if (stt.
getLvlRank() != 1 +
static_cast<Level>(getLvlCoords().size()))
1924 return emitOpError(
"incorrect number of coordinates");
1928void ForeachOp::build(
1929 OpBuilder &builder, OperationState &
result, Value tensor,
1933 build(builder,
result, initArgs.
getTypes(), tensor, initArgs, order);
1941 SmallVector<Type> blockArgTypes(dimRank, builder.
getIndexType());
1945 blockArgTypes.append(initArgs.
getTypes().begin(), initArgs.
getTypes().end());
1947 SmallVector<Location> blockArgLocs(blockArgTypes.size(), tensor.
getLoc());
1949 OpBuilder::InsertionGuard guard(builder);
1950 auto ®ion = *
result.regions.front();
1952 builder.
createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
1953 bodyBuilder(builder,
result.location,
1959LogicalResult ForeachOp::verify() {
1961 const Dimension dimRank = t.getDimRank();
1962 const auto args = getBody()->getArguments();
1964 if (getOrder().has_value() && getOrder()->getNumDims() != t.getLvlRank())
1965 return emitError(
"Level traverse order does not match tensor's level rank");
1967 if (dimRank + 1 + getInitArgs().size() != args.size())
1968 return emitError(
"Unmatched number of arguments in the block");
1970 if (getNumResults() != getInitArgs().size())
1971 return emitError(
"Mismatch in number of init arguments and results");
1973 if (getResultTypes() != getInitArgs().getTypes())
1974 return emitError(
"Mismatch in types of init arguments and results");
1977 auto yield = cast<YieldOp>(getBody()->getTerminator());
1978 if (yield.getNumOperands() != getNumResults() ||
1979 yield.getOperands().getTypes() != getResultTypes())
1980 return emitError(
"Mismatch in types of yield values and results");
1982 const auto iTp = IndexType::get(
getContext());
1986 llvm::formatv(
"Expecting Index type for argument at index {0}", d));
1988 const auto elemTp = t.getElementType();
1989 const auto valueTp = args[dimRank].getType();
1990 if (elemTp != valueTp)
1992 llvm::formatv(
"Unmatched element type between input tensor and "
1993 "block argument, expected:{0}, got: {1}",
1998OpFoldResult ReorderCOOOp::fold(FoldAdaptor adaptor) {
2001 return getInputCoo();
2006LogicalResult ReorderCOOOp::verify() {
2011 return emitError(
"Expected COO sparse tensors only");
2014 return emitError(
"Unmatched dim2lvl map between input and result COO");
2019 return emitError(
"Unmatched storage format between input and result COO");
2024LogicalResult ReduceOp::verify() {
2025 Type inputType = getX().getType();
2026 Region &formula = getRegion();
2028 TypeRange{inputType, inputType}, inputType);
2031LogicalResult SelectOp::verify() {
2033 Type inputType = getX().getType();
2034 Type boolType =
b.getI1Type();
2035 Region &formula = getRegion();
2040LogicalResult SortOp::verify() {
2041 AffineMap xPerm = getPermMap();
2044 return emitError(llvm::formatv(
"Expected rank(perm_map) > 1, got {0}", nx));
2048 llvm::formatv(
"Expected a permutation map, got {0}", xPerm));
2057 const auto checkDim = [&](Value v,
Size minSize,
2058 const char *message) -> LogicalResult {
2060 if (ShapedType::isStatic(sh) && sh < minSize)
2062 llvm::formatv(
"{0} got {1} < {2}", message, sh, minSize));
2065 uint64_t n = cn.value();
2067 if (
auto nyAttr = getNyAttr())
2068 ny = nyAttr.getInt();
2069 if (
failed(checkDim(getXy(), n * (nx + ny),
2070 "Expected dimension(xy) >= n * (rank(perm_map) + ny)")))
2072 for (Value opnd : getYs())
2073 if (
failed(checkDim(opnd, n,
"Expected dimension(y) >= n")))
2083IterSpaceType IteratorType::getIterSpaceType()
const {
2084 return IterSpaceType::get(
getContext(), getEncoding(), getLoLvl(),
2088IteratorType IterSpaceType::getIteratorType()
const {
2089 return IteratorType::get(
getContext(), getEncoding(), getLoLvl(), getHiLvl());
2108 "expect larger level upper bound than lower bound");
2116 IntegerAttr &lvlHiAttr) {
2133 p << lo <<
" to " << hi;
2139 IntegerAttr lvlHi) {
2140 unsigned lo = lvlLo.getValue().getZExtValue();
2141 unsigned hi = lvlHi.getValue().getZExtValue();
2152 unsigned maxCnt = std::numeric_limits<unsigned>::max(),
2155 ParseResult crdList =
2160 definedSet.
set(cnt);
2168 "parsed more value than expected.");
2170 if (failed(crdList)) {
2173 "expecting SSA value or \"_\" for level coordinates");
2175 assert(definedArgs.size() == definedSet.
count());
2182 if (definedSet.
empty())
2185 for (
unsigned i = 0; i < size; i++) {
2186 if (definedSet[i]) {
2187 p << blocksArgs.front();
2188 blocksArgs = blocksArgs.drop_front();
2195 assert(blocksArgs.empty());
2208 for (
auto &coord : coords)
2229 if (iterators.size() != spaces.size())
2232 "mismatch in number of sparse iterators and sparse spaces");
2237 size_t numCrds = coords.size();
2245 blockArgs.append(coords);
2251 if (iterSpaceTps.size() != spaces.size())
2253 "mismatch in number of iteration space operands "
2254 "and iteration space types");
2256 for (
auto [it, tp] : llvm::zip_equal(iterators, iterSpaceTps)) {
2257 IterSpaceType spaceTp = llvm::dyn_cast<IterSpaceType>(tp);
2260 "expected sparse_tensor.iter_space type for "
2261 "iteration space operands");
2262 it.type = spaceTp.getIteratorType();
2277 if (args.size() != initArgs.size() || args.size() != state.
types.size()) {
2280 "mismatch in number of iteration arguments and return values");
2283 for (
auto [it, init, tp] : llvm::zip_equal(args, initArgs, state.
types)) {
2305 size_t numCrds = coords.size();
2313 blockArgs.append(coords);
2321 if (iterSpaceTps.size() != spaces.size())
2323 "mismatch in number of iteration space operands "
2324 "and iteration space types");
2339 if (args.size() != initArgs.size() || args.size() != state.
types.size()) {
2342 "mismatch in number of iteration arguments and return values");
2345 for (
auto [it, init, tp] : llvm::zip_equal(args, initArgs, state.
types)) {
2354LogicalResult ExtractIterSpaceOp::inferReturnTypes(
2355 MLIRContext *ctx, std::optional<Location> loc,
ValueRange ops,
2356 DictionaryAttr attr, OpaqueProperties prop, RegionRange region,
2357 SmallVectorImpl<mlir::Type> &ret) {
2359 ExtractIterSpaceOp::Adaptor adaptor(ops, attr, prop, region);
2361 ret.push_back(IterSpaceType::get(ctx, stt.
getEncoding(), adaptor.getLoLvl(),
2362 adaptor.getHiLvl()));
2366LogicalResult ExtractIterSpaceOp::verify() {
2367 if (getLoLvl() >= getHiLvl())
2368 return emitOpError(
"expected smaller level low than level high");
2371 if ((pIter && getLoLvl() == 0) || (!pIter && getLoLvl() != 0)) {
2373 "parent iterator should be specified iff level lower bound equals 0");
2377 IterSpaceType spaceTp = getExtractedSpace().getType();
2378 if (pIter.getType().getEncoding() != spaceTp.getEncoding())
2380 "mismatch in parent iterator encoding and iteration space encoding.");
2382 if (spaceTp.getLoLvl() != pIter.getType().getHiLvl())
2383 return emitOpError(
"parent iterator should be used to extract an "
2384 "iteration space from a consecutive level.");
2390LogicalResult ExtractValOp::verify() {
2392 auto itTp = getIterator().getType();
2395 return emitOpError(
"mismatch in tensor encoding and iterator encoding.");
2398 return emitOpError(
"must use last-level iterator to extract values. ");
2409 llvm::BitVector toRemove(iterateOp.getBody()->getNumArguments());
2410 for (
unsigned i = 0, e = iterateOp.getSpaceDim(); i < e; i++) {
2411 if (
auto crd = iterateOp.getLvlCrd(i)) {
2412 if (crd->getUsers().empty())
2413 toRemove.set(crd->getArgNumber());
2420 if (toRemove.none())
2424 iterateOp.setCrdUsedLvls(newUsedLvls);
2425 iterateOp.getBody()->eraseArguments(toRemove);
2431void IterateOp::getCanonicalizationPatterns(mlir::RewritePatternSet &results,
2432 mlir::MLIRContext *context) {
2433 results.
add<RemoveUnusedLvlCrds>(context);
2436void IterateOp::build(OpBuilder &builder, OperationState &odsState,
2438 unsigned rank = llvm::cast<IterSpaceType>(iterSpace.
getType()).getSpaceDim();
2441 return build(builder, odsState, iterSpace, initArgs, set);
2444void IterateOp::build(OpBuilder &builder, OperationState &odsState,
2447 OpBuilder::InsertionGuard guard(builder);
2453 Region *bodyRegion = odsState.
addRegion();
2458 for (Value v : initArgs)
2462 for (
unsigned i = 0, e = crdUsedLvls.
count(); i < e; i++)
2467 llvm::cast<IterSpaceType>(iterSpace.
getType()).getIteratorType(),
2471ParseResult IterateOp::parse(OpAsmParser &parser, OperationState &
result) {
2472 OpAsmParser::Argument iterator;
2473 OpAsmParser::UnresolvedOperand iterSpace;
2475 SmallVector<OpAsmParser::Argument> iters, iterArgs;
2478 if (iters.size() != 1)
2480 "expected only one iterator/iteration space");
2482 iterArgs.append(iters);
2483 Region *body =
result.addRegion();
2503 StringRef prefix =
"") {
2504 assert(blocksArgs.size() == initializers.size() &&
2505 "expected same length of arguments and initializers");
2506 if (initializers.empty())
2510 llvm::interleaveComma(llvm::zip(blocksArgs, initializers), p, [&](
auto it) {
2511 p << std::get<0>(it) <<
" = " << std::get<1>(it);
2516template <
typename SparseLoopOp>
2518 if (op.getInitArgs().size() != op.getNumResults()) {
2519 return op.emitOpError(
2520 "mismatch in number of loop-carried values and defined values");
2522 if (op.getCrdUsedLvls().max() > op.getSpaceDim())
2523 return op.emitOpError(
"required out-of-bound coordinates");
2531void IterateOp::print(OpAsmPrinter &p) {
2532 p <<
" " << getIterator() <<
" in " << getIterSpace();
2533 if (!getCrdUsedLvls().empty()) {
2540 p <<
" : " << getIterSpace().getType() <<
" ";
2541 if (!getInitArgs().empty())
2546 !getInitArgs().empty());
2549LogicalResult IterateOp::verifyRegions() {
2550 if (getIterator().
getType() != getIterSpace().
getType().getIteratorType())
2551 return emitOpError(
"mismatch in iterator and iteration space type");
2552 if (getNumRegionIterArgs() != getNumResults())
2554 "mismatch in number of basic block args and defined values");
2556 auto initArgs = getInitArgs();
2557 auto iterArgs = getRegionIterArgs();
2558 auto yieldVals = getYieldedValues();
2559 auto opResults = getResults();
2560 if (!llvm::all_equal({initArgs.size(), iterArgs.size(), yieldVals.size(),
2561 opResults.size()})) {
2562 return emitOpError() <<
"number mismatch between iter args and results.";
2565 for (
auto [i, init, iter, yield, ret] :
2566 llvm::enumerate(initArgs, iterArgs, yieldVals, opResults)) {
2567 if (init.getType() != ret.getType())
2568 return emitOpError() <<
"types mismatch between " << i
2569 <<
"th iter operand and defined value";
2570 if (iter.getType() != ret.getType())
2571 return emitOpError() <<
"types mismatch between " << i
2572 <<
"th iter region arg and defined value";
2573 if (yield.getType() != ret.getType())
2574 return emitOpError() <<
"types mismatch between " << i
2575 <<
"th yield value and defined value";
2582SmallVector<Region *> IterateOp::getLoopRegions() {
return {&getRegion()}; }
2584MutableArrayRef<OpOperand> IterateOp::getInitsMutable() {
2585 return getInitArgsMutable();
2589 return getRegion().getArguments().take_front(getNumRegionIterArgs());
2592std::optional<MutableArrayRef<OpOperand>> IterateOp::getYieldedValuesMutable() {
2593 return cast<sparse_tensor::YieldOp>(
2594 getRegion().getBlocks().front().getTerminator())
2595 .getResultsMutable();
2598std::optional<ResultRange> IterateOp::getLoopResults() {
return getResults(); }
2600OperandRange IterateOp::getEntrySuccessorOperands(RegionSuccessor successor) {
2601 return getInitArgs();
2604void IterateOp::getSuccessorRegions(RegionBranchPoint point,
2605 SmallVectorImpl<RegionSuccessor> ®ions) {
2608 regions.push_back(RegionSuccessor(&getRegion(), getRegionIterArgs()));
2610 regions.push_back(RegionSuccessor(getOperation(), getResults()));
2613void CoIterateOp::build(OpBuilder &builder, OperationState &odsState,
2615 unsigned numCases) {
2617 cast<IterSpaceType>(iterSpaces.front().
getType()).getSpaceDim();
2624 SmallVector<int64_t> caseBits(numCases, 0);
2626 return CoIterateOp::build(builder, odsState, initArgs.
getTypes(), iterSpaces,
2627 initArgs, set, cases,
2631ParseResult CoIterateOp::parse(OpAsmParser &parser, OperationState &
result) {
2633 SmallVector<Value> spaces;
2636 SmallVector<OpAsmParser::Argument> blockArgs;
2640 result.addAttribute(
"operandSegmentSizes",
2642 {static_cast<int32_t>(spaces.size()),
2643 static_cast<int32_t>(result.types.size())}));
2645 SmallVector<Attribute> cases;
2649 SmallVector<OpAsmParser::Argument> definedIts;
2656 for (
auto [i, definedIdx] : llvm::enumerate(definedItSet.
bits())) {
2658 auto spaceTp = llvm::cast<IterSpaceType>(spaces[definedIdx].
getType());
2659 definedIts[i].type = spaceTp.getIteratorType();
2661 definedIts.insert(definedIts.begin(), blockArgs.begin(), blockArgs.end());
2662 Region *body =
result.addRegion();
2666 CoIterateOp::ensureTerminator(*body, parser.
getBuilder(),
result.location);
2678void CoIterateOp::print(OpAsmPrinter &p) {
2680 llvm::interleaveComma(getIterSpaces(), p, [&](
auto s) { p << s; });
2683 if (!getCrdUsedLvls().empty()) {
2691 p <<
" : (" << getIterSpaces().getTypes() <<
")";
2692 if (!getInitArgs().empty())
2693 p.printArrowTypeList(getInitArgs().getTypes());
2695 for (
unsigned idx = 0, e = getRegions().size(); idx < e; idx++) {
2699 getRegionDefinedSpace(idx));
2701 p.printRegion(getRegion(idx),
false,
2702 !getInitArgs().empty());
2706ValueRange CoIterateOp::getYieldedValues(
unsigned regionIdx) {
2707 return cast<sparse_tensor::YieldOp>(
2708 getRegion(regionIdx).getBlocks().front().getTerminator())
2712LogicalResult CoIterateOp::verifyRegions() {
2713 for (
unsigned r = 0, e = getNumRegions(); r < e; r++) {
2714 if (getNumRegionIterArgs() != getNumResults())
2716 "mismatch in number of basic block args and defined values");
2718 auto initArgs = getInitArgs();
2719 auto iterArgs = getRegionIterArgs(r);
2720 auto yieldVals = getYieldedValues(r);
2721 auto opResults = getResults();
2722 if (!llvm::all_equal({initArgs.size(), iterArgs.size(), yieldVals.size(),
2723 opResults.size()})) {
2725 <<
"number mismatch between iter args and results on " << r
2729 for (
auto [i, init, iter, yield, ret] :
2730 llvm::enumerate(initArgs, iterArgs, yieldVals, opResults)) {
2731 if (init.getType() != ret.getType())
2733 <<
"types mismatch between " << i
2734 <<
"th iter operand and defined value on " << r <<
"th region";
2735 if (iter.getType() != ret.getType())
2736 return emitOpError() <<
"types mismatch between " << i
2737 <<
"th iter region arg and defined value on " << r
2739 if (yield.getType() != ret.getType())
2741 <<
"types mismatch between " << i
2742 <<
"th yield value and defined value on " << r <<
"th region";
2746 auto cases = getRegionDefinedSpaces();
2747 llvm::SmallSetVector<uint64_t, 8> set(cases.begin(), cases.end());
2748 if (set.size() != getNumRegions())
2754SmallVector<Region *> CoIterateOp::getSubCasesOf(
unsigned regionIdx) {
2755 SmallVector<Region *> ret;
2756 I64BitSet caseBit = getRegionDefinedSpace(regionIdx);
2757 for (Region &r : getCaseRegions())
2758 if (getRegionDefinedSpace(r.getRegionNumber()).isSubSetOf(caseBit))
2770Operation *SparseTensorDialect::materializeConstant(OpBuilder &builder,
2771 Attribute value, Type type,
2773 if (
auto op = arith::ConstantOp::materialize(builder, value, type, loc))
2778void SparseTensorDialect::initialize() {
2780#define GET_ATTRDEF_LIST
2781#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
2784#define GET_TYPEDEF_LIST
2785#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
2789#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
2791 declarePromisedInterfaces<
2792 bufferization::BufferizableOpInterface, ConcatenateOp, ConvertOp, LoadOp,
2793 NewOp, NumberOfEntriesOp, AssembleOp, DisassembleOp,
2794 ToCoordinatesBufferOp, ToCoordinatesOp, ToPositionsOp, ToValuesOp>();
2797#define GET_OP_CLASSES
2798#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
2800#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
p<< " : "<< getMemRefType()<< ", "<< getType();}static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType, VectorType vectorType) { if(memrefType.getElementType() !=vectorType.getElementType()) return op-> emitOpError("requires memref and vector types of the same elemental type")
Given a list of lists of parsed operands, populates uniqueOperands with unique operands.
static void printInitializationList(OpAsmPrinter &p, Block::BlockArgListType blocksArgs, ValueRange initializers, StringRef prefix="")
Prints the initialization list in the form of <prefix>(inner = outer, inner2 = outer2,...
static bool isPermutation(const std::vector< PermutationTy > &permutation)
static Type getElementType(Type type)
Determine the element type of type.
*if copies could not be generated due to yet unimplemented cases *copyInPlacementStart and copyOutPlacementStart in copyPlacementBlock *specify the insertion points where the incoming copies and outgoing should be inserted(the insertion happens right before the *insertion point). Since `begin` can itself be invalidated due to the memref *rewriting done from this method
static void print(spirv::VerCapExtAttr triple, DialectAsmPrinter &printer)
static bool isUnique(It begin, It end)
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion, const char *regionName, TypeRange inputTypes, Type outputType)
static ParseResult parseOptionalStaticSlice(int64_t &result, AsmParser &parser)
static SparseTensorEncodingAttr getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc)
We normalized sparse tensor encoding attribute by always using ordered/unique LT such that "compresse...
static ParseResult parseUsedCoordList(OpAsmParser &parser, OperationState &state, SmallVectorImpl< OpAsmParser::Argument > &coords)
static LogicalResult isMatchingWidth(Value mem, unsigned width)
static constexpr bool acceptBitWidth(unsigned bitWidth)
static mlir::ParseResult parseLevelRange(mlir::AsmParser &, mlir::sparse_tensor::Level &, mlir::sparse_tensor::Level &)
Parses a level range in the form "$lo `to` $hi" or simply "$lo" if $hi - $lo = 1.
static LogicalResult lvlIsInBounds(Level lvl, Value tensor)
static void printOptionalDefinedList(OpAsmPrinter &p, unsigned size, Block::BlockArgListType blocksArgs, I64BitSet definedSet)
static constexpr FieldIndex kDataFieldStartingIdx
static constexpr Level kInvalidLevel
static LogicalResult verifySparseLoopOp(SparseLoopOp op)
static constexpr Level kInvalidFieldIndex
static void printLevelRange(mlir::AsmPrinter &, mlir::sparse_tensor::Level, mlir::sparse_tensor::Level)
Prints a level range in the form "$lo `to` $hi" or simply "$lo" if $hi - $lo = 1.
static Type getFieldElemType(SparseTensorType stt, SparseTensorFieldKind kind)
static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op)
static ParseResult parseSparseIterateLoop(OpAsmParser &parser, OperationState &state, SmallVectorImpl< OpAsmParser::Argument > &iterators, SmallVectorImpl< OpAsmParser::Argument > &blockArgs)
static SmallVector< Size > getSparseFieldShape(const SparseTensorEncodingAttr enc, std::optional< ArrayRef< int64_t > > dimShape)
static ParseResult parseOptionalDefinedList(OpAsmParser &parser, OperationState &state, I64BitSet &definedSet, SmallVectorImpl< OpAsmParser::Argument > &definedArgs, unsigned maxCnt=std::numeric_limits< unsigned >::max(), OpAsmParser::Delimiter delimiter=OpAsmParser::Delimiter::Paren)
Parses a list of optional defined list in the form of "(%val0, _, %val1, ...)", where _ is used to an...
static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape, SparseTensorType stt, RankedTensorType valTp, TypeRange lvlTps)
static ParseResult parseSparseCoIterateLoop(OpAsmParser &parser, OperationState &state, SmallVectorImpl< Value > &spacesVals, SmallVectorImpl< OpAsmParser::Argument > &blockArgs)
static LogicalResult verifySparsifierGetterSetter(StorageSpecifierKind mdKind, std::optional< Level > lvl, TypedValue< StorageSpecifierType > md, Operation *op)
static LogicalResult inferSparseBufferType(ValueRange ops, DictionaryAttr attr, OpaqueProperties prop, RegionRange region, SmallVectorImpl< mlir::Type > &ret)
@ NewOp
Op vectorized into a new Op whose results will replace original Op's results.
void print(raw_ostream &os) const
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
MLIRContext * getContext() const
unsigned getDimPosition(unsigned idx) const
Extracts the position of the dimensional expression at the given result, when the caller knows it is ...
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
bool isEmpty() const
Returns true if this affine map is an empty map, i.e., () -> ().
unsigned getNumSymbols() const
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
AffineExpr getResult(unsigned idx) const
bool isPermutation() const
Returns true if the AffineMap represents a symbol-less permutation map.
This base class exposes generic asm parser hooks, usable across the various derived parsers.
virtual ParseResult parseLBrace()=0
Parse a { token.
Delimiter
These are the supported delimiters around operand lists and region argument lists,...
@ Paren
Parens surrounding zero or more operands.
@ None
Zero or more operands with no delimiters.
virtual OptionalParseResult parseOptionalInteger(APInt &result)=0
Parse an optional integer value from the stream.
virtual Builder & getBuilder() const =0
Return a builder which provides useful access to MLIRContext, global objects like types and attribute...
virtual ParseResult parseCommaSeparatedList(Delimiter delimiter, function_ref< ParseResult()> parseElementFn, StringRef contextMessage=StringRef())=0
Parse a list of comma-separated items with an optional delimiter.
virtual ParseResult parseOptionalAttrDict(NamedAttrList &result)=0
Parse a named dictionary into 'result' if it is present.
virtual ParseResult parseOptionalKeyword(StringRef keyword)=0
Parse the given keyword if present.
MLIRContext * getContext() const
virtual ParseResult parseRParen()=0
Parse a ) token.
virtual InFlightDiagnostic emitError(SMLoc loc, const Twine &message={})=0
Emit a diagnostic at the specified location and return failure.
ParseResult parseInteger(IntT &result)
Parse an integer value from the stream.
virtual ParseResult parseRBrace()=0
Parse a } token.
virtual ParseResult parseLess()=0
Parse a '<' token.
virtual ParseResult parseEqual()=0
Parse a = token.
virtual SMLoc getCurrentLocation()=0
Get the location of the next token and store it into the argument.
virtual ParseResult parseOptionalComma()=0
Parse a , token if present.
auto getChecked(SMLoc loc, ParamsT &&...params)
Invoke the getChecked method of the given Attribute or Type class, using the provided location to emi...
virtual ParseResult parseColon()=0
Parse a : token.
virtual SMLoc getNameLoc() const =0
Return the location of the original name token.
virtual ParseResult parseQuestion()=0
Parse a '?' token.
virtual ParseResult parseGreater()=0
Parse a '>' token.
virtual ParseResult parseLParen()=0
Parse a ( token.
virtual ParseResult parseComma()=0
Parse a , token.
virtual ParseResult parseArrowTypeList(SmallVectorImpl< Type > &result)=0
Parse an arrow followed by a type list.
ParseResult parseTypeList(SmallVectorImpl< Type > &result)
Parse a type list.
ParseResult parseKeyword(StringRef keyword)
Parse a given keyword.
virtual ParseResult parseAttribute(Attribute &result, Type type={})=0
Parse an arbitrary attribute of a given type and return it in result.
This base class exposes generic asm printer hooks, usable across the various derived printers.
void printArrowTypeList(TypeRange &&types)
virtual raw_ostream & getStream() const
Return the raw output stream used by this printer.
Attributes are known-constant values of operations.
MutableArrayRef< BlockArgument > BlockArgListType
Operation * getTerminator()
Get the terminator operation of this block.
BlockArgument addArgument(Type type, Location loc)
Add one value to the argument list.
BlockArgListType getArguments()
DenseI32ArrayAttr getDenseI32ArrayAttr(ArrayRef< int32_t > values)
IntegerAttr getIntegerAttr(Type type, int64_t value)
IntegerAttr getI64IntegerAttr(int64_t value)
IntegerType getIntegerType(unsigned width)
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
MLIRContext is the top-level object for a collection of MLIR operations.
The OpAsmParser has methods for interacting with the asm parser: parsing things from it,...
virtual ParseResult parseRegion(Region ®ion, ArrayRef< Argument > arguments={}, bool enableNameShadowing=false)=0
Parses a region.
virtual ParseResult parseArgument(Argument &result, bool allowType=false, bool allowAttrs=false)=0
Parse a single argument with the following syntax:
virtual ParseResult parseArgumentList(SmallVectorImpl< Argument > &result, Delimiter delimiter=Delimiter::None, bool allowType=false, bool allowAttrs=false)=0
Parse zero or more arguments with a specified surrounding delimiter.
ParseResult parseAssignmentList(SmallVectorImpl< Argument > &lhs, SmallVectorImpl< UnresolvedOperand > &rhs)
Parse a list of assignments of the form (x1 = y1, x2 = y2, ...)
virtual ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, SmallVectorImpl< Value > &result)=0
Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperands(Operands &&operands, Type type, SmallVectorImpl< Value > &result)
Resolve a list of operands to SSA values, emitting an error on failure, or appending the results to t...
virtual ParseResult parseOperandList(SmallVectorImpl< UnresolvedOperand > &result, Delimiter delimiter=Delimiter::None, bool allowResultNumber=true, int requiredOperandCount=-1)=0
Parse zero or more SSA comma-separated operand references with a specified surrounding delimiter,...
This is a pure-virtual base class that exposes the asmprinter hooks necessary to implement a custom p...
virtual void printRegion(Region &blocks, bool printEntryBlockArgs=true, bool printBlockTerminators=true, bool printEmptyBlock=false)=0
Prints a region.
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes={}, ArrayRef< Location > locs={})
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Simple wrapper around a void* in order to express generically how to pass in op properties through AP...
Operation is the basic unit of execution within MLIR.
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
operand_range getOperands()
Returns an iterator on the underlying Value's.
result_range getResults()
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class provides an abstraction over the different types of ranges over Regions.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
unsigned getNumArguments()
BlockArgument getArgument(unsigned i)
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
virtual void finalizeOpModification(Operation *op)
This method is used to signal the end of an in-place modification of the given operation.
virtual void startOpModification(Operation *op)
This method is used to notify the rewriter that an in-place operation modification is about to happen...
This class provides an abstraction over the various different ranges of value types.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
bool isInteger() const
Return true if this is an integer type (with the specified width).
This class provides an abstraction over the different types of ranges over Values.
type_range getType() const
type_range getTypes() const
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Location getLoc() const
Return the location of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
static ConstantIndexOp create(OpBuilder &builder, Location location, int64_t value)
A simple wrapper to encode a bitset of (at most 64) levels, currently used by sparse_tensor....
iterator_range< const_set_bits_iterator > bits() const
I64BitSet & set(unsigned i)
A wrapper around RankedTensorType, which has three goals:
bool isSingletonLvl(Level l) const
SmallVector< Size > getBatchLvlShape() const
Returns the batched level-shape.
MLIRContext * getContext() const
Type getElementType() const
bool isLooseCompressedLvl(Level l) const
unsigned getCrdWidth() const
Returns the coordinate-overhead bitwidth, defaulting to zero.
bool hasEncoding() const
Returns true for tensors which have an encoding, and false for those which do not.
bool isAllOrdered() const
Returns true for tensors where every level is ordered.
bool isCOOType(Level startLvl=0, bool isUnique=true) const
Returns true iff this sparse tensor type has a trailing COO region starting at the given level.
Dimension getDimRank() const
Returns the dimension-rank.
AffineMap getLvlToDim() const
Returns the lvlToDiml mapping (or the null-map for the identity).
Attribute getImplicitVal() const
Returns the implicit value, defaulting to null Attribute for 0.
bool isAllDense() const
Returns true for tensors where every level is dense.
Type getCrdType() const
Returns the coordinate-overhead MLIR type, defaulting to IndexType.
bool isIdentity() const
Returns true if the dimToLvl mapping is the identity.
bool hasSameDimToLvl(const SparseTensorType &other) const
Returns true iff the two types have the same mapping.
ArrayRef< Size > getDimShape() const
Returns the dimension-shape.
SmallVector< Size > getLvlShape() const
Returns the level-shape.
bool isCompressedLvl(Level l) const
bool hasStaticDimShape() const
Returns true if no dimension has dynamic size.
Level getLvlRank() const
Returns the level-rank.
ArrayRef< LevelType > getLvlTypes() const
unsigned getPosWidth() const
Returns the position-overhead bitwidth, defaulting to zero.
RankedTensorType getCOOType(bool ordered) const
Returns [un]ordered COO type for this sparse tensor type.
SparseTensorEncodingAttr getEncoding() const
Level getAoSCOOStart() const
Returns the starting level of this sparse tensor type for a trailing COO region that spans at least t...
LevelType getLvlType(Level l) const
AffineMap getDimToLvl() const
Returns the dimToLvl mapping (or the null-map for the identity).
Attribute getExplicitVal() const
Returns the explicit value, defaulting to null Attribute for unset.
Type getPosType() const
Returns the position-overhead MLIR type, defaulting to IndexType.
bool isUniqueLvl(Level l) const
Provides methods to access fields of a sparse tensor with the given encoding.
unsigned getNumDataFields() const
Gets the total number of data fields (coordinate arrays, position arrays, and a value array) for the ...
unsigned getNumFields() const
Gets the total number of fields for the given sparse tensor encoding.
void foreachField(llvm::function_ref< bool(FieldIndex, SparseTensorFieldKind, Level, LevelType)>) const
For each field that will be allocated for the given sparse tensor encoding, calls the callback with t...
std::pair< FieldIndex, unsigned > getFieldIndexAndStride(SparseTensorFieldKind kind, std::optional< Level > lvl) const
Parses the Sparse Tensor Encoding Attribute (STEA).
Speculatability
This enum is returned from the getSpeculatability method in the ConditionallySpeculatable op interfac...
constexpr auto Speculatable
constexpr auto NotSpeculatable
DynamicAPInt getIndex(const ConeV &cone)
Get the index of a cone, i.e., the volume of the parallelepiped spanned by its generators,...
Value constantIndex(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of index type.
bool isWithCrdLT(LevelType lt)
std::optional< LevelType > buildLevelType(LevelFormat lf, const std::vector< LevelPropNonDefault > &properties, uint64_t n=0, uint64_t m=0)
uint64_t Dimension
The type of dimension identifiers and dimension-ranks.
bool isWithPosLT(LevelType lt)
bool isOrderedLT(LevelType lt)
std::string toMLIRString(LevelType lt)
Dimension toDim(SparseTensorEncodingAttr enc, Level l)
Convenience method to translate the given level to the corresponding dimension.
void foreachFieldAndTypeInSparseTensor(SparseTensorType, llvm::function_ref< bool(Type, FieldIndex, SparseTensorFieldKind, Level, LevelType)>)
bool isSingletonLT(LevelType lt)
uint64_t getN(LevelType lt)
unsigned FieldIndex
The type of field indices.
llvm::hash_code hash_value(LevelType lt)
uint64_t Level
The type of level identifiers and level-ranks.
AffineMap inferLvlToDim(AffineMap dimToLvl, MLIRContext *context)
Given the dimToLvl map, infers the lvlToDim map, or returns empty Affine map when inference fails.
SparseTensorEncodingAttr getSparseTensorEncoding(Type type)
Convenience method to get a sparse encoding attribute from a type.
MemRefType getMemRefType(T &&t)
Convenience method to abbreviate casting getType().
Level toLvl(SparseTensorEncodingAttr enc, Dimension d)
Convenience method to translate the given dimension to the corresponding level.
bool isBlockSparsity(AffineMap dimToLvl)
Given the dimToLvl map, returns if it's block sparsity.
bool isDenseLT(LevelType lt)
uint64_t getM(LevelType lt)
int64_t Size
The type for individual components of a compile-time shape, including the value ShapedType::kDynamic ...
std::optional< SparseTensorType > tryGetSparseTensorType(Value val)
bool hasAnyNonIdentityOperandsOrResults(Operation *op)
Returns true iff MLIR operation has any sparse tensor with non-identity dim2lvl maps.
SparseTensorType getSparseTensorType(Value val)
Convenience methods to obtain a SparseTensorType from a Value.
SparseTensorFieldKind
===-------------------------------------------------------------------—===// The sparse tensor storag...
bool isBatchLT(LevelType lt)
SmallVector< unsigned > getBlockSize(AffineMap dimToLvl)
Given the dimToLvl map, returns the block sizes in a vector.
AffineMap inverseBlockSparsity(AffineMap dimToLvl, MLIRContext *context)
Returns the lvlToDim map for the given dimToLvl map specific to the block sparse cases.
bool isNOutOfMLT(LevelType lt)
Include the generated interface declarations.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
AffineMap inversePermutation(AffineMap map)
Returns a map of codomain to domain dimensions such that the first codomain dimension for a particula...
@ Mul
RHS of mul is always a constant or a symbolic expression.
@ Mod
RHS of mod is always a constant or a symbolic expression with a positive value.
@ FloorDiv
RHS of floordiv is always a constant or a symbolic expression.
AffineExpr getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, AffineExpr rhs)
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
SetVector< Operation * > getSlice(Operation *op, const BackwardSliceOptions &backwardSliceOptions={}, const ForwardSliceOptions &forwardSliceOptions={})
Iteratively computes backward slices and forward slices until a fixed point is reached.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
LogicalResult verify(Operation *op, bool verifyRecursively=true)
Perform (potentially expensive) checks of invariants, used to detect compiler bugs,...
llvm::function_ref< Fn > function_ref
LogicalResult matchAndRewrite(IterateOp iterateOp, PatternRewriter &rewriter) const override
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
Patterns must specify the root operation name they match against, and can also specify the benefit of...
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
Patterns must specify the root operation name they match against, and can also specify the benefit of...
This represents an operation in an abstracted form, suitable for use with the builder APIs.
T & getOrAddProperties()
Get (or create) a properties of the provided type to be set on the operation on creation.
SmallVector< Value, 4 > operands
void addOperands(ValueRange newOperands)
void addAttribute(StringRef name, Attribute attr)
Add an attribute with the specified name.
void addTypes(ArrayRef< Type > newTypes)
SmallVector< Type, 4 > types
Types of the results of this operation.
Region * addRegion()
Create a region that should be attached to the operation.
A simple structure that encodes a range of levels in the sparse tensors that forms a COO segment.
This enum defines all the sparse representations supportable by the SparseTensor dialect.
constexpr bool isa() const
Check if the LevelType is in the LevelFormat.
LevelType stripStorageIrrelevantProperties() const