27 #include "llvm/ADT/Bitset.h"
28 #include "llvm/ADT/TypeSwitch.h"
29 #include "llvm/Support/FormatVariadic.h"
31 #define GET_ATTRDEF_CLASSES
32 #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
33 #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc"
43 #define GET_TYPEDEF_CLASSES
44 #include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
81 if (dimShape.has_value()) {
85 enc.translateShape(*dimShape, CrdTransDirectionKind::dim2lvl);
86 memrefShape.assign(lvlShape.begin(),
87 lvlShape.begin() + enc.getBatchLvlRank());
90 memrefShape.push_back(ShapedType::kDynamic);
106 const auto lvlTypes = enc.getLvlTypes();
107 const Level lvlRank = enc.getLvlRank();
113 for (
Level l = 0; l < lvlRank; ) {
114 const auto lt = lvlTypes[l];
123 if (!cooSegsRef.empty() && cooSegsRef.front().isSegmentStart(l)) {
124 if (!cooSegsRef.front().isSoA) {
127 l = cooSegsRef.front().lvlRange.second;
133 cooSegsRef = cooSegsRef.drop_front();
173 return callback(specType, fieldIdx, fieldKind, lvl, lt);
175 return callback(posMemType, fieldIdx, fieldKind, lvl, lt);
177 return callback(crdMemType, fieldIdx, fieldKind, lvl, lt);
179 return callback(valMemType, fieldIdx, fieldKind, lvl, lt);
181 llvm_unreachable(
"unrecognized field kind");
186 unsigned numFields = 0;
196 unsigned numFields = 0;
208 std::pair<FieldIndex, unsigned>
210 std::optional<Level> lvl)
const {
214 assert(lvl.has_value());
215 const Level cooStart = enc.getAoSCOOStart();
216 const Level lvlRank = enc.getLvlRank();
217 if (lvl.value() >= cooStart && lvl.value() < lvlRank) {
219 stride = lvlRank - cooStart;
225 if ((lvl && fLvl == lvl.value() &&
kind == fKind) ||
234 return std::pair<FieldIndex, unsigned>(fieldIdx, stride);
241 std::optional<uint64_t> SparseTensorDimSliceAttr::getStatic(int64_t v) {
242 return isDynamic(v) ? std::nullopt
243 : std::make_optional(
static_cast<uint64_t
>(v));
246 std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticOffset()
const {
247 return getStatic(getOffset());
250 std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticStride()
const {
254 std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticSize()
const {
255 return getStatic(getSize());
258 bool SparseTensorDimSliceAttr::isCompletelyDynamic()
const {
259 return isDynamic(getOffset()) && isDynamic(
getStride()) &&
260 isDynamic(getSize());
263 std::string SparseTensorDimSliceAttr::getStaticString(int64_t v) {
264 return isDynamic(v) ?
"?" : std::to_string(v);
268 assert(getImpl() &&
"Uninitialized SparseTensorDimSliceAttr");
270 os << getStaticString(getOffset());
272 os << getStaticString(getSize());
285 if (parseResult.has_value()) {
286 if (parseResult.value().succeeded() && result < 0) {
289 "expect positive value or ? for slice offset/size/stride");
292 return parseResult.value();
296 result = SparseTensorDimSliceAttr::kDynamic;
301 int64_t offset = kDynamic, size = kDynamic, stride = kDynamic;
313 offset, size, stride);
318 int64_t offset, int64_t size, int64_t stride) {
319 if (!isDynamic(offset) && offset < 0)
320 return emitError() <<
"expect non-negative value or ? for slice offset";
321 if (!isDynamic(size) && size <= 0)
322 return emitError() <<
"expect positive value or ? for slice size";
323 if (!isDynamic(stride) && stride <= 0)
324 return emitError() <<
"expect positive value or ? for slice stride";
328 SparseTensorEncodingAttr
329 SparseTensorEncodingAttr::withDimToLvl(
AffineMap dimToLvl)
const {
330 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
333 getCrdWidth(), getExplicitVal(), getImplicitVal());
336 SparseTensorEncodingAttr
337 SparseTensorEncodingAttr::withDimToLvl(SparseTensorEncodingAttr enc)
const {
338 return withDimToLvl(enc ? enc.getDimToLvl() :
AffineMap());
341 SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimToLvl()
const {
345 SparseTensorEncodingAttr
346 SparseTensorEncodingAttr::withBitWidths(
unsigned posWidth,
347 unsigned crdWidth)
const {
348 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
350 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), posWidth,
351 crdWidth, getExplicitVal(), getImplicitVal());
354 SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths()
const {
355 return withBitWidths(0, 0);
358 SparseTensorEncodingAttr
359 SparseTensorEncodingAttr::withExplicitVal(
Attribute explicitVal)
const {
360 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
362 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
363 getCrdWidth(), explicitVal, getImplicitVal());
366 SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutExplicitVal()
const {
370 SparseTensorEncodingAttr
371 SparseTensorEncodingAttr::withImplicitVal(
Attribute implicitVal)
const {
372 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
374 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
375 getCrdWidth(), getExplicitVal(), implicitVal);
378 SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutImplicitVal()
const {
382 SparseTensorEncodingAttr SparseTensorEncodingAttr::withDimSlices(
385 getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
386 getCrdWidth(), getExplicitVal(), getImplicitVal(), dimSlices);
389 SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimSlices()
const {
393 uint64_t SparseTensorEncodingAttr::getBatchLvlRank()
const {
395 auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(),
isBatchLT);
396 return std::distance(lastBatch, lvlTypes.rend());
400 return !getImpl() || llvm::all_of(getLvlTypes(),
isDenseLT);
403 bool SparseTensorEncodingAttr::isAllOrdered()
const {
404 return !getImpl() || llvm::all_of(getLvlTypes(),
isOrderedLT);
407 Type SparseTensorEncodingAttr::getCrdElemType()
const {
415 Type SparseTensorEncodingAttr::getPosElemType()
const {
423 MemRefType SparseTensorEncodingAttr::getCrdMemRefType(
429 MemRefType SparseTensorEncodingAttr::getPosMemRefType(
435 bool SparseTensorEncodingAttr::isIdentity()
const {
436 return !getImpl() || !getDimToLvl() || getDimToLvl().isIdentity();
440 return !getImpl() || !getDimToLvl() || getDimToLvl().isPermutation();
443 Dimension SparseTensorEncodingAttr::getDimRank()
const {
444 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
445 const auto dimToLvl = getDimToLvl();
446 return dimToLvl ? dimToLvl.
getNumDims() : getLvlRank();
449 Level SparseTensorEncodingAttr::getLvlRank()
const {
450 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
451 return getLvlTypes().size();
457 assert(l < getLvlRank() &&
"Level is out of bounds");
458 return getLvlTypes()[l];
461 bool SparseTensorEncodingAttr::isSlice()
const {
462 assert(getImpl() &&
"Uninitialized SparseTensorEncodingAttr");
463 return !getDimSlices().empty();
466 SparseTensorDimSliceAttr
467 SparseTensorEncodingAttr::getDimSlice(
Dimension dim)
const {
468 assert(isSlice() &&
"Is not a slice");
469 const auto dimSlices = getDimSlices();
470 assert(dim < dimSlices.size() &&
"Dimension is out of bounds");
471 return dimSlices[dim];
474 std::optional<uint64_t>
475 SparseTensorEncodingAttr::getStaticDimSliceOffset(
Dimension dim)
const {
476 return getDimSlice(dim).getStaticOffset();
479 std::optional<uint64_t>
480 SparseTensorEncodingAttr::getStaticDimSliceStride(
Dimension dim)
const {
481 return getDimSlice(dim).getStaticStride();
484 std::optional<uint64_t>
485 SparseTensorEncodingAttr::getStaticLvlSliceOffset(
Level lvl)
const {
486 return getStaticDimSliceOffset(
toDim(*
this, lvl));
489 std::optional<uint64_t>
490 SparseTensorEncodingAttr::getStaticLvlSliceStride(
Level lvl)
const {
491 return getStaticDimSliceStride(
toDim(*
this, lvl));
496 CrdTransDirectionKind dir)
const {
502 dir == CrdTransDirectionKind::dim2lvl ? getLvlRank() : getDimRank();
506 for (
unsigned r = 0; r < rank; r++) {
507 unsigned trans = dir == CrdTransDirectionKind::dim2lvl ?
toDim(*
this, r)
509 ret.push_back(srcShape[trans]);
516 dir == CrdTransDirectionKind::dim2lvl ? getDimToLvl() : getLvlToDim();
519 dimRep.reserve(srcShape.size());
520 for (int64_t sz : srcShape) {
521 if (!ShapedType::isDynamic(sz)) {
535 if (
auto c = llvm::dyn_cast<AffineConstantExpr>(evalExp)) {
536 ret.push_back(c.getValue() + 1);
538 if (
auto mod = llvm::dyn_cast<AffineBinaryOpExpr>(evalExp);
542 if (
auto bound = llvm::dyn_cast<AffineConstantExpr>(mod.getRHS())) {
543 ret.push_back(bound.getValue());
547 ret.push_back(ShapedType::kDynamic);
550 assert(ret.size() == rank);
557 CrdTransDirectionKind dir)
const {
562 dir == CrdTransDirectionKind::lvl2dim ? getDimRank() : getLvlRank(),
564 auto transOp = builder.
create<CrdTranslateOp>(loc, retType, crds, dir, *
this);
565 return transOp.getOutCrds();
580 unsigned posWidth = 0;
581 unsigned crdWidth = 0;
586 "explicitVal",
"implicitVal"};
589 auto *it = find(keys, attrName);
590 if (it == keys.end()) {
594 unsigned keyWordIndex = it - keys.begin();
599 switch (keyWordIndex) {
602 auto res = cParser.parseDimLvlMap();
605 const auto &dlm = *res;
607 const Level lvlRank = dlm.getLvlRank();
608 for (
Level lvl = 0; lvl < lvlRank; lvl++)
609 lvlTypes.push_back(dlm.getLvlType(lvl));
611 const Dimension dimRank = dlm.getDimRank();
612 for (
Dimension dim = 0; dim < dimRank; dim++)
613 dimSlices.push_back(dlm.getDimSlice(dim));
617 const auto isDefined = [](SparseTensorDimSliceAttr slice) {
618 return static_cast<bool>(slice.getImpl());
620 if (llvm::any_of(dimSlices, isDefined)) {
621 const auto defaultSlice =
623 for (
Dimension dim = 0; dim < dimRank; dim++)
624 if (!isDefined(dimSlices[dim]))
625 dimSlices[dim] = defaultSlice;
630 dimToLvl = dlm.getDimToLvlMap(parser.
getContext());
631 lvlToDim = dlm.getLvlToDimMap(parser.
getContext());
638 auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
641 "expected an integral position bitwidth");
644 posWidth = intAttr.getInt();
651 auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
654 "expected an integral index bitwidth");
657 crdWidth = intAttr.getInt();
664 if (
auto result = llvm::dyn_cast<FloatAttr>(attr)) {
665 explicitVal = result;
666 }
else if (
auto result = llvm::dyn_cast<IntegerAttr>(attr)) {
667 explicitVal = result;
668 }
else if (
auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) {
669 explicitVal = result;
672 "expected a numeric value for explicitVal");
681 if (
auto result = llvm::dyn_cast<FloatAttr>(attr)) {
682 implicitVal = result;
683 }
else if (
auto result = llvm::dyn_cast<IntegerAttr>(attr)) {
684 implicitVal = result;
685 }
else if (
auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) {
686 implicitVal = result;
689 "expected a numeric value for implicitVal");
707 if (!lvlToDim || lvlToDim.
isEmpty()) {
710 return parser.
getChecked<SparseTensorEncodingAttr>(
711 parser.
getContext(), lvlTypes, dimToLvl, lvlToDim, posWidth, crdWidth,
712 explicitVal, implicitVal, dimSlices);
716 auto map =
static_cast<AffineMap>(getDimToLvl());
720 printer <<
"<{ map = ";
721 printSymbols(map, printer);
723 printDimensions(map, printer, getDimSlices());
725 printLevels(map, printer, getLvlTypes());
729 printer <<
", posWidth = " << getPosWidth();
731 printer <<
", crdWidth = " << getCrdWidth();
732 if (getExplicitVal()) {
733 printer <<
", explicitVal = " << getExplicitVal();
735 if (getImplicitVal())
736 printer <<
", implicitVal = " << getImplicitVal();
740 void SparseTensorEncodingAttr::printSymbols(
AffineMap &map,
745 for (
unsigned i = 0, n = map.
getNumSymbols() - 1; i < n; i++)
746 printer <<
's' << i <<
", ";
752 void SparseTensorEncodingAttr::printDimensions(
755 if (!dimSlices.empty()) {
756 for (
unsigned i = 0, n = map.
getNumDims() - 1; i < n; i++)
757 printer <<
'd' << i <<
" : " << dimSlices[i] <<
", ";
759 printer <<
'd' << map.
getNumDims() - 1 <<
" : "
763 for (
unsigned i = 0, n = map.
getNumDims() - 1; i < n; i++)
764 printer <<
'd' << i <<
", ";
772 for (
unsigned i = 0, n = map.
getNumResults() - 1; i < n; i++) {
789 return emitError() <<
"unexpected position bitwidth: " << posWidth;
791 return emitError() <<
"unexpected coordinate bitwidth: " << crdWidth;
795 while (it != lvlTypes.end()) {
796 if (it == lvlTypes.begin() ||
798 return emitError() <<
"expected compressed or loose_compressed level "
799 "before singleton level";
801 auto *curCOOEnd = std::find_if_not(it, lvlTypes.end(),
isSingletonLT);
803 return emitError() <<
"expected all singleton lvlTypes "
804 "following a singleton level";
806 if (!std::all_of(it, curCOOEnd, [it](
LevelType i) {
810 return emitError() <<
"expected all singleton lvlTypes stored in the "
811 "same memory layout (SoA vs AoS).";
816 auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(),
isBatchLT);
817 if (!std::all_of(lastBatch, lvlTypes.rend(),
isBatchLT))
818 return emitError() <<
"Batch lvlType can only be leading levels.";
821 auto soaLvls = llvm::make_filter_range(lvlTypes, [](
LevelType lt) {
824 if (llvm::any_of(soaLvls, [](
LevelType lt) {
827 return emitError() <<
"SoA is only applicable to singleton lvlTypes.";
831 if (
auto it = llvm::find_if(lvlTypes,
isNOutOfMLT);
832 it != std::end(lvlTypes)) {
833 if (it != lvlTypes.end() - 1)
834 return emitError() <<
"expected n_out_of_m to be the last level type";
835 if (!std::all_of(lvlTypes.begin(), it,
isDenseLT))
836 return emitError() <<
"expected all dense lvlTypes "
837 "before a n_out_of_m level";
841 <<
"expected 1xm block structure for n_out_of_m level";
844 unsigned coefficient = 0;
845 for (
const auto &elem : sizes) {
847 if (elem != coefficient && coefficient != 0) {
848 return emitError() <<
"expected only one blocked level "
849 "with the same coefficients";
854 if (coefficient !=
getM(*it)) {
855 return emitError() <<
"expected coeffiencts of Affine expressions "
856 "to be equal to m of n_out_of_m level";
865 const Level lvlRank = lvlTypes.size();
867 return emitError() <<
"expected a non-empty array for lvlTypes";
873 <<
"level-rank mismatch between dimToLvl and lvlTypes: "
878 return emitError() <<
"failed to infer lvlToDim from dimToLvl";
879 if (lvlToDim && (inferRes != lvlToDim))
880 return emitError() <<
"expected lvlToDim to be an inverse of dimToLvl";
881 if (dimRank > lvlRank)
882 return emitError() <<
"unexpected dimToLvl mapping from " << dimRank
883 <<
" to " << lvlRank;
885 if (!dimSlices.empty()) {
886 if (dimSlices.size() != dimRank)
888 <<
"dimension-rank mismatch between dimSlices and dimToLvl: "
889 << dimSlices.size() <<
" != " << dimRank;
892 if (dimRank != lvlRank)
894 <<
"dimSlices expected dimension-rank to match level-rank: "
895 << dimRank <<
" != " << lvlRank;
900 LogicalResult SparseTensorEncodingAttr::verifyEncoding(
905 if (failed(
verify(
emitError, getLvlTypes(), getDimToLvl(), getLvlToDim(),
906 getPosWidth(), getCrdWidth(), getExplicitVal(),
907 getImplicitVal(), getDimSlices())))
912 const Dimension dimRank = dimShape.size();
914 return emitError() <<
"expected non-scalar sparse tensor";
915 if (getDimRank() != dimRank)
917 <<
"dimension-rank mismatch between encoding and tensor shape: "
918 << getDimRank() <<
" != " << dimRank;
919 if (
auto expVal = getExplicitVal()) {
920 Type attrType = llvm::dyn_cast<TypedAttr>(expVal).getType();
921 if (attrType != elementType) {
922 return emitError() <<
"explicit value type mismatch between encoding and "
923 <<
"tensor element type: " << attrType
924 <<
" != " << elementType;
927 if (
auto impVal = getImplicitVal()) {
928 Type attrType = llvm::dyn_cast<TypedAttr>(impVal).getType();
929 if (attrType != elementType) {
930 return emitError() <<
"implicit value type mismatch between encoding and "
931 <<
"tensor element type: " << attrType
932 <<
" != " << elementType;
935 auto impFVal = llvm::dyn_cast<FloatAttr>(impVal);
936 auto impIntVal = llvm::dyn_cast<IntegerAttr>(impVal);
937 auto impComplexVal = llvm::dyn_cast<complex::NumberAttr>(impVal);
938 if ((impFVal && impFVal.getValue().isNonZero()) ||
939 (impIntVal && !impIntVal.getValue().isZero()) ||
940 (impComplexVal && (impComplexVal.getImag().isNonZero() ||
941 impComplexVal.getReal().isNonZero()))) {
942 return emitError() <<
"implicit value must be zero";
948 Level mlir::sparse_tensor::SparseTensorEncodingAttr::getAoSCOOStart()
const {
950 assert(coo.size() == 1 || coo.empty());
951 if (!coo.empty() && coo.front().isAoS()) {
952 return coo.front().lvlRange.first;
958 mlir::sparse_tensor::SparseTensorEncodingAttr::getCOOSegments()
const {
960 if (getLvlRank() <= 1)
965 while (l < getLvlRank()) {
968 auto cur = lts.begin() + l;
969 auto end = std::find_if(cur + 1, lts.end(), [](
LevelType lt) {
970 return !lt.isa<LevelFormat::Singleton>();
972 unsigned cooLen = std::distance(cur, end);
978 ret.push_back(
COOSegment{std::make_pair(l, l + cooLen),
997 if (!isCompressedLvl(startLvl) && !isLooseCompressedLvl(startLvl))
999 for (
Level l = startLvl + 1; l < lvlRank; ++l)
1000 if (!isSingletonLvl(l))
1005 return !
isUnique || isUniqueLvl(lvlRank - 1);
1011 lvlTypes.reserve(lvlRank);
1018 std::fill_n(std::back_inserter(lvlTypes), lvlRank - 2,
1024 getContext(), lvlTypes, getDimToLvl(), getLvlToDim(), getPosWidth(),
1025 getCrdWidth(), getExplicitVal(), getImplicitVal());
1033 SparseTensorEncodingAttr
1035 if (
auto ttp = llvm::dyn_cast<RankedTensorType>(type))
1036 return llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(ttp.getEncoding());
1037 if (
auto mdtp = llvm::dyn_cast<StorageSpecifierType>(type))
1038 return mdtp.getEncoding();
1044 auto map =
static_cast<AffineMap>(dimToLvl);
1061 lvlExprs.reserve(numLvls);
1064 std::map<unsigned, SmallVector<AffineExpr, 3>> lvlExprComponents;
1065 for (
unsigned i = 0, n = numLvls; i < n; i++) {
1067 if (
auto binOp = dyn_cast<AffineBinaryOpExpr>(result)) {
1070 auto pos = dyn_cast<AffineDimExpr>(binOp.getLHS()).getPosition();
1071 assert(lvlExprComponents.find(pos) == lvlExprComponents.end() &&
1072 "expected only one floordiv for each dimension");
1077 components.push_back(binOp.getRHS());
1079 lvlExprComponents[pos] = components;
1081 auto pos = dyn_cast<AffineDimExpr>(binOp.getLHS()).getPosition();
1082 assert(lvlExprComponents.find(pos) != lvlExprComponents.end() &&
1083 "expected floordiv before mod");
1088 assert(
false &&
"expected floordiv or mod");
1098 for (
auto &components : lvlExprComponents) {
1099 assert(components.second.size() == 3 &&
1100 "expected 3 components to build lvlExprs");
1105 lvlExprs.push_back(addOp);
1112 "expected dimToLvl to be block sparsity for calling getBlockSize");
1115 if (
auto binOp = dyn_cast<AffineBinaryOpExpr>(result)) {
1117 blockSize.push_back(
1118 dyn_cast<AffineConstantExpr>(binOp.getRHS()).getValue());
1121 blockSize.push_back(0);
1130 std::map<unsigned, int64_t> coeffientMap;
1131 bool hasBlock =
false;
1133 if (
auto binOp = dyn_cast<AffineBinaryOpExpr>(result)) {
1135 auto dimOp = dyn_cast<AffineDimExpr>(binOp.getLHS());
1136 auto conOp = dyn_cast<AffineConstantExpr>(binOp.getRHS());
1137 if (!dimOp || !conOp || conOp.getValue() <= 0)
1140 auto pos = dimOp.getPosition();
1143 auto [it, inserted] = coeffientMap.try_emplace(pos);
1147 it->second = conOp.getValue();
1150 auto it = coeffientMap.find(pos);
1151 if (it == coeffientMap.end())
1154 if (conOp.getValue() != it->second)
1160 }
else if (
auto dimOp = dyn_cast<AffineDimExpr>(result)) {
1161 auto pos = dimOp.getPosition();
1163 if (!coeffientMap.try_emplace(pos, 0).second)
1173 auto hasNonIdentityMap = [](
Value v) {
1178 return llvm::any_of(op->
getOperands(), hasNonIdentityMap) ||
1179 llvm::any_of(op->
getResults(), hasNonIdentityMap);
1184 assert(enc.isPermutation() &&
"Non permutation map not supported");
1185 if (
const auto dimToLvl = enc.getDimToLvl())
1193 assert(enc.isPermutation() &&
"Non permutation map not supported");
1194 if (
const auto lvlToDim = enc.getLvlToDim())
1204 static SparseTensorEncodingAttr
1207 for (
auto lt : enc.getLvlTypes())
1211 enc.getContext(), lts,
1221 enc.getDimSlices());
1224 StorageSpecifierType
1229 StorageSpecifierType
1232 SparseTensorEncodingAttr encoding) {
1251 StorageSpecifierKind mdKind, std::optional<Level> lvl,
1253 if (mdKind == StorageSpecifierKind::ValMemSize && lvl) {
1255 "redundant level argument for querying value memory size");
1258 const auto enc = md.getType().getEncoding();
1259 const Level lvlRank = enc.getLvlRank();
1261 if (mdKind == StorageSpecifierKind::DimOffset ||
1262 mdKind == StorageSpecifierKind::DimStride)
1264 return op->
emitError(
"requested slice data on non-slice tensor");
1266 if (mdKind != StorageSpecifierKind::ValMemSize) {
1268 return op->
emitError(
"missing level argument");
1270 const Level l = lvl.value();
1272 return op->
emitError(
"requested level is out of bounds");
1274 if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l))
1276 "requested position memory size on a singleton level");
1292 llvm_unreachable(
"Unrecognizable FieldKind");
1297 RankedTensorType valTp,
1300 return op->
emitError(
"the sparse-tensor must have static shape");
1302 return op->
emitError(
"the sparse-tensor must have an encoding attribute");
1308 auto cooTp = llvm::cast<ShapedType>(lvlTps.back());
1310 unsigned expCOORank = stt.
getLvlRank() - cooStartLvl;
1311 if (cooTp.getRank() != 2 || expCOORank != cooTp.getShape().back()) {
1312 return op->
emitError(
"input/output trailing COO level-ranks don't match");
1319 return op->
emitError(
"inconsistent number of fields between input/output");
1322 bool misMatch =
false;
1329 Type inputTp =
nullptr;
1333 assert(fid == idx && stt.
getLvlType(lvl) == lt);
1334 inputTp = lvlTps[idx++];
1337 Type inpElemTp = llvm::cast<TensorType>(inputTp).getElementType();
1339 if (inpElemTp != expElemTp) {
1347 return op->
emitError(
"input/output element-types don't match");
1352 RankedTensorType valuesTp = getValues().getType();
1353 const auto lvlsTp = getLevels().getTypes();
1360 return emitError(
"output values and return value type mismatch");
1362 for (
auto [ot, rt] : llvm::zip_equal(getOutLevels(), getRetLevels()))
1363 if (ot.getType() != rt.getType())
1364 return emitError(
"output levels and return levels type mismatch");
1366 RankedTensorType valuesTp = getRetValues().getType();
1367 const auto lvlsTp = getRetLevels().getTypes();
1373 RankedTensorType tp1 = getSource().getType();
1374 RankedTensorType tp2 = getDest().getType();
1375 if (tp1.getRank() != tp2.getRank())
1376 return emitError(
"unexpected conversion mismatch in rank");
1378 llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(tp2.getEncoding());
1379 if (dstEnc && dstEnc.isSlice())
1380 return emitError(
"cannot convert to a sparse tensor slice");
1382 auto shape1 = tp1.getShape();
1383 auto shape2 = tp2.getShape();
1387 for (
Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++)
1388 if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
1389 return emitError(
"unexpected conversion mismatch in dimension ") << d;
1399 bool ConvertOp::needsExtraSort() {
1418 if (
auto constOp = getSource().getDefiningOp<arith::ConstantOp>())
1419 if (isa<SparseElementsAttr>(constOp.getValue()))
1426 uint64_t inRank = getEncoder().getLvlRank();
1427 uint64_t outRank = getEncoder().getDimRank();
1429 if (getDirection() == CrdTransDirectionKind::dim2lvl)
1430 std::swap(inRank, outRank);
1432 if (inRank != getInCrds().size() || outRank != getOutCrds().size())
1433 return emitError(
"Coordinate rank mismatch with encoding");
1438 LogicalResult CrdTranslateOp::fold(FoldAdaptor adaptor,
1440 if (getEncoder().isIdentity()) {
1441 results.assign(getInCrds().begin(), getInCrds().end());
1445 AffineMap perm = getDirection() == CrdTransDirectionKind::dim2lvl
1446 ? getEncoder().getDimToLvl()
1447 : getEncoder().getLvlToDim();
1449 results.push_back(getInCrds()[cast<AffineDimExpr>(exp).getPosition()]);
1454 auto def = getInCrds()[0].getDefiningOp<CrdTranslateOp>();
1455 bool sameDef = def && llvm::all_of(getInCrds(), [def](
Value v) {
1461 bool oppositeDir = def.getDirection() != getDirection();
1463 def.getEncoder().getDimToLvl() == getEncoder().getDimToLvl();
1464 bool sameCount = def.getNumResults() == getInCrds().size();
1465 if (!oppositeDir || !sameOracle || !sameCount)
1470 bool sameOrder = llvm::all_of(llvm::zip_equal(def.getOutCrds(), getInCrds()),
1471 [](
auto valuePair) {
1472 auto [lhs, rhs] = valuePair;
1480 results.append(def.getInCrds().begin(), def.getInCrds().end());
1486 Value val = builder.
create<arith::ConstantIndexOp>(state.location, index);
1487 return build(builder, state, source, val);
1491 if (std::optional<uint64_t> lvl = getConstantLvlIndex()) {
1493 if (
static_cast<uint64_t
>(lvl.value()) >= stt.
getLvlRank())
1495 "Level index exceeds the rank of the input sparse tensor");
1500 std::optional<uint64_t> LvlOp::getConstantLvlIndex() {
1510 cast<RankedTensorType>(getSource().
getType()).getRank());
1515 auto lvlIndex = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex());
1519 Level lvl = lvlIndex.getAPSInt().getZExtValue();
1529 auto getIndexAttr = [
this](int64_t lvlSz) {
1534 if (!ShapedType::isDynamic(lvlShape[lvl]))
1535 return getIndexAttr(lvlShape[lvl]);
1541 SparseTensorEncodingAttr dstEnc,
Value source) {
1545 dstEnc.translateShape(srcLvlShape, CrdTransDirectionKind::lvl2dim);
1548 return build(odsBuilder, odsState, dstTp, source);
1557 if (srcLvlTps.size() != dstLvlTps.size())
1558 return emitError(
"Level rank mismatch between source/dest tensors");
1560 for (
auto [srcLvlTp, dstLvlTp] : llvm::zip(srcLvlTps, dstLvlTps))
1561 if (srcLvlTp != dstLvlTp)
1562 return emitError(
"Level type mismatch between source/dest tensors");
1566 return emitError(
"Crd/Pos width mismatch between source/dest tensors");
1570 return emitError(
"Element type mismatch between source/dest tensors");
1574 for (
auto [srcLvlSz, dstLvlSz] : llvm::zip(srcLvlShape, dstLvlShape)) {
1575 if (srcLvlSz != dstLvlSz) {
1579 return emitError(
"Level size mismatch between source/dest tensors");
1586 OpFoldResult ReinterpretMapOp::fold(FoldAdaptor adaptor) {
1590 if (
auto def = getSource().getDefiningOp<ReinterpretMapOp>()) {
1592 if (def.getSource().getType() == getDest().
getType())
1593 return def.getSource();
1598 template <
typename ToBufferOp>
1603 typename ToBufferOp::Adaptor adaptor(ops, attr, prop, region);
1605 Type elemTp =
nullptr;
1606 bool withStride =
false;
1607 if constexpr (std::is_same_v<ToBufferOp, ToPositionsOp>) {
1609 }
else if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp> ||
1610 std::is_same_v<ToBufferOp, ToCoordinatesBufferOp>) {
1612 if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp>)
1614 }
else if constexpr (std::is_same_v<ToBufferOp, ToValuesOp>) {
1618 assert(elemTp &&
"unhandled operation.");
1620 bufShape.push_back(ShapedType::kDynamic);
1624 {ShapedType::kDynamic})
1625 : StridedLayoutAttr();
1633 return emitError(
"requested level is out of bounds");
1635 return emitError(
"unexpected type for positions");
1640 ToPositionsOp::inferReturnTypes(
MLIRContext *ctx, std::optional<Location> loc,
1644 return inferSparseBufferType<ToPositionsOp>(ops, attr, prop, region, ret);
1650 return emitError(
"requested level is out of bounds");
1652 return emitError(
"unexpected type for coordinates");
1657 ToCoordinatesOp::inferReturnTypes(
MLIRContext *ctx, std::optional<Location> loc,
1661 return inferSparseBufferType<ToCoordinatesOp>(ops, attr, prop, region, ret);
1667 return emitError(
"expected sparse tensor with a COO region");
1671 LogicalResult ToCoordinatesBufferOp::inferReturnTypes(
1675 return inferSparseBufferType<ToCoordinatesBufferOp>(ops, attr, prop, region,
1683 return emitError(
"unexpected mismatch in element types");
1687 LogicalResult ToValuesOp::inferReturnTypes(
MLIRContext *ctx,
1688 std::optional<Location> loc,
1693 return inferSparseBufferType<ToValuesOp>(ops, attr, prop, region, ret);
1697 auto rank =
getSlice().getType().getRank();
1698 if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
1699 return emitError(
"requested dimension out of bound");
1704 auto rank =
getSlice().getType().getRank();
1705 if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
1706 return emitError(
"requested dimension out of bound");
1712 getSpecifier(), getOperation());
1715 template <
typename SpecifierOp>
1717 return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>();
1720 OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) {
1721 const StorageSpecifierKind
kind = getSpecifierKind();
1722 const auto lvl = getLevel();
1724 if (
kind == op.getSpecifierKind() && lvl == op.getLevel())
1725 return op.getValue();
1731 getSpecifier(), getOperation());
1736 const char *regionName,
1739 unsigned expectedNum = inputTypes.size();
1740 if (numArgs != expectedNum)
1741 return op->emitError() << regionName <<
" region must have exactly "
1742 << expectedNum <<
" arguments";
1744 for (
unsigned i = 0; i < numArgs; i++) {
1746 if (typ != inputTypes[i])
1747 return op->emitError() << regionName <<
" region argument " << (i + 1)
1748 <<
" type mismatch";
1751 YieldOp yield = dyn_cast<YieldOp>(term);
1753 return op->emitError() << regionName
1754 <<
" region must end with sparse_tensor.yield";
1755 if (!yield.hasSingleResult() ||
1756 yield.getSingleResult().getType() != outputType)
1757 return op->emitError() << regionName <<
" region yield type mismatch";
1764 Type leftType = getX().getType();
1765 Type rightType = getY().getType();
1766 Type outputType = getOutput().getType();
1767 Region &overlap = getOverlapRegion();
1768 Region &left = getLeftRegion();
1769 Region &right = getRightRegion();
1773 if (!overlap.
empty()) {
1775 TypeRange{leftType, rightType}, outputType)))
1778 if (!left.
empty()) {
1782 }
else if (getLeftIdentity()) {
1783 if (leftType != outputType)
1784 return emitError(
"left=identity requires first argument to have the same "
1785 "type as the output");
1787 if (!right.
empty()) {
1791 }
else if (getRightIdentity()) {
1792 if (rightType != outputType)
1793 return emitError(
"right=identity requires second argument to have the "
1794 "same type as the output");
1800 Type inputType = getX().getType();
1801 Type outputType = getOutput().getType();
1805 Region &present = getPresentRegion();
1806 if (!present.
empty()) {
1811 Region &absent = getAbsentRegion();
1812 if (!absent.
empty()) {
1818 Block *parent = getOperation()->getBlock();
1820 cast<YieldOp>(absentBlock->
getTerminator()).getSingleResult();
1821 if (
auto arg = dyn_cast<BlockArgument>(absentVal)) {
1822 if (arg.getOwner() == parent)
1823 return emitError(
"absent region cannot yield linalg argument");
1825 if (!isa<arith::ConstantOp>(def) &&
1826 (def->getBlock() == absentBlock || def->getBlock() == parent))
1827 return emitError(
"absent region cannot yield locally computed value");
1833 bool ConcatenateOp::needsExtraSort() {
1838 bool allSameOrdered = llvm::all_of(getInputs(), [dstStt](
Value op) {
1845 bool directLowerable =
1846 allSameOrdered && getDimension() == 0 && dstStt.
isIdentity();
1847 return !directLowerable;
1852 const Dimension concatDim = getDimension();
1853 const Dimension dimRank = dstTp.getDimRank();
1855 if (getInputs().size() <= 1)
1856 return emitError(
"Need at least two tensors to concatenate.");
1858 if (concatDim >= dimRank)
1860 "Concat-dimension is out of bounds for dimension-rank ({0} >= {1})",
1861 concatDim, dimRank));
1864 const auto i = it.index();
1866 if (srcTp.hasDynamicDimShape())
1867 return emitError(llvm::formatv(
"Input tensor ${0} has dynamic shape", i));
1868 const Dimension srcDimRank = srcTp.getDimRank();
1869 if (srcDimRank != dimRank)
1871 llvm::formatv(
"Input tensor ${0} has a different rank (rank={1}) "
1872 "from the output tensor (rank={2}).",
1873 i, srcDimRank, dimRank));
1876 for (
Dimension d = 0; d < dimRank; d++) {
1877 const Size dstSh = dstTp.getDimShape()[d];
1878 if (d == concatDim) {
1879 if (!ShapedType::isDynamic(dstSh)) {
1884 for (
const auto src : getInputs())
1890 "The concatenation dimension of the output tensor should be the "
1891 "sum of all the concatenation dimensions of the input tensors.");
1895 for (
const auto src : getInputs()) {
1897 if (!ShapedType::isDynamic(prev) && sh != prev)
1898 return emitError(
"All dimensions (expect for the concatenating one) "
1899 "should be equal.");
1910 build(builder, result, curSize, inBuffer, value,
Value());
1916 if (nValue && nValue.value() < 1)
1917 return emitOpError(
"n must be not less than 1");
1924 if (stt.
getLvlRank() != 1 +
static_cast<Level>(getLvlCoords().size()))
1925 return emitOpError(
"incorrect number of coordinates");
1929 void ForeachOp::build(
1934 build(builder, result, initArgs.
getTypes(), tensor, initArgs, order);
1946 blockArgTypes.append(initArgs.
getTypes().begin(), initArgs.
getTypes().end());
1951 auto ®ion = *result.
regions.front();
1953 builder.
createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
1954 bodyBuilder(builder, result.
location,
1962 const Dimension dimRank = t.getDimRank();
1963 const auto args = getBody()->getArguments();
1965 if (getOrder().has_value() && getOrder()->getNumDims() != t.getLvlRank())
1966 return emitError(
"Level traverse order does not match tensor's level rank");
1968 if (dimRank + 1 + getInitArgs().size() != args.size())
1969 return emitError(
"Unmatched number of arguments in the block");
1971 if (getNumResults() != getInitArgs().size())
1972 return emitError(
"Mismatch in number of init arguments and results");
1974 if (getResultTypes() != getInitArgs().getTypes())
1975 return emitError(
"Mismatch in types of init arguments and results");
1978 auto yield = cast<YieldOp>(getBody()->getTerminator());
1979 if (yield.getNumOperands() != getNumResults() ||
1980 yield.getOperands().getTypes() != getResultTypes())
1981 return emitError(
"Mismatch in types of yield values and results");
1987 llvm::formatv(
"Expecting Index type for argument at index {0}", d));
1989 const auto elemTp = t.getElementType();
1990 const auto valueTp = args[dimRank].getType();
1991 if (elemTp != valueTp)
1993 llvm::formatv(
"Unmatched element type between input tensor and "
1994 "block argument, expected:{0}, got: {1}",
2002 return getInputCoo();
2012 return emitError(
"Expected COO sparse tensors only");
2015 return emitError(
"Unmatched dim2lvl map between input and result COO");
2020 return emitError(
"Unmatched storage format between input and result COO");
2026 Type inputType = getX().getType();
2027 Region &formula = getRegion();
2029 TypeRange{inputType, inputType}, inputType);
2034 Type inputType = getX().getType();
2035 Type boolType = b.getI1Type();
2036 Region &formula = getRegion();
2045 return emitError(llvm::formatv(
"Expected rank(perm_map) > 1, got {0}", nx));
2049 llvm::formatv(
"Expected a permutation map, got {0}", xPerm));
2058 const auto checkDim = [&](
Value v,
Size minSize,
2059 const char *message) -> LogicalResult {
2061 if (!ShapedType::isDynamic(sh) && sh < minSize)
2063 llvm::formatv(
"{0} got {1} < {2}", message, sh, minSize));
2066 uint64_t n = cn.value();
2068 if (
auto nyAttr = getNyAttr())
2069 ny = nyAttr.getInt();
2070 if (failed(checkDim(getXy(), n * (nx + ny),
2071 "Expected dimension(xy) >= n * (rank(perm_map) + ny)")))
2073 for (
Value opnd : getYs())
2074 if (failed(checkDim(opnd, n,
"Expected dimension(y) >= n")))
2084 IterSpaceType IteratorType::getIterSpaceType()
const {
2089 IteratorType IterSpaceType::getIteratorType()
const {
2109 "expect larger level upper bound than lower bound");
2117 IntegerAttr &lvlHiAttr) {
2134 p << lo <<
" to " << hi;
2140 IntegerAttr lvlHi) {
2141 unsigned lo = lvlLo.getValue().getZExtValue();
2142 unsigned hi = lvlHi.getValue().getZExtValue();
2156 ParseResult crdList =
2159 if (parser.parseArgument(definedArgs.emplace_back()))
2161 definedSet.set(cnt);
2169 "parsed more value than expected.");
2171 if (failed(crdList)) {
2174 "expecting SSA value or \"_\" for level coordinates");
2176 assert(definedArgs.size() == definedSet.
count());
2183 if (definedSet.
empty())
2186 for (
unsigned i = 0; i < size; i++) {
2187 if (definedSet[i]) {
2188 p << blocksArgs.front();
2189 blocksArgs = blocksArgs.drop_front();
2196 assert(blocksArgs.empty());
2209 for (
auto &coord : coords)
2213 state.addAttribute(
"crdUsedLvls",
2230 if (iterators.size() != spaces.size())
2233 "mismatch in number of sparse iterators and sparse spaces");
2238 size_t numCrds = coords.size();
2246 blockArgs.append(coords);
2252 if (iterSpaceTps.size() != spaces.size())
2254 "mismatch in number of iteration space operands "
2255 "and iteration space types");
2257 for (
auto [it, tp] : llvm::zip_equal(iterators, iterSpaceTps)) {
2258 IterSpaceType spaceTp = llvm::dyn_cast<IterSpaceType>(tp);
2261 "expected sparse_tensor.iter_space type for "
2262 "iteration space operands");
2263 it.type = spaceTp.getIteratorType();
2278 if (args.size() != initArgs.size() || args.size() != state.types.size()) {
2281 "mismatch in number of iteration arguments and return values");
2284 for (
auto [it, init, tp] : llvm::zip_equal(args, initArgs, state.types)) {
2306 size_t numCrds = coords.size();
2314 blockArgs.append(coords);
2322 if (iterSpaceTps.size() != spaces.size())
2324 "mismatch in number of iteration space operands "
2325 "and iteration space types");
2335 state.operands.append(spacesVals);
2340 if (args.size() != initArgs.size() || args.size() != state.types.size()) {
2343 "mismatch in number of iteration arguments and return values");
2346 for (
auto [it, init, tp] : llvm::zip_equal(args, initArgs, state.types)) {
2355 LogicalResult ExtractIterSpaceOp::inferReturnTypes(
2360 ExtractIterSpaceOp::Adaptor adaptor(ops, attr, prop, region);
2363 adaptor.getHiLvl()));
2368 if (getLoLvl() >= getHiLvl())
2369 return emitOpError(
"expected smaller level low than level high");
2372 if ((pIter && getLoLvl() == 0) || (!pIter && getLoLvl() != 0)) {
2374 "parent iterator should be specified iff level lower bound equals 0");
2378 IterSpaceType spaceTp = getExtractedSpace().getType();
2379 if (pIter.getType().getEncoding() != spaceTp.getEncoding())
2381 "mismatch in parent iterator encoding and iteration space encoding.");
2383 if (spaceTp.getLoLvl() != pIter.getType().getHiLvl())
2384 return emitOpError(
"parent iterator should be used to extract an "
2385 "iteration space from a consecutive level.");
2393 auto itTp = getIterator().getType();
2396 return emitOpError(
"mismatch in tensor encoding and iterator encoding.");
2399 return emitOpError(
"must use last-level iterator to extract values. ");
2410 llvm::BitVector toRemove(iterateOp.getBody()->getNumArguments());
2411 for (
unsigned i = 0, e = iterateOp.getSpaceDim(); i < e; i++) {
2412 if (
auto crd = iterateOp.getLvlCrd(i)) {
2413 if (crd->getUsers().empty())
2414 toRemove.set(crd->getArgNumber());
2421 if (toRemove.none())
2425 iterateOp.setCrdUsedLvls(newUsedLvls);
2426 iterateOp.getBody()->eraseArguments(toRemove);
2439 unsigned rank = llvm::cast<IterSpaceType>(iterSpace.
getType()).getSpaceDim();
2442 return build(builder, odsState, iterSpace, initArgs, set);
2459 for (
Value v : initArgs)
2463 for (
unsigned i = 0, e = crdUsedLvls.
count(); i < e; i++)
2468 llvm::cast<IterSpaceType>(iterSpace.
getType()).getIteratorType(),
2479 if (iters.size() != 1)
2481 "expected only one iterator/iteration space");
2483 iterArgs.append(iters);
2504 StringRef prefix =
"") {
2505 assert(blocksArgs.size() == initializers.size() &&
2506 "expected same length of arguments and initializers");
2507 if (initializers.empty())
2511 llvm::interleaveComma(llvm::zip(blocksArgs, initializers), p, [&](
auto it) {
2512 p << std::get<0>(it) <<
" = " << std::get<1>(it);
2517 template <
typename SparseLoopOp>
2519 if (op.getInitArgs().size() != op.getNumResults()) {
2520 return op.emitOpError(
2521 "mismatch in number of loop-carried values and defined values");
2523 if (op.getCrdUsedLvls().max() > op.getSpaceDim())
2524 return op.emitOpError(
"required out-of-bound coordinates");
2533 p <<
" " << getIterator() <<
" in " << getIterSpace();
2534 if (!getCrdUsedLvls().empty()) {
2541 p <<
" : " << getIterSpace().getType() <<
" ";
2542 if (!getInitArgs().empty())
2547 !getInitArgs().empty());
2550 LogicalResult IterateOp::verifyRegions() {
2551 if (getIterator().
getType() != getIterSpace().
getType().getIteratorType())
2552 return emitOpError(
"mismatch in iterator and iteration space type");
2553 if (getNumRegionIterArgs() != getNumResults())
2555 "mismatch in number of basic block args and defined values");
2557 auto initArgs = getInitArgs();
2558 auto iterArgs = getRegionIterArgs();
2559 auto yieldVals = getYieldedValues();
2560 auto opResults = getResults();
2561 if (!llvm::all_equal({initArgs.size(), iterArgs.size(), yieldVals.size(),
2562 opResults.size()})) {
2563 return emitOpError() <<
"number mismatch between iter args and results.";
2566 for (
auto [i, init, iter, yield, ret] :
2568 if (init.getType() != ret.getType())
2569 return emitOpError() <<
"types mismatch between " << i
2570 <<
"th iter operand and defined value";
2571 if (iter.getType() != ret.getType())
2572 return emitOpError() <<
"types mismatch between " << i
2573 <<
"th iter region arg and defined value";
2574 if (yield.getType() != ret.getType())
2575 return emitOpError() <<
"types mismatch between " << i
2576 <<
"th yield value and defined value";
2586 return getInitArgsMutable();
2590 return getRegion().getArguments().take_front(getNumRegionIterArgs());
2593 std::optional<MutableArrayRef<OpOperand>> IterateOp::getYieldedValuesMutable() {
2594 return cast<sparse_tensor::YieldOp>(
2595 getRegion().getBlocks().front().getTerminator())
2596 .getResultsMutable();
2599 std::optional<ResultRange> IterateOp::getLoopResults() {
return getResults(); }
2602 return getInitArgs();
2609 regions.push_back(
RegionSuccessor(&getRegion(), getRegionIterArgs()));
2616 unsigned numCases) {
2618 cast<IterSpaceType>(iterSpaces.front().
getType()).getSpaceDim();
2627 return CoIterateOp::build(builder, odsState, initArgs.
getTypes(), iterSpaces,
2628 initArgs, set, cases,
2643 {static_cast<int32_t>(spaces.size()),
2644 static_cast<int32_t>(result.types.size())}));
2659 auto spaceTp = llvm::cast<IterSpaceType>(spaces[definedIdx].
getType());
2660 definedIts[i].type = spaceTp.getIteratorType();
2662 definedIts.insert(definedIts.begin(), blockArgs.begin(), blockArgs.end());
2681 llvm::interleaveComma(getIterSpaces(), p, [&](
auto s) { p << s; });
2684 if (!getCrdUsedLvls().empty()) {
2692 p <<
" : (" << getIterSpaces().getTypes() <<
")";
2693 if (!getInitArgs().empty())
2694 p.printArrowTypeList(getInitArgs().getTypes());
2696 for (
unsigned idx = 0, e = getRegions().size(); idx < e; idx++) {
2700 getRegionDefinedSpace(idx));
2702 p.printRegion(getRegion(idx),
false,
2703 !getInitArgs().empty());
2707 ValueRange CoIterateOp::getYieldedValues(
unsigned regionIdx) {
2708 return cast<sparse_tensor::YieldOp>(
2709 getRegion(regionIdx).getBlocks().front().getTerminator())
2713 LogicalResult CoIterateOp::verifyRegions() {
2714 for (
unsigned r = 0, e = getNumRegions(); r < e; r++) {
2715 if (getNumRegionIterArgs() != getNumResults())
2717 "mismatch in number of basic block args and defined values");
2719 auto initArgs = getInitArgs();
2720 auto iterArgs = getRegionIterArgs(r);
2721 auto yieldVals = getYieldedValues(r);
2722 auto opResults = getResults();
2723 if (!llvm::all_equal({initArgs.size(), iterArgs.size(), yieldVals.size(),
2724 opResults.size()})) {
2725 return emitOpError()
2726 <<
"number mismatch between iter args and results on " << r
2730 for (
auto [i, init, iter, yield, ret] :
2732 if (init.getType() != ret.getType())
2733 return emitOpError()
2734 <<
"types mismatch between " << i
2735 <<
"th iter operand and defined value on " << r <<
"th region";
2736 if (iter.getType() != ret.getType())
2737 return emitOpError() <<
"types mismatch between " << i
2738 <<
"th iter region arg and defined value on " << r
2740 if (yield.getType() != ret.getType())
2741 return emitOpError()
2742 <<
"types mismatch between " << i
2743 <<
"th yield value and defined value on " << r <<
"th region";
2747 auto cases = getRegionDefinedSpaces();
2748 llvm::SmallSetVector<uint64_t, 8> set(cases.begin(), cases.end());
2749 if (set.size() != getNumRegions())
2750 return emitOpError(
"contains duplicated cases.");
2757 I64BitSet caseBit = getRegionDefinedSpace(regionIdx);
2758 for (
Region &r : getCaseRegions())
2759 if (getRegionDefinedSpace(r.getRegionNumber()).isSubSetOf(caseBit))
2774 if (
auto op = arith::ConstantOp::materialize(builder, value, type, loc))
2779 void SparseTensorDialect::initialize() {
2781 #define GET_ATTRDEF_LIST
2782 #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
2785 #define GET_TYPEDEF_LIST
2786 #include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
2790 #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
2792 declarePromisedInterfaces<
2793 bufferization::BufferizableOpInterface, ConcatenateOp, ConvertOp, LoadOp,
2794 NewOp, NumberOfEntriesOp, AssembleOp, DisassembleOp,
2795 ToCoordinatesBufferOp, ToCoordinatesOp, ToPositionsOp, ToValuesOp>();
2798 #define GET_OP_CLASSES
2799 #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
2801 #include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
static Value getStride(Location loc, MemRefType mType, Value base, RewriterBase &rewriter)
Maps the 2-dim memref shape to the 64-bit stride.
static Operation * materializeConstant(Dialect *dialect, OpBuilder &builder, Attribute value, Type type, Location loc)
A utility function used to materialize a constant for a given attribute and type.
static bool isPermutation(std::vector< PermutationTy > permutation)
static MLIRContext * getContext(OpFoldResult val)
union mlir::linalg::@1203::ArityGroupAndKind::Kind kind
bool isUnique(It begin, It end)
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static void print(spirv::VerCapExtAttr triple, DialectAsmPrinter &printer)
static Type getElementType(Type type, ArrayRef< int32_t > indices, function_ref< InFlightDiagnostic(StringRef)> emitErrorFn)
Walks the given type hierarchy with the given indices, potentially down to component granularity,...
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion, const char *regionName, TypeRange inputTypes, Type outputType)
static ParseResult parseOptionalStaticSlice(int64_t &result, AsmParser &parser)
static SparseTensorEncodingAttr getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc)
We normalized sparse tensor encoding attribute by always using ordered/unique LT such that "compresse...
static ParseResult parseUsedCoordList(OpAsmParser &parser, OperationState &state, SmallVectorImpl< OpAsmParser::Argument > &coords)
static LogicalResult isMatchingWidth(Value mem, unsigned width)
static constexpr bool acceptBitWidth(unsigned bitWidth)
static mlir::ParseResult parseLevelRange(mlir::AsmParser &, mlir::sparse_tensor::Level &, mlir::sparse_tensor::Level &)
Parses a level range in the form "$lo `to` $hi" or simply "$lo" if $hi - $lo = 1.
static LogicalResult lvlIsInBounds(Level lvl, Value tensor)
static void printOptionalDefinedList(OpAsmPrinter &p, unsigned size, Block::BlockArgListType blocksArgs, I64BitSet definedSet)
static constexpr FieldIndex kDataFieldStartingIdx
static constexpr Level kInvalidLevel
static LogicalResult verifySparseLoopOp(SparseLoopOp op)
static constexpr Level kInvalidFieldIndex
static void printLevelRange(mlir::AsmPrinter &, mlir::sparse_tensor::Level, mlir::sparse_tensor::Level)
Prints a level range in the form "$lo `to` $hi" or simply "$lo" if $hi - $lo = 1.
static Type getFieldElemType(SparseTensorType stt, SparseTensorFieldKind kind)
static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op)
static SmallVector< Size > getSparseFieldShape(const SparseTensorEncodingAttr enc, std::optional< ArrayRef< int64_t >> dimShape)
static ParseResult parseSparseIterateLoop(OpAsmParser &parser, OperationState &state, SmallVectorImpl< OpAsmParser::Argument > &iterators, SmallVectorImpl< OpAsmParser::Argument > &blockArgs)
static ParseResult parseOptionalDefinedList(OpAsmParser &parser, OperationState &state, I64BitSet &definedSet, SmallVectorImpl< OpAsmParser::Argument > &definedArgs, unsigned maxCnt=std::numeric_limits< unsigned >::max(), OpAsmParser::Delimiter delimiter=OpAsmParser::Delimiter::Paren)
Parses a list of optional defined list in the form of "(%val0, _, %val1, ...)", where _ is used to an...
static void printInitializationList(OpAsmPrinter &p, Block::BlockArgListType blocksArgs, ValueRange initializers, StringRef prefix="")
Prints the initialization list in the form of <prefix>(inner = outer, inner2 = outer2,...
static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape, SparseTensorType stt, RankedTensorType valTp, TypeRange lvlTps)
static ParseResult parseSparseCoIterateLoop(OpAsmParser &parser, OperationState &state, SmallVectorImpl< Value > &spacesVals, SmallVectorImpl< OpAsmParser::Argument > &blockArgs)
static LogicalResult verifySparsifierGetterSetter(StorageSpecifierKind mdKind, std::optional< Level > lvl, TypedValue< StorageSpecifierType > md, Operation *op)
static LogicalResult inferSparseBufferType(ValueRange ops, DictionaryAttr attr, OpaqueProperties prop, RegionRange region, SmallVectorImpl< mlir::Type > &ret)
static bool isAllDense(uint64_t lvlRank, const LevelType *lvlTypes)
@ NewOp
Op vectorized into a new Op whose results will replace original Op's results.
Base type for affine expression.
void print(raw_ostream &os) const
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
MLIRContext * getContext() const
unsigned getDimPosition(unsigned idx) const
Extracts the position of the dimensional expression at the given result, when the caller knows it is ...
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
bool isEmpty() const
Returns true if this affine map is an empty map, i.e., () -> ().
unsigned getNumSymbols() const
unsigned getNumDims() const
ArrayRef< AffineExpr > getResults() const
unsigned getNumResults() const
AffineExpr getResult(unsigned idx) const
bool isPermutation() const
Returns true if the AffineMap represents a symbol-less permutation map.
This base class exposes generic asm parser hooks, usable across the various derived parsers.
virtual ParseResult parseLBrace()=0
Parse a { token.
Delimiter
These are the supported delimiters around operand lists and region argument lists,...
@ Paren
Parens surrounding zero or more operands.
@ None
Zero or more operands with no delimiters.
virtual OptionalParseResult parseOptionalInteger(APInt &result)=0
Parse an optional integer value from the stream.
virtual ParseResult parseCommaSeparatedList(Delimiter delimiter, function_ref< ParseResult()> parseElementFn, StringRef contextMessage=StringRef())=0
Parse a list of comma-separated items with an optional delimiter.
virtual Builder & getBuilder() const =0
Return a builder which provides useful access to MLIRContext, global objects like types and attribute...
virtual ParseResult parseOptionalAttrDict(NamedAttrList &result)=0
Parse a named dictionary into 'result' if it is present.
virtual ParseResult parseOptionalKeyword(StringRef keyword)=0
Parse the given keyword if present.
MLIRContext * getContext() const
virtual ParseResult parseRParen()=0
Parse a ) token.
virtual InFlightDiagnostic emitError(SMLoc loc, const Twine &message={})=0
Emit a diagnostic at the specified location and return failure.
ParseResult parseInteger(IntT &result)
Parse an integer value from the stream.
virtual ParseResult parseRBrace()=0
Parse a } token.
virtual ParseResult parseLess()=0
Parse a '<' token.
virtual ParseResult parseEqual()=0
Parse a = token.
virtual SMLoc getCurrentLocation()=0
Get the location of the next token and store it into the argument.
virtual ParseResult parseOptionalComma()=0
Parse a , token if present.
auto getChecked(SMLoc loc, ParamsT &&...params)
Invoke the getChecked method of the given Attribute or Type class, using the provided location to emi...
virtual ParseResult parseColon()=0
Parse a : token.
virtual SMLoc getNameLoc() const =0
Return the location of the original name token.
virtual ParseResult parseQuestion()=0
Parse a '?' token.
virtual ParseResult parseGreater()=0
Parse a '>' token.
virtual ParseResult parseLParen()=0
Parse a ( token.
virtual ParseResult parseComma()=0
Parse a , token.
virtual ParseResult parseArrowTypeList(SmallVectorImpl< Type > &result)=0
Parse an arrow followed by a type list.
ParseResult parseTypeList(SmallVectorImpl< Type > &result)
Parse a type list.
ParseResult parseKeyword(StringRef keyword)
Parse a given keyword.
virtual ParseResult parseAttribute(Attribute &result, Type type={})=0
Parse an arbitrary attribute of a given type and return it in result.
This base class exposes generic asm printer hooks, usable across the various derived printers.
void printArrowTypeList(TypeRange &&types)
virtual raw_ostream & getStream() const
Return the raw output stream used by this printer.
Attributes are known-constant values of operations.
Block represents an ordered list of Operations.
MutableArrayRef< BlockArgument > BlockArgListType
Operation * getTerminator()
Get the terminator operation of this block.
BlockArgument addArgument(Type type, Location loc)
Add one value to the argument list.
BlockArgListType getArguments()
This class is a general helper class for creating context-global objects like types,...
DenseI32ArrayAttr getDenseI32ArrayAttr(ArrayRef< int32_t > values)
IntegerAttr getIntegerAttr(Type type, int64_t value)
IntegerAttr getI64IntegerAttr(int64_t value)
IntegerType getIntegerType(unsigned width)
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
This class represents a diagnostic that is inflight and set to be reported.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
NamedAttrList is array of NamedAttributes that tracks whether it is sorted and does some basic work t...
ArrayRef< NamedAttribute > getAttrs() const
Return all of the attributes on this operation.
The OpAsmParser has methods for interacting with the asm parser: parsing things from it,...
virtual ParseResult parseRegion(Region ®ion, ArrayRef< Argument > arguments={}, bool enableNameShadowing=false)=0
Parses a region.
virtual ParseResult parseArgumentList(SmallVectorImpl< Argument > &result, Delimiter delimiter=Delimiter::None, bool allowType=false, bool allowAttrs=false)=0
Parse zero or more arguments with a specified surrounding delimiter.
ParseResult parseAssignmentList(SmallVectorImpl< Argument > &lhs, SmallVectorImpl< UnresolvedOperand > &rhs)
Parse a list of assignments of the form (x1 = y1, x2 = y2, ...)
virtual ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, SmallVectorImpl< Value > &result)=0
Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperands(Operands &&operands, Type type, SmallVectorImpl< Value > &result)
Resolve a list of operands to SSA values, emitting an error on failure, or appending the results to t...
virtual ParseResult parseOperandList(SmallVectorImpl< UnresolvedOperand > &result, Delimiter delimiter=Delimiter::None, bool allowResultNumber=true, int requiredOperandCount=-1)=0
Parse zero or more SSA comma-separated operand references with a specified surrounding delimiter,...
This is a pure-virtual base class that exposes the asmprinter hooks necessary to implement a custom p...
virtual void printRegion(Region &blocks, bool printEntryBlockArgs=true, bool printBlockTerminators=true, bool printEmptyBlock=false)=0
Prints a region.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes=std::nullopt, ArrayRef< Location > locs=std::nullopt)
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
This class represents a single result from folding an operation.
Simple wrapper around a void* in order to express generically how to pass in op properties through AP...
This class implements the operand iterators for the Operation class.
Operation is the basic unit of execution within MLIR.
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
operand_range getOperands()
Returns an iterator on the underlying Value's.
result_range getResults()
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class represents a point being branched from in the methods of the RegionBranchOpInterface.
This class provides an abstraction over the different types of ranges over Regions.
This class represents a successor of a region.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
unsigned getNumArguments()
BlockArgument getArgument(unsigned i)
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
virtual void finalizeOpModification(Operation *op)
This method is used to signal the end of an in-place modification of the given operation.
virtual void startOpModification(Operation *op)
This method is used to notify the rewriter that an in-place operation modification is about to happen...
This class provides an abstraction over the various different ranges of value types.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
bool isInteger() const
Return true if this is an integer type (with the specified width).
This class provides an abstraction over the different types of ranges over Values.
type_range getType() const
type_range getTypes() const
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Location getLoc() const
Return the location of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
A simple wrapper to encode a bitset of (at most 64) levels, currently used by sparse_tensor....
iterator_range< const_set_bits_iterator > bits() const
I64BitSet & set(unsigned i)
A wrapper around RankedTensorType, which has three goals:
MLIRContext * getContext() const
Type getElementType() const
unsigned getCrdWidth() const
Returns the coordinate-overhead bitwidth, defaulting to zero.
SmallVector< Size > getBatchLvlShape() const
Returns the batched level-shape.
ArrayRef< LevelType > getLvlTypes() const
bool hasEncoding() const
Returns true for tensors which have an encoding, and false for those which do not.
ArrayRef< Size > getDimShape() const
Returns the dimension-shape.
bool isAllOrdered() const
Returns true for tensors where every level is ordered.
SmallVector< Size > getLvlShape() const
Returns the level-shape.
bool isCOOType(Level startLvl=0, bool isUnique=true) const
Returns true iff this sparse tensor type has a trailing COO region starting at the given level.
Dimension getDimRank() const
Returns the dimension-rank.
bool isAllDense() const
Returns true for tensors where every level is dense.
Type getCrdType() const
Returns the coordinate-overhead MLIR type, defaulting to IndexType.
bool isIdentity() const
Returns true if the dimToLvl mapping is the identity.
bool hasSameDimToLvl(const SparseTensorType &other) const
Returns true iff the two types have the same mapping.
bool hasStaticDimShape() const
Returns true if no dimension has dynamic size.
Level getLvlRank() const
Returns the level-rank.
unsigned getPosWidth() const
Returns the position-overhead bitwidth, defaulting to zero.
RankedTensorType getCOOType(bool ordered) const
Returns [un]ordered COO type for this sparse tensor type.
SparseTensorEncodingAttr getEncoding() const
Level getAoSCOOStart() const
Returns the starting level of this sparse tensor type for a trailing COO region that spans at least t...
LevelType getLvlType(Level l) const
Type getPosType() const
Returns the position-overhead MLIR type, defaulting to IndexType.
Provides methods to access fields of a sparse tensor with the given encoding.
unsigned getNumDataFields() const
Gets the total number of data fields (coordinate arrays, position arrays, and a value array) for the ...
unsigned getNumFields() const
Gets the total number of fields for the given sparse tensor encoding.
void foreachField(llvm::function_ref< bool(FieldIndex, SparseTensorFieldKind, Level, LevelType)>) const
For each field that will be allocated for the given sparse tensor encoding, calls the callback with t...
std::pair< FieldIndex, unsigned > getFieldIndexAndStride(SparseTensorFieldKind kind, std::optional< Level > lvl) const
Parses the Sparse Tensor Encoding Attribute (STEA).
Speculatability
This enum is returned from the getSpeculatability method in the ConditionallySpeculatable op interfac...
constexpr auto Speculatable
constexpr auto NotSpeculatable
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
DynamicAPInt getIndex(const ConeV &cone)
Get the index of a cone, i.e., the volume of the parallelepiped spanned by its generators,...
QueryRef parse(llvm::StringRef line, const QuerySession &qs)
Value constantIndex(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of index type.
bool isWithCrdLT(LevelType lt)
bool isWithPosLT(LevelType lt)
bool isOrderedLT(LevelType lt)
std::string toMLIRString(LevelType lt)
Dimension toDim(SparseTensorEncodingAttr enc, Level l)
Convenience method to translate the given level to the corresponding dimension.
void foreachFieldAndTypeInSparseTensor(SparseTensorType, llvm::function_ref< bool(Type, FieldIndex, SparseTensorFieldKind, Level, LevelType)>)
unsigned FieldIndex
The type of field indices.
bool isSingletonLT(LevelType lt)
uint64_t Dimension
The type of dimension identifiers and dimension-ranks.
uint64_t Level
The type of level identifiers and level-ranks.
std::optional< SparseTensorType > tryGetSparseTensorType(Value val)
uint64_t getN(LevelType lt)
int64_t Size
The type for individual components of a compile-time shape, including the value ShapedType::kDynamic ...
llvm::hash_code hash_value(LevelType lt)
AffineMap inferLvlToDim(AffineMap dimToLvl, MLIRContext *context)
Given the dimToLvl map, infers the lvlToDim map, or returns empty Affine map when inference fails.
SparseTensorEncodingAttr getSparseTensorEncoding(Type type)
Convenience method to get a sparse encoding attribute from a type.
MemRefType getMemRefType(T &&t)
Convenience method to abbreviate casting getType().
Level toLvl(SparseTensorEncodingAttr enc, Dimension d)
Convenience method to translate the given dimension to the corresponding level.
bool isBlockSparsity(AffineMap dimToLvl)
Given the dimToLvl map, returns if it's block sparsity.
bool isDenseLT(LevelType lt)
uint64_t getM(LevelType lt)
bool hasAnyNonIdentityOperandsOrResults(Operation *op)
Returns true iff MLIR operation has any sparse tensor with non-identity dim2lvl maps.
SparseTensorType getSparseTensorType(Value val)
Convenience methods to obtain a SparseTensorType from a Value.
SparseTensorFieldKind
===-------------------------------------------------------------------—===// The sparse tensor storag...
bool isBatchLT(LevelType lt)
SmallVector< unsigned > getBlockSize(AffineMap dimToLvl)
Given the dimToLvl map, returns the block sizes in a vector.
AffineMap inverseBlockSparsity(AffineMap dimToLvl, MLIRContext *context)
Returns the lvlToDim map for the given dimToLvl map specific to the block sparse cases.
std::optional< LevelType > buildLevelType(LevelFormat lf, const std::vector< LevelPropNonDefault > &properties, uint64_t n=0, uint64_t m=0)
bool isNOutOfMLT(LevelType lt)
Include the generated interface declarations.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
AffineMap inversePermutation(AffineMap map)
Returns a map of codomain to domain dimensions such that the first codomain dimension for a particula...
@ Mul
RHS of mul is always a constant or a symbolic expression.
@ Mod
RHS of mod is always a constant or a symbolic expression with a positive value.
@ FloorDiv
RHS of floordiv is always a constant or a symbolic expression.
AffineExpr getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, AffineExpr rhs)
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
AffineExpr simplifyAffineExpr(AffineExpr expr, unsigned numDims, unsigned numSymbols)
Simplify an affine expression by flattening and some amount of simple analysis.
SetVector< Operation * > getSlice(Operation *op, const BackwardSliceOptions &backwardSliceOptions={}, const ForwardSliceOptions &forwardSliceOptions={})
Iteratively computes backward slices and forward slices until a fixed point is reached.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
LogicalResult verify(Operation *op, bool verifyRecursively=true)
Perform (potentially expensive) checks of invariants, used to detect compiler bugs,...
LogicalResult matchAndRewrite(IterateOp iterateOp, PatternRewriter &rewriter) const override
This is the representation of an operand reference.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
Patterns must specify the root operation name they match against, and can also specify the benefit of...
This represents an operation in an abstracted form, suitable for use with the builder APIs.
T & getOrAddProperties()
Get (or create) a properties of the provided type to be set on the operation on creation.
void addOperands(ValueRange newOperands)
void addAttribute(StringRef name, Attribute attr)
Add an attribute with the specified name.
void addTypes(ArrayRef< Type > newTypes)
SmallVector< std::unique_ptr< Region >, 1 > regions
Regions that the op will hold.
Region * addRegion()
Create a region that should be attached to the operation.
A simple structure that encodes a range of levels in the sparse tensors that forms a COO segment.
This enum defines all the sparse representations supportable by the SparseTensor dialect.
constexpr bool isa() const
Check if the LevelType is in the LevelFormat.
LevelType stripStorageIrrelevantProperties() const