MLIR  20.0.0git
BytecodeWriter.cpp
Go to the documentation of this file.
1 //===- BytecodeWriter.cpp - MLIR Bytecode Writer --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 #include "IRNumbering.h"
13 #include "mlir/Bytecode/Encoding.h"
14 #include "mlir/IR/Attributes.h"
15 #include "mlir/IR/Diagnostics.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/CachedHashString.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <optional>
25 
26 #define DEBUG_TYPE "mlir-bytecode-writer"
27 
28 using namespace mlir;
29 using namespace mlir::bytecode::detail;
30 
31 //===----------------------------------------------------------------------===//
32 // BytecodeWriterConfig
33 //===----------------------------------------------------------------------===//
34 
36  Impl(StringRef producer) : producer(producer) {}
37 
38  /// Version to use when writing.
39  /// Note: This only differs from kVersion if a specific version is set.
40  int64_t bytecodeVersion = bytecode::kVersion;
41 
42  /// A flag specifying whether to elide emission of resources into the bytecode
43  /// file.
44  bool shouldElideResourceData = false;
45 
46  /// A map containing dialect version information for each dialect to emit.
47  llvm::StringMap<std::unique_ptr<DialectVersion>> dialectVersionMap;
48 
49  /// The producer of the bytecode.
50  StringRef producer;
51 
52  /// Printer callbacks used to emit custom type and attribute encodings.
57 
58  /// A collection of non-dialect resource printers.
60 };
61 
63  : impl(std::make_unique<Impl>(producer)) {}
65  StringRef producer)
66  : BytecodeWriterConfig(producer) {
68 }
70 
73  return impl->attributeWriterCallbacks;
74 }
75 
78  return impl->typeWriterCallbacks;
79 }
80 
82  std::unique_ptr<AttrTypeBytecodeWriter<Attribute>> callback) {
83  impl->attributeWriterCallbacks.emplace_back(std::move(callback));
84 }
85 
87  std::unique_ptr<AttrTypeBytecodeWriter<Type>> callback) {
88  impl->typeWriterCallbacks.emplace_back(std::move(callback));
89 }
90 
92  std::unique_ptr<AsmResourcePrinter> printer) {
93  impl->externalResourcePrinters.emplace_back(std::move(printer));
94 }
95 
97  bool shouldElideResourceData) {
98  impl->shouldElideResourceData = shouldElideResourceData;
99 }
100 
101 void BytecodeWriterConfig::setDesiredBytecodeVersion(int64_t bytecodeVersion) {
102  impl->bytecodeVersion = bytecodeVersion;
103 }
104 
106  return impl->bytecodeVersion;
107 }
108 
109 llvm::StringMap<std::unique_ptr<DialectVersion>> &
111  return impl->dialectVersionMap;
112 }
113 
115  llvm::StringRef dialectName,
116  std::unique_ptr<DialectVersion> dialectVersion) const {
117  assert(!impl->dialectVersionMap.contains(dialectName) &&
118  "cannot override a previously set dialect version");
119  impl->dialectVersionMap.insert({dialectName, std::move(dialectVersion)});
120 }
121 
122 //===----------------------------------------------------------------------===//
123 // EncodingEmitter
124 //===----------------------------------------------------------------------===//
125 
126 namespace {
127 /// This class functions as the underlying encoding emitter for the bytecode
128 /// writer. This class is a bit different compared to other types of encoders;
129 /// it does not use a single buffer, but instead may contain several buffers
130 /// (some owned by the writer, and some not) that get concatted during the final
131 /// emission.
132 class EncodingEmitter {
133 public:
134  EncodingEmitter() = default;
135  EncodingEmitter(const EncodingEmitter &) = delete;
136  EncodingEmitter &operator=(const EncodingEmitter &) = delete;
137 
138  /// Write the current contents to the provided stream.
139  void writeTo(raw_ostream &os) const;
140 
141  /// Return the current size of the encoded buffer.
142  size_t size() const { return prevResultSize + currentResult.size(); }
143 
144  //===--------------------------------------------------------------------===//
145  // Emission
146  //===--------------------------------------------------------------------===//
147 
148  /// Backpatch a byte in the result buffer at the given offset.
149  void patchByte(uint64_t offset, uint8_t value, StringLiteral desc) {
150  LLVM_DEBUG(llvm::dbgs() << "patchByte(" << offset << ',' << uint64_t(value)
151  << ")\t" << desc << '\n');
152  assert(offset < size() && offset >= prevResultSize &&
153  "cannot patch previously emitted data");
154  currentResult[offset - prevResultSize] = value;
155  }
156 
157  /// Emit the provided blob of data, which is owned by the caller and is
158  /// guaranteed to not die before the end of the bytecode process.
159  void emitOwnedBlob(ArrayRef<uint8_t> data, StringLiteral desc) {
160  LLVM_DEBUG(llvm::dbgs()
161  << "emitOwnedBlob(" << data.size() << "b)\t" << desc << '\n');
162  // Push the current buffer before adding the provided data.
163  appendResult(std::move(currentResult));
164  appendOwnedResult(data);
165  }
166 
167  /// Emit the provided blob of data that has the given alignment, which is
168  /// owned by the caller and is guaranteed to not die before the end of the
169  /// bytecode process. The alignment value is also encoded, making it available
170  /// on load.
171  void emitOwnedBlobAndAlignment(ArrayRef<uint8_t> data, uint32_t alignment,
172  StringLiteral desc) {
173  emitVarInt(alignment, desc);
174  emitVarInt(data.size(), desc);
175 
176  alignTo(alignment);
177  emitOwnedBlob(data, desc);
178  }
179  void emitOwnedBlobAndAlignment(ArrayRef<char> data, uint32_t alignment,
180  StringLiteral desc) {
181  ArrayRef<uint8_t> castedData(reinterpret_cast<const uint8_t *>(data.data()),
182  data.size());
183  emitOwnedBlobAndAlignment(castedData, alignment, desc);
184  }
185 
186  /// Align the emitter to the given alignment.
187  void alignTo(unsigned alignment) {
188  if (alignment < 2)
189  return;
190  assert(llvm::isPowerOf2_32(alignment) && "expected valid alignment");
191 
192  // Check to see if we need to emit any padding bytes to meet the desired
193  // alignment.
194  size_t curOffset = size();
195  size_t paddingSize = llvm::alignTo(curOffset, alignment) - curOffset;
196  while (paddingSize--)
197  emitByte(bytecode::kAlignmentByte, "alignment byte");
198 
199  // Keep track of the maximum required alignment.
200  requiredAlignment = std::max(requiredAlignment, alignment);
201  }
202 
203  //===--------------------------------------------------------------------===//
204  // Integer Emission
205 
206  /// Emit a single byte.
207  template <typename T>
208  void emitByte(T byte, StringLiteral desc) {
209  LLVM_DEBUG(llvm::dbgs()
210  << "emitByte(" << uint64_t(byte) << ")\t" << desc << '\n');
211  currentResult.push_back(static_cast<uint8_t>(byte));
212  }
213 
214  /// Emit a range of bytes.
215  void emitBytes(ArrayRef<uint8_t> bytes, StringLiteral desc) {
216  LLVM_DEBUG(llvm::dbgs()
217  << "emitBytes(" << bytes.size() << "b)\t" << desc << '\n');
218  llvm::append_range(currentResult, bytes);
219  }
220 
221  /// Emit a variable length integer. The first encoded byte contains a prefix
222  /// in the low bits indicating the encoded length of the value. This length
223  /// prefix is a bit sequence of '0's followed by a '1'. The number of '0' bits
224  /// indicate the number of _additional_ bytes (not including the prefix byte).
225  /// All remaining bits in the first byte, along with all of the bits in
226  /// additional bytes, provide the value of the integer encoded in
227  /// little-endian order.
228  void emitVarInt(uint64_t value, StringLiteral desc) {
229  LLVM_DEBUG(llvm::dbgs() << "emitVarInt(" << value << ")\t" << desc << '\n');
230 
231  // In the most common case, the value can be represented in a single byte.
232  // Given how hot this case is, explicitly handle that here.
233  if ((value >> 7) == 0)
234  return emitByte((value << 1) | 0x1, desc);
235  emitMultiByteVarInt(value, desc);
236  }
237 
238  /// Emit a signed variable length integer. Signed varints are encoded using
239  /// a varint with zigzag encoding, meaning that we use the low bit of the
240  /// value to indicate the sign of the value. This allows for more efficient
241  /// encoding of negative values by limiting the number of active bits
242  void emitSignedVarInt(uint64_t value, StringLiteral desc) {
243  emitVarInt((value << 1) ^ (uint64_t)((int64_t)value >> 63), desc);
244  }
245 
246  /// Emit a variable length integer whose low bit is used to encode the
247  /// provided flag, i.e. encoded as: (value << 1) | (flag ? 1 : 0).
248  void emitVarIntWithFlag(uint64_t value, bool flag, StringLiteral desc) {
249  emitVarInt((value << 1) | (flag ? 1 : 0), desc);
250  }
251 
252  //===--------------------------------------------------------------------===//
253  // String Emission
254 
255  /// Emit the given string as a nul terminated string.
256  void emitNulTerminatedString(StringRef str, StringLiteral desc) {
257  emitString(str, desc);
258  emitByte(0, "null terminator");
259  }
260 
261  /// Emit the given string without a nul terminator.
262  void emitString(StringRef str, StringLiteral desc) {
263  emitBytes({reinterpret_cast<const uint8_t *>(str.data()), str.size()},
264  desc);
265  }
266 
267  //===--------------------------------------------------------------------===//
268  // Section Emission
269 
270  /// Emit a nested section of the given code, whose contents are encoded in the
271  /// provided emitter.
272  void emitSection(bytecode::Section::ID code, EncodingEmitter &&emitter) {
273  // Emit the section code and length. The high bit of the code is used to
274  // indicate whether the section alignment is present, so save an offset to
275  // it.
276  uint64_t codeOffset = currentResult.size();
277  emitByte(code, "section code");
278  emitVarInt(emitter.size(), "section size");
279 
280  // Integrate the alignment of the section into this emitter if necessary.
281  unsigned emitterAlign = emitter.requiredAlignment;
282  if (emitterAlign > 1) {
283  if (size() & (emitterAlign - 1)) {
284  emitVarInt(emitterAlign, "section alignment");
285  alignTo(emitterAlign);
286 
287  // Indicate that we needed to align the section, the high bit of the
288  // code field is used for this.
289  currentResult[codeOffset] |= 0b10000000;
290  } else {
291  // Otherwise, if we happen to be at a compatible offset, we just
292  // remember that we need this alignment.
293  requiredAlignment = std::max(requiredAlignment, emitterAlign);
294  }
295  }
296 
297  // Push our current buffer and then merge the provided section body into
298  // ours.
299  appendResult(std::move(currentResult));
300  for (std::vector<uint8_t> &result : emitter.prevResultStorage)
301  prevResultStorage.push_back(std::move(result));
302  llvm::append_range(prevResultList, emitter.prevResultList);
303  prevResultSize += emitter.prevResultSize;
304  appendResult(std::move(emitter.currentResult));
305  }
306 
307 private:
308  /// Emit the given value using a variable width encoding. This method is a
309  /// fallback when the number of bytes needed to encode the value is greater
310  /// than 1. We mark it noinline here so that the single byte hot path isn't
311  /// pessimized.
312  LLVM_ATTRIBUTE_NOINLINE void emitMultiByteVarInt(uint64_t value,
313  StringLiteral desc);
314 
315  /// Append a new result buffer to the current contents.
316  void appendResult(std::vector<uint8_t> &&result) {
317  if (result.empty())
318  return;
319  prevResultStorage.emplace_back(std::move(result));
320  appendOwnedResult(prevResultStorage.back());
321  }
322  void appendOwnedResult(ArrayRef<uint8_t> result) {
323  if (result.empty())
324  return;
325  prevResultSize += result.size();
326  prevResultList.emplace_back(result);
327  }
328 
329  /// The result of the emitter currently being built. We refrain from building
330  /// a single buffer to simplify emitting sections, large data, and more. The
331  /// result is thus represented using multiple distinct buffers, some of which
332  /// we own (via prevResultStorage), and some of which are just pointers into
333  /// externally owned buffers.
334  std::vector<uint8_t> currentResult;
335  std::vector<ArrayRef<uint8_t>> prevResultList;
336  std::vector<std::vector<uint8_t>> prevResultStorage;
337 
338  /// An up-to-date total size of all of the buffers within `prevResultList`.
339  /// This enables O(1) size checks of the current encoding.
340  size_t prevResultSize = 0;
341 
342  /// The highest required alignment for the start of this section.
343  unsigned requiredAlignment = 1;
344 };
345 
346 //===----------------------------------------------------------------------===//
347 // StringSectionBuilder
348 //===----------------------------------------------------------------------===//
349 
350 namespace {
351 /// This class is used to simplify the process of emitting the string section.
352 class StringSectionBuilder {
353 public:
354  /// Add the given string to the string section, and return the index of the
355  /// string within the section.
356  size_t insert(StringRef str) {
357  auto it = strings.insert({llvm::CachedHashStringRef(str), strings.size()});
358  return it.first->second;
359  }
360 
361  /// Write the current set of strings to the given emitter.
362  void write(EncodingEmitter &emitter) {
363  emitter.emitVarInt(strings.size(), "string section size");
364 
365  // Emit the sizes in reverse order, so that we don't need to backpatch an
366  // offset to the string data or have a separate section.
367  for (const auto &it : llvm::reverse(strings))
368  emitter.emitVarInt(it.first.size() + 1, "string size");
369  // Emit the string data itself.
370  for (const auto &it : strings)
371  emitter.emitNulTerminatedString(it.first.val(), "string");
372  }
373 
374 private:
375  /// A set of strings referenced within the bytecode. The value of the map is
376  /// unused.
377  llvm::MapVector<llvm::CachedHashStringRef, size_t> strings;
378 };
379 } // namespace
380 
381 class DialectWriter : public DialectBytecodeWriter {
382  using DialectVersionMapT = llvm::StringMap<std::unique_ptr<DialectVersion>>;
383 
384 public:
385  DialectWriter(int64_t bytecodeVersion, EncodingEmitter &emitter,
386  IRNumberingState &numberingState,
387  StringSectionBuilder &stringSection,
388  const DialectVersionMapT &dialectVersionMap)
389  : bytecodeVersion(bytecodeVersion), emitter(emitter),
390  numberingState(numberingState), stringSection(stringSection),
391  dialectVersionMap(dialectVersionMap) {}
392 
393  //===--------------------------------------------------------------------===//
394  // IR
395  //===--------------------------------------------------------------------===//
396 
397  void writeAttribute(Attribute attr) override {
398  emitter.emitVarInt(numberingState.getNumber(attr), "dialect attr");
399  }
400  void writeOptionalAttribute(Attribute attr) override {
401  if (!attr) {
402  emitter.emitVarInt(0, "dialect optional attr none");
403  return;
404  }
405  emitter.emitVarIntWithFlag(numberingState.getNumber(attr), true,
406  "dialect optional attr");
407  }
408 
409  void writeType(Type type) override {
410  emitter.emitVarInt(numberingState.getNumber(type), "dialect type");
411  }
412 
413  void writeResourceHandle(const AsmDialectResourceHandle &resource) override {
414  emitter.emitVarInt(numberingState.getNumber(resource), "dialect resource");
415  }
416 
417  //===--------------------------------------------------------------------===//
418  // Primitives
419  //===--------------------------------------------------------------------===//
420 
421  void writeVarInt(uint64_t value) override {
422  emitter.emitVarInt(value, "dialect writer");
423  }
424 
425  void writeSignedVarInt(int64_t value) override {
426  emitter.emitSignedVarInt(value, "dialect writer");
427  }
428 
429  void writeAPIntWithKnownWidth(const APInt &value) override {
430  size_t bitWidth = value.getBitWidth();
431 
432  // If the value is a single byte, just emit it directly without going
433  // through a varint.
434  if (bitWidth <= 8)
435  return emitter.emitByte(value.getLimitedValue(), "dialect APInt");
436 
437  // If the value fits within a single varint, emit it directly.
438  if (bitWidth <= 64)
439  return emitter.emitSignedVarInt(value.getLimitedValue(), "dialect APInt");
440 
441  // Otherwise, we need to encode a variable number of active words. We use
442  // active words instead of the number of total words under the observation
443  // that smaller values will be more common.
444  unsigned numActiveWords = value.getActiveWords();
445  emitter.emitVarInt(numActiveWords, "dialect APInt word count");
446 
447  const uint64_t *rawValueData = value.getRawData();
448  for (unsigned i = 0; i < numActiveWords; ++i)
449  emitter.emitSignedVarInt(rawValueData[i], "dialect APInt word");
450  }
451 
452  void writeAPFloatWithKnownSemantics(const APFloat &value) override {
453  writeAPIntWithKnownWidth(value.bitcastToAPInt());
454  }
455 
456  void writeOwnedString(StringRef str) override {
457  emitter.emitVarInt(stringSection.insert(str), "dialect string");
458  }
459 
460  void writeOwnedBlob(ArrayRef<char> blob) override {
461  emitter.emitVarInt(blob.size(), "dialect blob");
462  emitter.emitOwnedBlob(
463  ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(blob.data()),
464  blob.size()),
465  "dialect blob");
466  }
467 
468  void writeOwnedBool(bool value) override {
469  emitter.emitByte(value, "dialect bool");
470  }
471 
472  int64_t getBytecodeVersion() const override { return bytecodeVersion; }
473 
474  FailureOr<const DialectVersion *>
475  getDialectVersion(StringRef dialectName) const override {
476  auto dialectEntry = dialectVersionMap.find(dialectName);
477  if (dialectEntry == dialectVersionMap.end())
478  return failure();
479  return dialectEntry->getValue().get();
480  }
481 
482 private:
483  int64_t bytecodeVersion;
484  EncodingEmitter &emitter;
485  IRNumberingState &numberingState;
486  StringSectionBuilder &stringSection;
487  const DialectVersionMapT &dialectVersionMap;
488 };
489 
490 namespace {
491 class PropertiesSectionBuilder {
492 public:
493  PropertiesSectionBuilder(IRNumberingState &numberingState,
494  StringSectionBuilder &stringSection,
496  : numberingState(numberingState), stringSection(stringSection),
497  config(config) {}
498 
499  /// Emit the op properties in the properties section and return the index of
500  /// the properties within the section. Return -1 if no properties was emitted.
501  std::optional<ssize_t> emit(Operation *op) {
502  EncodingEmitter propertiesEmitter;
503  if (!op->getPropertiesStorageSize())
504  return std::nullopt;
505  if (!op->isRegistered()) {
506  // Unregistered op are storing properties as an optional attribute.
507  Attribute prop = *op->getPropertiesStorage().as<Attribute *>();
508  if (!prop)
509  return std::nullopt;
510  EncodingEmitter sizeEmitter;
511  sizeEmitter.emitVarInt(numberingState.getNumber(prop), "properties size");
512  scratch.clear();
513  llvm::raw_svector_ostream os(scratch);
514  sizeEmitter.writeTo(os);
515  return emit(scratch);
516  }
517 
518  EncodingEmitter emitter;
519  DialectWriter propertiesWriter(config.bytecodeVersion, emitter,
520  numberingState, stringSection,
521  config.dialectVersionMap);
522  auto iface = cast<BytecodeOpInterface>(op);
523  iface.writeProperties(propertiesWriter);
524  scratch.clear();
525  llvm::raw_svector_ostream os(scratch);
526  emitter.writeTo(os);
527  return emit(scratch);
528  }
529 
530  /// Write the current set of properties to the given emitter.
531  void write(EncodingEmitter &emitter) {
532  emitter.emitVarInt(propertiesStorage.size(), "properties size");
533  if (propertiesStorage.empty())
534  return;
535  for (const auto &storage : propertiesStorage) {
536  if (storage.empty()) {
537  emitter.emitBytes(ArrayRef<uint8_t>(), "empty properties");
538  continue;
539  }
540  emitter.emitBytes(ArrayRef(reinterpret_cast<const uint8_t *>(&storage[0]),
541  storage.size()),
542  "property");
543  }
544  }
545 
546  /// Returns true if the section is empty.
547  bool empty() { return propertiesStorage.empty(); }
548 
549 private:
550  /// Emit raw data and returns the offset in the internal buffer.
551  /// Data are deduplicated and will be copied in the internal buffer only if
552  /// they don't exist there already.
553  ssize_t emit(ArrayRef<char> rawProperties) {
554  // Populate a scratch buffer with the properties size.
555  SmallVector<char> sizeScratch;
556  {
557  EncodingEmitter sizeEmitter;
558  sizeEmitter.emitVarInt(rawProperties.size(), "properties");
559  llvm::raw_svector_ostream os(sizeScratch);
560  sizeEmitter.writeTo(os);
561  }
562  // Append a new storage to the table now.
563  size_t index = propertiesStorage.size();
564  propertiesStorage.emplace_back();
565  std::vector<char> &newStorage = propertiesStorage.back();
566  size_t propertiesSize = sizeScratch.size() + rawProperties.size();
567  newStorage.reserve(propertiesSize);
568  newStorage.insert(newStorage.end(), sizeScratch.begin(), sizeScratch.end());
569  newStorage.insert(newStorage.end(), rawProperties.begin(),
570  rawProperties.end());
571 
572  // Try to de-duplicate the new serialized properties.
573  // If the properties is a duplicate, pop it back from the storage.
574  auto inserted = propertiesUniquing.insert(
575  std::make_pair(ArrayRef<char>(newStorage), index));
576  if (!inserted.second)
577  propertiesStorage.pop_back();
578  return inserted.first->getSecond();
579  }
580 
581  /// Storage for properties.
582  std::vector<std::vector<char>> propertiesStorage;
583  SmallVector<char> scratch;
584  DenseMap<ArrayRef<char>, int64_t> propertiesUniquing;
585  IRNumberingState &numberingState;
586  StringSectionBuilder &stringSection;
588 };
589 } // namespace
590 
591 /// A simple raw_ostream wrapper around a EncodingEmitter. This removes the need
592 /// to go through an intermediate buffer when interacting with code that wants a
593 /// raw_ostream.
594 class RawEmitterOstream : public raw_ostream {
595 public:
596  explicit RawEmitterOstream(EncodingEmitter &emitter) : emitter(emitter) {
597  SetUnbuffered();
598  }
599 
600 private:
601  void write_impl(const char *ptr, size_t size) override {
602  emitter.emitBytes({reinterpret_cast<const uint8_t *>(ptr), size},
603  "raw emitter");
604  }
605  uint64_t current_pos() const override { return emitter.size(); }
606 
607  /// The section being emitted to.
608  EncodingEmitter &emitter;
609 };
610 } // namespace
611 
612 void EncodingEmitter::writeTo(raw_ostream &os) const {
613  for (auto &prevResult : prevResultList)
614  os.write((const char *)prevResult.data(), prevResult.size());
615  os.write((const char *)currentResult.data(), currentResult.size());
616 }
617 
618 void EncodingEmitter::emitMultiByteVarInt(uint64_t value, StringLiteral desc) {
619  // Compute the number of bytes needed to encode the value. Each byte can hold
620  // up to 7-bits of data. We only check up to the number of bits we can encode
621  // in the first byte (8).
622  uint64_t it = value >> 7;
623  for (size_t numBytes = 2; numBytes < 9; ++numBytes) {
624  if (LLVM_LIKELY(it >>= 7) == 0) {
625  uint64_t encodedValue = (value << 1) | 0x1;
626  encodedValue <<= (numBytes - 1);
627  llvm::support::ulittle64_t encodedValueLE(encodedValue);
628  emitBytes({reinterpret_cast<uint8_t *>(&encodedValueLE), numBytes}, desc);
629  return;
630  }
631  }
632 
633  // If the value is too large to encode in a single byte, emit a special all
634  // zero marker byte and splat the value directly.
635  emitByte(0, desc);
636  llvm::support::ulittle64_t valueLE(value);
637  emitBytes({reinterpret_cast<uint8_t *>(&valueLE), sizeof(valueLE)}, desc);
638 }
639 
640 //===----------------------------------------------------------------------===//
641 // Bytecode Writer
642 //===----------------------------------------------------------------------===//
643 
644 namespace {
645 class BytecodeWriter {
646 public:
647  BytecodeWriter(Operation *op, const BytecodeWriterConfig &config)
648  : numberingState(op, config), config(config.getImpl()),
649  propertiesSection(numberingState, stringSection, config.getImpl()) {}
650 
651  /// Write the bytecode for the given root operation.
652  LogicalResult write(Operation *rootOp, raw_ostream &os);
653 
654 private:
655  //===--------------------------------------------------------------------===//
656  // Dialects
657 
658  void writeDialectSection(EncodingEmitter &emitter);
659 
660  //===--------------------------------------------------------------------===//
661  // Attributes and Types
662 
663  void writeAttrTypeSection(EncodingEmitter &emitter);
664 
665  //===--------------------------------------------------------------------===//
666  // Operations
667 
668  LogicalResult writeBlock(EncodingEmitter &emitter, Block *block);
669  LogicalResult writeOp(EncodingEmitter &emitter, Operation *op);
670  LogicalResult writeRegion(EncodingEmitter &emitter, Region *region);
671  LogicalResult writeIRSection(EncodingEmitter &emitter, Operation *op);
672 
673  LogicalResult writeRegions(EncodingEmitter &emitter,
674  MutableArrayRef<Region> regions) {
675  return success(llvm::all_of(regions, [&](Region &region) {
676  return succeeded(writeRegion(emitter, &region));
677  }));
678  }
679 
680  //===--------------------------------------------------------------------===//
681  // Resources
682 
683  void writeResourceSection(Operation *op, EncodingEmitter &emitter);
684 
685  //===--------------------------------------------------------------------===//
686  // Strings
687 
688  void writeStringSection(EncodingEmitter &emitter);
689 
690  //===--------------------------------------------------------------------===//
691  // Properties
692 
693  void writePropertiesSection(EncodingEmitter &emitter);
694 
695  //===--------------------------------------------------------------------===//
696  // Helpers
697 
698  void writeUseListOrders(EncodingEmitter &emitter, uint8_t &opEncodingMask,
699  ValueRange range);
700 
701  //===--------------------------------------------------------------------===//
702  // Fields
703 
704  /// The builder used for the string section.
705  StringSectionBuilder stringSection;
706 
707  /// The IR numbering state generated for the root operation.
708  IRNumberingState numberingState;
709 
710  /// Configuration dictating bytecode emission.
712 
713  /// Storage for the properties section
714  PropertiesSectionBuilder propertiesSection;
715 };
716 } // namespace
717 
718 LogicalResult BytecodeWriter::write(Operation *rootOp, raw_ostream &os) {
719  EncodingEmitter emitter;
720 
721  // Emit the bytecode file header. This is how we identify the output as a
722  // bytecode file.
723  emitter.emitString("ML\xefR", "bytecode header");
724 
725  // Emit the bytecode version.
726  if (config.bytecodeVersion < bytecode::kMinSupportedVersion ||
727  config.bytecodeVersion > bytecode::kVersion)
728  return rootOp->emitError()
729  << "unsupported version requested " << config.bytecodeVersion
730  << ", must be in range ["
731  << static_cast<int64_t>(bytecode::kMinSupportedVersion) << ", "
732  << static_cast<int64_t>(bytecode::kVersion) << ']';
733  emitter.emitVarInt(config.bytecodeVersion, "bytecode version");
734 
735  // Emit the producer.
736  emitter.emitNulTerminatedString(config.producer, "bytecode producer");
737 
738  // Emit the dialect section.
739  writeDialectSection(emitter);
740 
741  // Emit the attributes and types section.
742  writeAttrTypeSection(emitter);
743 
744  // Emit the IR section.
745  if (failed(writeIRSection(emitter, rootOp)))
746  return failure();
747 
748  // Emit the resources section.
749  writeResourceSection(rootOp, emitter);
750 
751  // Emit the string section.
752  writeStringSection(emitter);
753 
754  // Emit the properties section.
755  if (config.bytecodeVersion >= bytecode::kNativePropertiesEncoding)
756  writePropertiesSection(emitter);
757  else if (!propertiesSection.empty())
758  return rootOp->emitError(
759  "unexpected properties emitted incompatible with bytecode <5");
760 
761  // Write the generated bytecode to the provided output stream.
762  emitter.writeTo(os);
763 
764  return success();
765 }
766 
767 //===----------------------------------------------------------------------===//
768 // Dialects
769 
770 /// Write the given entries in contiguous groups with the same parent dialect.
771 /// Each dialect sub-group is encoded with the parent dialect and number of
772 /// elements, followed by the encoding for the entries. The given callback is
773 /// invoked to encode each individual entry.
774 template <typename EntriesT, typename EntryCallbackT>
775 static void writeDialectGrouping(EncodingEmitter &emitter, EntriesT &&entries,
776  EntryCallbackT &&callback) {
777  for (auto it = entries.begin(), e = entries.end(); it != e;) {
778  auto groupStart = it++;
779 
780  // Find the end of the group that shares the same parent dialect.
781  DialectNumbering *currentDialect = groupStart->dialect;
782  it = std::find_if(it, e, [&](const auto &entry) {
783  return entry.dialect != currentDialect;
784  });
785 
786  // Emit the dialect and number of elements.
787  emitter.emitVarInt(currentDialect->number, "dialect number");
788  emitter.emitVarInt(std::distance(groupStart, it), "dialect offset");
789 
790  // Emit the entries within the group.
791  for (auto &entry : llvm::make_range(groupStart, it))
792  callback(entry);
793  }
794 }
795 
796 void BytecodeWriter::writeDialectSection(EncodingEmitter &emitter) {
797  EncodingEmitter dialectEmitter;
798 
799  // Emit the referenced dialects.
800  auto dialects = numberingState.getDialects();
801  dialectEmitter.emitVarInt(llvm::size(dialects), "dialects count");
802  for (DialectNumbering &dialect : dialects) {
803  // Write the string section and get the ID.
804  size_t nameID = stringSection.insert(dialect.name);
805 
806  if (config.bytecodeVersion < bytecode::kDialectVersioning) {
807  dialectEmitter.emitVarInt(nameID, "dialect name ID");
808  continue;
809  }
810 
811  // Try writing the version to the versionEmitter.
812  EncodingEmitter versionEmitter;
813  if (dialect.interface) {
814  // The writer used when emitting using a custom bytecode encoding.
815  DialectWriter versionWriter(config.bytecodeVersion, versionEmitter,
816  numberingState, stringSection,
817  config.dialectVersionMap);
818  dialect.interface->writeVersion(versionWriter);
819  }
820 
821  // If the version emitter is empty, version is not available. We can encode
822  // this in the dialect ID, so if there is no version, we don't write the
823  // section.
824  size_t versionAvailable = versionEmitter.size() > 0;
825  dialectEmitter.emitVarIntWithFlag(nameID, versionAvailable,
826  "dialect version");
827  if (versionAvailable)
828  dialectEmitter.emitSection(bytecode::Section::kDialectVersions,
829  std::move(versionEmitter));
830  }
831 
832  if (config.bytecodeVersion >= bytecode::kElideUnknownBlockArgLocation)
833  dialectEmitter.emitVarInt(size(numberingState.getOpNames()),
834  "op names count");
835 
836  // Emit the referenced operation names grouped by dialect.
837  auto emitOpName = [&](OpNameNumbering &name) {
838  size_t stringId = stringSection.insert(name.name.stripDialect());
839  if (config.bytecodeVersion < bytecode::kNativePropertiesEncoding)
840  dialectEmitter.emitVarInt(stringId, "dialect op name");
841  else
842  dialectEmitter.emitVarIntWithFlag(stringId, name.name.isRegistered(),
843  "dialect op name");
844  };
845  writeDialectGrouping(dialectEmitter, numberingState.getOpNames(), emitOpName);
846 
847  emitter.emitSection(bytecode::Section::kDialect, std::move(dialectEmitter));
848 }
849 
850 //===----------------------------------------------------------------------===//
851 // Attributes and Types
852 
853 void BytecodeWriter::writeAttrTypeSection(EncodingEmitter &emitter) {
854  EncodingEmitter attrTypeEmitter;
855  EncodingEmitter offsetEmitter;
856  offsetEmitter.emitVarInt(llvm::size(numberingState.getAttributes()),
857  "attributes count");
858  offsetEmitter.emitVarInt(llvm::size(numberingState.getTypes()),
859  "types count");
860 
861  // A functor used to emit an attribute or type entry.
862  uint64_t prevOffset = 0;
863  auto emitAttrOrType = [&](auto &entry) {
864  auto entryValue = entry.getValue();
865 
866  auto emitAttrOrTypeRawImpl = [&]() -> void {
867  RawEmitterOstream(attrTypeEmitter) << entryValue;
868  attrTypeEmitter.emitByte(0, "attr/type separator");
869  };
870  auto emitAttrOrTypeImpl = [&]() -> bool {
871  // TODO: We don't currently support custom encoded mutable types and
872  // attributes.
873  if (entryValue.template hasTrait<TypeTrait::IsMutable>() ||
874  entryValue.template hasTrait<AttributeTrait::IsMutable>()) {
875  emitAttrOrTypeRawImpl();
876  return false;
877  }
878 
879  DialectWriter dialectWriter(config.bytecodeVersion, attrTypeEmitter,
880  numberingState, stringSection,
881  config.dialectVersionMap);
882  if constexpr (std::is_same_v<std::decay_t<decltype(entryValue)>, Type>) {
883  for (const auto &callback : config.typeWriterCallbacks) {
884  if (succeeded(callback->write(entryValue, dialectWriter)))
885  return true;
886  }
887  if (const BytecodeDialectInterface *interface =
888  entry.dialect->interface) {
889  if (succeeded(interface->writeType(entryValue, dialectWriter)))
890  return true;
891  }
892  } else {
893  for (const auto &callback : config.attributeWriterCallbacks) {
894  if (succeeded(callback->write(entryValue, dialectWriter)))
895  return true;
896  }
897  if (const BytecodeDialectInterface *interface =
898  entry.dialect->interface) {
899  if (succeeded(interface->writeAttribute(entryValue, dialectWriter)))
900  return true;
901  }
902  }
903 
904  // If the entry was not emitted using a callback or a dialect interface,
905  // emit it using the textual format.
906  emitAttrOrTypeRawImpl();
907  return false;
908  };
909 
910  bool hasCustomEncoding = emitAttrOrTypeImpl();
911 
912  // Record the offset of this entry.
913  uint64_t curOffset = attrTypeEmitter.size();
914  offsetEmitter.emitVarIntWithFlag(curOffset - prevOffset, hasCustomEncoding,
915  "attr/type offset");
916  prevOffset = curOffset;
917  };
918 
919  // Emit the attribute and type entries for each dialect.
920  writeDialectGrouping(offsetEmitter, numberingState.getAttributes(),
921  emitAttrOrType);
922  writeDialectGrouping(offsetEmitter, numberingState.getTypes(),
923  emitAttrOrType);
924 
925  // Emit the sections to the stream.
926  emitter.emitSection(bytecode::Section::kAttrTypeOffset,
927  std::move(offsetEmitter));
928  emitter.emitSection(bytecode::Section::kAttrType, std::move(attrTypeEmitter));
929 }
930 
931 //===----------------------------------------------------------------------===//
932 // Operations
933 
934 LogicalResult BytecodeWriter::writeBlock(EncodingEmitter &emitter,
935  Block *block) {
936  ArrayRef<BlockArgument> args = block->getArguments();
937  bool hasArgs = !args.empty();
938 
939  // Emit the number of operations in this block, and if it has arguments. We
940  // use the low bit of the operation count to indicate if the block has
941  // arguments.
942  unsigned numOps = numberingState.getOperationCount(block);
943  emitter.emitVarIntWithFlag(numOps, hasArgs, "block num ops");
944 
945  // Emit the arguments of the block.
946  if (hasArgs) {
947  emitter.emitVarInt(args.size(), "block args count");
948  for (BlockArgument arg : args) {
949  Location argLoc = arg.getLoc();
950  if (config.bytecodeVersion >= bytecode::kElideUnknownBlockArgLocation) {
951  emitter.emitVarIntWithFlag(numberingState.getNumber(arg.getType()),
952  !isa<UnknownLoc>(argLoc), "block arg type");
953  if (!isa<UnknownLoc>(argLoc))
954  emitter.emitVarInt(numberingState.getNumber(argLoc),
955  "block arg location");
956  } else {
957  emitter.emitVarInt(numberingState.getNumber(arg.getType()),
958  "block arg type");
959  emitter.emitVarInt(numberingState.getNumber(argLoc),
960  "block arg location");
961  }
962  }
963  if (config.bytecodeVersion >= bytecode::kUseListOrdering) {
964  uint64_t maskOffset = emitter.size();
965  uint8_t encodingMask = 0;
966  emitter.emitByte(0, "use-list separator");
967  writeUseListOrders(emitter, encodingMask, args);
968  if (encodingMask)
969  emitter.patchByte(maskOffset, encodingMask, "block patch encoding");
970  }
971  }
972 
973  // Emit the operations within the block.
974  for (Operation &op : *block)
975  if (failed(writeOp(emitter, &op)))
976  return failure();
977  return success();
978 }
979 
980 LogicalResult BytecodeWriter::writeOp(EncodingEmitter &emitter, Operation *op) {
981  emitter.emitVarInt(numberingState.getNumber(op->getName()), "op name ID");
982 
983  // Emit a mask for the operation components. We need to fill this in later
984  // (when we actually know what needs to be emitted), so emit a placeholder for
985  // now.
986  uint64_t maskOffset = emitter.size();
987  uint8_t opEncodingMask = 0;
988  emitter.emitByte(0, "op separator");
989 
990  // Emit the location for this operation.
991  emitter.emitVarInt(numberingState.getNumber(op->getLoc()), "op location");
992 
993  // Emit the attributes of this operation.
994  DictionaryAttr attrs = op->getDiscardableAttrDictionary();
995  // Allow deployment to version <kNativePropertiesEncoding by merging inherent
996  // attribute with the discardable ones. We should fail if there are any
997  // conflicts. When properties are not used by the op, also store everything as
998  // attributes.
999  if (config.bytecodeVersion < bytecode::kNativePropertiesEncoding ||
1000  !op->getPropertiesStorage()) {
1001  attrs = op->getAttrDictionary();
1002  }
1003  if (!attrs.empty()) {
1004  opEncodingMask |= bytecode::OpEncodingMask::kHasAttrs;
1005  emitter.emitVarInt(numberingState.getNumber(attrs), "op attrs count");
1006  }
1007 
1008  // Emit the properties of this operation, for now we still support deployment
1009  // to version <kNativePropertiesEncoding.
1010  if (config.bytecodeVersion >= bytecode::kNativePropertiesEncoding) {
1011  std::optional<ssize_t> propertiesId = propertiesSection.emit(op);
1012  if (propertiesId.has_value()) {
1013  opEncodingMask |= bytecode::OpEncodingMask::kHasProperties;
1014  emitter.emitVarInt(*propertiesId, "op properties ID");
1015  }
1016  }
1017 
1018  // Emit the result types of the operation.
1019  if (unsigned numResults = op->getNumResults()) {
1020  opEncodingMask |= bytecode::OpEncodingMask::kHasResults;
1021  emitter.emitVarInt(numResults, "op results count");
1022  for (Type type : op->getResultTypes())
1023  emitter.emitVarInt(numberingState.getNumber(type), "op result type");
1024  }
1025 
1026  // Emit the operands of the operation.
1027  if (unsigned numOperands = op->getNumOperands()) {
1028  opEncodingMask |= bytecode::OpEncodingMask::kHasOperands;
1029  emitter.emitVarInt(numOperands, "op operands count");
1030  for (Value operand : op->getOperands())
1031  emitter.emitVarInt(numberingState.getNumber(operand), "op operand types");
1032  }
1033 
1034  // Emit the successors of the operation.
1035  if (unsigned numSuccessors = op->getNumSuccessors()) {
1036  opEncodingMask |= bytecode::OpEncodingMask::kHasSuccessors;
1037  emitter.emitVarInt(numSuccessors, "op successors count");
1038  for (Block *successor : op->getSuccessors())
1039  emitter.emitVarInt(numberingState.getNumber(successor), "op successor");
1040  }
1041 
1042  // Emit the use-list orders to bytecode, so we can reconstruct the same order
1043  // at parsing.
1044  if (config.bytecodeVersion >= bytecode::kUseListOrdering)
1045  writeUseListOrders(emitter, opEncodingMask, ValueRange(op->getResults()));
1046 
1047  // Check for regions.
1048  unsigned numRegions = op->getNumRegions();
1049  if (numRegions)
1051 
1052  // Update the mask for the operation.
1053  emitter.patchByte(maskOffset, opEncodingMask, "op encoding mask");
1054 
1055  // With the mask emitted, we can now emit the regions of the operation. We do
1056  // this after mask emission to avoid offset complications that may arise by
1057  // emitting the regions first (e.g. if the regions are huge, backpatching the
1058  // op encoding mask is more annoying).
1059  if (numRegions) {
1060  bool isIsolatedFromAbove = numberingState.isIsolatedFromAbove(op);
1061  emitter.emitVarIntWithFlag(numRegions, isIsolatedFromAbove,
1062  "op regions count");
1063 
1064  // If the region is not isolated from above, or we are emitting bytecode
1065  // targeting version <kLazyLoading, we don't use a section.
1066  if (isIsolatedFromAbove &&
1067  config.bytecodeVersion >= bytecode::kLazyLoading) {
1068  EncodingEmitter regionEmitter;
1069  if (failed(writeRegions(regionEmitter, op->getRegions())))
1070  return failure();
1071  emitter.emitSection(bytecode::Section::kIR, std::move(regionEmitter));
1072 
1073  } else if (failed(writeRegions(emitter, op->getRegions()))) {
1074  return failure();
1075  }
1076  }
1077  return success();
1078 }
1079 
1080 void BytecodeWriter::writeUseListOrders(EncodingEmitter &emitter,
1081  uint8_t &opEncodingMask,
1082  ValueRange range) {
1083  // Loop over the results and store the use-list order per result index.
1085  for (auto item : llvm::enumerate(range)) {
1086  auto value = item.value();
1087  // No need to store a custom use-list order if the result does not have
1088  // multiple uses.
1089  if (value.use_empty() || value.hasOneUse())
1090  continue;
1091 
1092  // For each result, assemble the list of pairs (use-list-index,
1093  // global-value-index). While doing so, detect if the global-value-index is
1094  // already ordered with respect to the use-list-index.
1095  bool alreadyOrdered = true;
1096  auto &firstUse = *value.use_begin();
1097  uint64_t prevID = bytecode::getUseID(
1098  firstUse, numberingState.getNumber(firstUse.getOwner()));
1100  {{0, prevID}});
1101 
1102  for (auto use : llvm::drop_begin(llvm::enumerate(value.getUses()))) {
1103  uint64_t currentID = bytecode::getUseID(
1104  use.value(), numberingState.getNumber(use.value().getOwner()));
1105  // The use-list order achieved when building the IR at parsing always
1106  // pushes new uses on front. Hence, if the order by unique ID is
1107  // monotonically decreasing, a roundtrip to bytecode preserves such order.
1108  alreadyOrdered &= (prevID > currentID);
1109  useListPairs.push_back({use.index(), currentID});
1110  prevID = currentID;
1111  }
1112 
1113  // Do not emit if the order is already sorted.
1114  if (alreadyOrdered)
1115  continue;
1116 
1117  // Sort the use indices by the unique ID indices in descending order.
1118  std::sort(
1119  useListPairs.begin(), useListPairs.end(),
1120  [](auto elem1, auto elem2) { return elem1.second > elem2.second; });
1121 
1122  map.try_emplace(item.index(), llvm::map_range(useListPairs, [](auto elem) {
1123  return elem.first;
1124  }));
1125  }
1126 
1127  if (map.empty())
1128  return;
1129 
1131  // Emit the number of results that have a custom use-list order if the number
1132  // of results is greater than one.
1133  if (range.size() != 1) {
1134  emitter.emitVarInt(map.size(), "custom use-list size");
1135  }
1136 
1137  for (const auto &item : map) {
1138  auto resultIdx = item.getFirst();
1139  auto useListOrder = item.getSecond();
1140 
1141  // Compute the number of uses that are actually shuffled. If those are less
1142  // than half of the total uses, encoding the index pair `(src, dst)` is more
1143  // space efficient.
1144  size_t shuffledElements =
1145  llvm::count_if(llvm::enumerate(useListOrder),
1146  [](auto item) { return item.index() != item.value(); });
1147  bool indexPairEncoding = shuffledElements < (useListOrder.size() / 2);
1148 
1149  // For single result, we don't need to store the result index.
1150  if (range.size() != 1)
1151  emitter.emitVarInt(resultIdx, "use-list result index");
1152 
1153  if (indexPairEncoding) {
1154  emitter.emitVarIntWithFlag(shuffledElements * 2, indexPairEncoding,
1155  "use-list index pair size");
1156  for (auto pair : llvm::enumerate(useListOrder)) {
1157  if (pair.index() != pair.value()) {
1158  emitter.emitVarInt(pair.value(), "use-list index pair first");
1159  emitter.emitVarInt(pair.index(), "use-list index pair second");
1160  }
1161  }
1162  } else {
1163  emitter.emitVarIntWithFlag(useListOrder.size(), indexPairEncoding,
1164  "use-list size");
1165  for (const auto &index : useListOrder)
1166  emitter.emitVarInt(index, "use-list order");
1167  }
1168  }
1169 }
1170 
1171 LogicalResult BytecodeWriter::writeRegion(EncodingEmitter &emitter,
1172  Region *region) {
1173  // If the region is empty, we only need to emit the number of blocks (which is
1174  // zero).
1175  if (region->empty()) {
1176  emitter.emitVarInt(/*numBlocks*/ 0, "region block count empty");
1177  return success();
1178  }
1179 
1180  // Emit the number of blocks and values within the region.
1181  unsigned numBlocks, numValues;
1182  std::tie(numBlocks, numValues) = numberingState.getBlockValueCount(region);
1183  emitter.emitVarInt(numBlocks, "region block count");
1184  emitter.emitVarInt(numValues, "region value count");
1185 
1186  // Emit the blocks within the region.
1187  for (Block &block : *region)
1188  if (failed(writeBlock(emitter, &block)))
1189  return failure();
1190  return success();
1191 }
1192 
1193 LogicalResult BytecodeWriter::writeIRSection(EncodingEmitter &emitter,
1194  Operation *op) {
1195  EncodingEmitter irEmitter;
1196 
1197  // Write the IR section the same way as a block with no arguments. Note that
1198  // the low-bit of the operation count for a block is used to indicate if the
1199  // block has arguments, which in this case is always false.
1200  irEmitter.emitVarIntWithFlag(/*numOps*/ 1, /*hasArgs*/ false, "ir section");
1201 
1202  // Emit the operations.
1203  if (failed(writeOp(irEmitter, op)))
1204  return failure();
1205 
1206  emitter.emitSection(bytecode::Section::kIR, std::move(irEmitter));
1207  return success();
1208 }
1209 
1210 //===----------------------------------------------------------------------===//
1211 // Resources
1212 
1213 namespace {
1214 /// This class represents a resource builder implementation for the MLIR
1215 /// bytecode format.
1216 class ResourceBuilder : public AsmResourceBuilder {
1217 public:
1218  using PostProcessFn = function_ref<void(StringRef, AsmResourceEntryKind)>;
1219 
1220  ResourceBuilder(EncodingEmitter &emitter, StringSectionBuilder &stringSection,
1221  PostProcessFn postProcessFn, bool shouldElideData)
1222  : emitter(emitter), stringSection(stringSection),
1223  postProcessFn(postProcessFn), shouldElideData(shouldElideData) {}
1224  ~ResourceBuilder() override = default;
1225 
1226  void buildBlob(StringRef key, ArrayRef<char> data,
1227  uint32_t dataAlignment) final {
1228  if (!shouldElideData)
1229  emitter.emitOwnedBlobAndAlignment(data, dataAlignment, "resource blob");
1230  postProcessFn(key, AsmResourceEntryKind::Blob);
1231  }
1232  void buildBool(StringRef key, bool data) final {
1233  if (!shouldElideData)
1234  emitter.emitByte(data, "resource bool");
1235  postProcessFn(key, AsmResourceEntryKind::Bool);
1236  }
1237  void buildString(StringRef key, StringRef data) final {
1238  if (!shouldElideData)
1239  emitter.emitVarInt(stringSection.insert(data), "resource string");
1240  postProcessFn(key, AsmResourceEntryKind::String);
1241  }
1242 
1243 private:
1244  EncodingEmitter &emitter;
1245  StringSectionBuilder &stringSection;
1246  PostProcessFn postProcessFn;
1247  bool shouldElideData = false;
1248 };
1249 } // namespace
1250 
1251 void BytecodeWriter::writeResourceSection(Operation *op,
1252  EncodingEmitter &emitter) {
1253  EncodingEmitter resourceEmitter;
1254  EncodingEmitter resourceOffsetEmitter;
1255  uint64_t prevOffset = 0;
1257  curResourceEntries;
1258 
1259  // Functor used to process the offset for a resource of `kind` defined by
1260  // 'key'.
1261  auto appendResourceOffset = [&](StringRef key, AsmResourceEntryKind kind) {
1262  uint64_t curOffset = resourceEmitter.size();
1263  curResourceEntries.emplace_back(key, kind, curOffset - prevOffset);
1264  prevOffset = curOffset;
1265  };
1266 
1267  // Functor used to emit a resource group defined by 'key'.
1268  auto emitResourceGroup = [&](uint64_t key) {
1269  resourceOffsetEmitter.emitVarInt(key, "resource group key");
1270  resourceOffsetEmitter.emitVarInt(curResourceEntries.size(),
1271  "resource group size");
1272  for (auto [key, kind, size] : curResourceEntries) {
1273  resourceOffsetEmitter.emitVarInt(stringSection.insert(key),
1274  "resource key");
1275  resourceOffsetEmitter.emitVarInt(size, "resource size");
1276  resourceOffsetEmitter.emitByte(kind, "resource kind");
1277  }
1278  };
1279 
1280  // Builder used to emit resources.
1281  ResourceBuilder entryBuilder(resourceEmitter, stringSection,
1282  appendResourceOffset,
1283  config.shouldElideResourceData);
1284 
1285  // Emit the external resource entries.
1286  resourceOffsetEmitter.emitVarInt(config.externalResourcePrinters.size(),
1287  "external resource printer count");
1288  for (const auto &printer : config.externalResourcePrinters) {
1289  curResourceEntries.clear();
1290  printer->buildResources(op, entryBuilder);
1291  emitResourceGroup(stringSection.insert(printer->getName()));
1292  }
1293 
1294  // Emit the dialect resource entries.
1295  for (DialectNumbering &dialect : numberingState.getDialects()) {
1296  if (!dialect.asmInterface)
1297  continue;
1298  curResourceEntries.clear();
1299  dialect.asmInterface->buildResources(op, dialect.resources, entryBuilder);
1300 
1301  // Emit the declaration resources for this dialect, these didn't get emitted
1302  // by the interface. These resources don't have data attached, so just use a
1303  // "blob" kind as a placeholder.
1304  for (const auto &resource : dialect.resourceMap)
1305  if (resource.second->isDeclaration)
1306  appendResourceOffset(resource.first, AsmResourceEntryKind::Blob);
1307 
1308  // Emit the resource group for this dialect.
1309  if (!curResourceEntries.empty())
1310  emitResourceGroup(dialect.number);
1311  }
1312 
1313  // If we didn't emit any resource groups, elide the resource sections.
1314  if (resourceOffsetEmitter.size() == 0)
1315  return;
1316 
1317  emitter.emitSection(bytecode::Section::kResourceOffset,
1318  std::move(resourceOffsetEmitter));
1319  emitter.emitSection(bytecode::Section::kResource, std::move(resourceEmitter));
1320 }
1321 
1322 //===----------------------------------------------------------------------===//
1323 // Strings
1324 
1325 void BytecodeWriter::writeStringSection(EncodingEmitter &emitter) {
1326  EncodingEmitter stringEmitter;
1327  stringSection.write(stringEmitter);
1328  emitter.emitSection(bytecode::Section::kString, std::move(stringEmitter));
1329 }
1330 
1331 //===----------------------------------------------------------------------===//
1332 // Properties
1333 
1334 void BytecodeWriter::writePropertiesSection(EncodingEmitter &emitter) {
1335  EncodingEmitter propertiesEmitter;
1336  propertiesSection.write(propertiesEmitter);
1337  emitter.emitSection(bytecode::Section::kProperties,
1338  std::move(propertiesEmitter));
1339 }
1340 
1341 //===----------------------------------------------------------------------===//
1342 // Entry Points
1343 //===----------------------------------------------------------------------===//
1344 
1345 LogicalResult mlir::writeBytecodeToFile(Operation *op, raw_ostream &os,
1346  const BytecodeWriterConfig &config) {
1347  BytecodeWriter writer(op, config);
1348  return writer.write(op, os);
1349 }
static void writeDialectGrouping(EncodingEmitter &emitter, EntriesT &&entries, EntryCallbackT &&callback)
Write the given entries in contiguous groups with the same parent dialect.
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
This class represents an opaque handle to a dialect resource entry.
This class is used to build resource entries for use by the printer.
Definition: AsmState.h:246
A class to interact with the attributes and types printer when emitting MLIR bytecode.
Attributes are known-constant values of operations.
Definition: Attributes.h:25
This class represents an argument of a Block.
Definition: Value.h:319
Block represents an ordered list of Operations.
Definition: Block.h:33
BlockArgListType getArguments()
Definition: Block.h:87
This class contains the configuration used for the bytecode writer.
void attachTypeCallback(std::unique_ptr< AttrTypeBytecodeWriter< Type >> callback)
llvm::StringMap< std::unique_ptr< DialectVersion > > & getDialectVersionMap() const
A map containing the dialect versions to emit.
void setElideResourceDataFlag(bool shouldElideResourceData=true)
Set a boolean flag to skip emission of resources into the bytecode file.
BytecodeWriterConfig(StringRef producer="MLIR" LLVM_VERSION_STRING)
producer is an optional string that can be used to identify the producer of the bytecode when reading...
void attachFallbackResourcePrinter(FallbackAsmResourceMap &map)
Attach resource printers to the AsmState for the fallback resources in the given map.
int64_t getDesiredBytecodeVersion() const
Get the set desired bytecode version to emit.
void setDialectVersion(std::unique_ptr< DialectVersion > dialectVersion) const
Set a given dialect version to emit on the map.
ArrayRef< std::unique_ptr< AttrTypeBytecodeWriter< Type > > > getTypeWriterCallbacks() const
ArrayRef< std::unique_ptr< AttrTypeBytecodeWriter< Attribute > > > getAttributeWriterCallbacks() const
Retrieve the callbacks.
void setDesiredBytecodeVersion(int64_t bytecodeVersion)
Set the desired bytecode version to emit.
void attachResourcePrinter(std::unique_ptr< AsmResourcePrinter > printer)
Attach the given resource printer to the writer configuration.
void attachAttributeCallback(std::unique_ptr< AttrTypeBytecodeWriter< Attribute >> callback)
Attach a custom bytecode printer callback to the configuration for the emission of custom type/attrib...
This class defines a virtual interface for writing to a bytecode stream, providing hooks into the byt...
A fallback map containing external resources not explicitly handled by another parser/printer.
Definition: AsmState.h:419
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
DictionaryAttr getAttrDictionary()
Return all of the attributes on this operation as a DictionaryAttr.
Definition: Operation.cpp:296
unsigned getNumSuccessors()
Definition: Operation.h:707
bool isRegistered()
Returns true if this operation has a registered operation description, otherwise false.
Definition: Operation.h:129
unsigned getNumRegions()
Returns the number of regions held by this operation.
Definition: Operation.h:674
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
unsigned getNumOperands()
Definition: Operation.h:346
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
MutableArrayRef< Region > getRegions()
Returns the regions held by this operation.
Definition: Operation.h:677
OperationName getName()
The name of an operation is the key identifier for it.
Definition: Operation.h:119
DictionaryAttr getDiscardableAttrDictionary()
Return all of the discardable attributes on this operation as a DictionaryAttr.
Definition: Operation.h:501
result_type_range getResultTypes()
Definition: Operation.h:428
operand_range getOperands()
Returns an iterator on the underlying Value's.
Definition: Operation.h:378
SuccessorRange getSuccessors()
Definition: Operation.h:704
result_range getResults()
Definition: Operation.h:415
int getPropertiesStorageSize() const
Returns the properties storage size.
Definition: Operation.h:897
OpaqueProperties getPropertiesStorage()
Returns the properties storage.
Definition: Operation.h:901
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:404
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Definition: Region.h:26
bool empty()
Definition: Region.h:60
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
This class manages numbering IR entities in preparation of bytecode emission.
Definition: IRNumbering.h:151
@ kAttrType
This section contains the attributes and types referenced within an IR module.
Definition: Encoding.h:73
@ kAttrTypeOffset
This section contains the offsets for the attribute and types within the AttrType section.
Definition: Encoding.h:77
@ kIR
This section contains the list of operations serialized into the bytecode, and their nested regions/o...
Definition: Encoding.h:81
@ kResource
This section contains the resources of the bytecode.
Definition: Encoding.h:84
@ kResourceOffset
This section contains the offsets of resources within the Resource section.
Definition: Encoding.h:88
@ kDialect
This section contains the dialects referenced within an IR module.
Definition: Encoding.h:69
@ kString
This section contains strings referenced within the bytecode.
Definition: Encoding.h:66
@ kDialectVersions
This section contains the versions of each dialect.
Definition: Encoding.h:91
@ kProperties
This section contains the properties for the operations.
Definition: Encoding.h:94
static uint64_t getUseID(OperandT &val, unsigned ownerID)
Get the unique ID of a value use.
Definition: Encoding.h:127
@ kUseListOrdering
Use-list ordering started to be encoded in version 3.
Definition: Encoding.h:38
@ kAlignmentByte
An arbitrary value used to fill alignment padding.
Definition: Encoding.h:56
@ kVersion
The current bytecode version.
Definition: Encoding.h:53
@ kLazyLoading
Support for lazy-loading of isolated region was added in version 2.
Definition: Encoding.h:35
@ kDialectVersioning
Dialects versioning was added in version 1.
Definition: Encoding.h:32
@ kElideUnknownBlockArgLocation
Avoid recording unknown locations on block arguments (compression) started in version 4.
Definition: Encoding.h:42
@ kNativePropertiesEncoding
Support for encoding properties natively in bytecode instead of merged with the discardable attribute...
Definition: Encoding.h:46
@ kMinSupportedVersion
The minimum supported version of the bytecode.
Definition: Encoding.h:29
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
Include the generated interface declarations.
const FrozenRewritePatternSet GreedyRewriteConfig config
AsmResourceEntryKind
This enum represents the different kinds of resource values.
Definition: AsmState.h:279
@ String
A string value.
@ Bool
A boolean value.
@ Blob
A blob of data with an accompanying alignment.
LogicalResult writeBytecodeToFile(Operation *op, raw_ostream &os, const BytecodeWriterConfig &config={})
Write the bytecode for the given operation to the provided output stream.
StringRef producer
The producer of the bytecode.
llvm::StringMap< std::unique_ptr< DialectVersion > > dialectVersionMap
A map containing dialect version information for each dialect to emit.
llvm::SmallVector< std::unique_ptr< AttrTypeBytecodeWriter< Attribute > > > attributeWriterCallbacks
Printer callbacks used to emit custom type and attribute encodings.
SmallVector< std::unique_ptr< AsmResourcePrinter > > externalResourcePrinters
A collection of non-dialect resource printers.
llvm::SmallVector< std::unique_ptr< AttrTypeBytecodeWriter< Type > > > typeWriterCallbacks
This class represents a numbering entry for an Dialect.
Definition: IRNumbering.h:106
unsigned number
The number assigned to the dialect.
Definition: IRNumbering.h:114
This class represents the numbering entry of an operation name.
Definition: IRNumbering.h:65