MLIR  19.0.0git
SparseTensorCodegen.cpp
Go to the documentation of this file.
1 //===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pass that converts sparse tensor types and primitives to actual compiler
10 // visible buffers and actual compiler IR that implements these primitives on
11 // the selected sparse tensor storage schemes. This pass provides an alternative
12 // to the SparseTensorConversion pass, eliminating the dependence on a runtime
13 // support library (other than for file I/O), and providing many more
14 // opportunities for subsequent compiler optimization of the generated code.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "Utils/CodegenUtils.h"
20 
32 
33 #include <optional>
34 
35 using namespace mlir;
36 using namespace mlir::sparse_tensor;
37 
38 //===----------------------------------------------------------------------===//
39 // Helper methods.
40 //===----------------------------------------------------------------------===//
41 
42 /// Flattens a list of operands that may contain sparse tensors.
43 static void flattenOperands(ValueRange operands,
44  SmallVectorImpl<Value> &flattened) {
45  // In case of
46  // sparse_tensor, c, sparse_tensor
47  // ==>
48  // memref ..., c, memref ...
49  for (auto operand : operands) {
50  if (getSparseTensorEncoding(operand.getType())) {
51  auto tuple = getTuple(operand);
52  // An unrealized_conversion_cast will be inserted by type converter to
53  // inter-mix the gap between 1:N conversion between sparse tensors and
54  // fields. In this case, take the operands in the cast and replace the
55  // sparse tensor output with the flattened type array.
56  flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
57  } else {
58  flattened.push_back(operand);
59  }
60  }
61 }
62 
63 /// Generates a load with proper `index` typing.
64 static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
65  idx = genCast(builder, loc, idx, builder.getIndexType());
66  return builder.create<memref::LoadOp>(loc, mem, idx);
67 }
68 
69 /// Generates a store with proper `index` typing and proper value.
70 static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
71  Value idx) {
72  idx = genCast(builder, loc, idx, builder.getIndexType());
73  val = genCast(builder, loc, val,
74  cast<ShapedType>(mem.getType()).getElementType());
75  builder.create<memref::StoreOp>(loc, val, mem, idx);
76 }
77 
78 /// Creates a straightforward counting for-loop.
79 static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
81  Value lower = Value()) {
82  Type indexType = builder.getIndexType();
83  if (!lower)
84  lower = constantZero(builder, loc, indexType);
85  Value one = constantOne(builder, loc, indexType);
86  scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
87  for (unsigned i = 0, e = fields.size(); i < e; i++)
88  fields[i] = forOp.getRegionIterArg(i);
89  builder.setInsertionPointToStart(forOp.getBody());
90  return forOp;
91 }
92 
93 /// Creates a push back operation.
94 static void createPushback(OpBuilder &builder, Location loc,
96  SparseTensorFieldKind kind, std::optional<Level> lvl,
97  Value value, Value repeat = Value()) {
98  Type etp = desc.getMemRefElementType(kind, lvl);
99  Value field = desc.getMemRefField(kind, lvl);
100  StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
101 
102  auto pushBackOp = builder.create<PushBackOp>(
103  loc, desc.getSpecifierField(builder, loc, specFieldKind, lvl), field,
104  genCast(builder, loc, value, etp), repeat);
105 
106  desc.setMemRefField(kind, lvl, pushBackOp.getOutBuffer());
107  desc.setSpecifierField(builder, loc, specFieldKind, lvl,
108  pushBackOp.getNewSize());
109 }
110 
111 /// Generates code that allocates a sparse storage scheme for given rank.
112 static void allocSchemeForRank(OpBuilder &builder, Location loc,
113  MutSparseTensorDescriptor desc, Level startLvl) {
114  const SparseTensorType stt(desc.getRankedTensorType());
115  Value linear = constantIndex(builder, loc, 1);
116  const Level lvlRank = stt.getLvlRank();
117  for (Level lvl = startLvl; lvl < lvlRank; lvl++) {
118  const auto lt = stt.getLvlType(lvl);
119  if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
120  // Append linear x positions, initialized to zero. Since each compressed
121  // dimension initially already has a single zero entry, this maintains
122  // the desired "linear + 1" length property at all times. For loose
123  // compression, we multiply linear by two in order to append both the
124  // lo/hi positions.
125  Value posZero = constantZero(builder, loc, stt.getPosType());
126  if (isLooseCompressedLT(lt)) {
127  Value two = constantIndex(builder, loc, 2);
128  linear = builder.create<arith::MulIOp>(loc, linear, two);
129  }
130  createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
131  /*value=*/posZero, /*repeat=*/linear);
132  return;
133  } else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
134  return; // nothing to do
135  }
136  // Keep compounding the size, but nothing needs to be initialized
137  // at this level. We will eventually reach a compressed level or
138  // otherwise the values array for the from-here "all-dense" case.
139  assert(isDenseLT(lt));
140  Value size = desc.getLvlSize(builder, loc, lvl);
141  linear = builder.create<arith::MulIOp>(loc, linear, size);
142  }
143  // Reached values array so prepare for an insertion.
144  Value valZero = constantZero(builder, loc, stt.getElementType());
146  std::nullopt, /*value=*/valZero, /*repeat=*/linear);
147 }
148 
149 /// Creates allocation operation.
151  MemRefType memRefType, Value sz,
152  bool enableInit) {
153  Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
154  Type elemType = memRefType.getElementType();
155  if (enableInit) {
156  Value fillValue = constantZero(builder, loc, elemType);
157  builder.create<linalg::FillOp>(loc, fillValue, buffer);
158  }
159  return buffer;
160 }
161 
162 /// Creates the dim sizes array, filling in from dynamic sizes.
163 static void createDimSizes(OpBuilder &builder, Location loc,
164  SparseTensorType stt, ValueRange dynSizes,
165  /*out*/ SmallVectorImpl<Value> &dimSizesValues) {
166  const Dimension dimRank = stt.getDimRank();
167  dimSizesValues.clear();
168  dimSizesValues.reserve(dimRank);
169  unsigned i = 0;
170  for (const Size sz : stt.getDimShape())
171  dimSizesValues.push_back(ShapedType::isDynamic(sz)
172  ? dynSizes[i++]
173  : constantIndex(builder, loc, sz));
174 }
175 
176 /// Creates allocation for each field in sparse tensor type. Note that
177 /// for all dynamic memrefs in the sparse tensor stroage layout, the
178 /// memory size is really the capacity of the "vector", while the actual
179 /// size resides in the sizes array.
180 static void createAllocFields(OpBuilder &builder, Location loc,
181  SparseTensorType stt, bool enableInit,
182  Value sizeHint,
183  SmallVectorImpl<Value> &lvlSizesValues,
184  /*out*/ SmallVectorImpl<Value> &fields) {
185  Level lvlRank = stt.getLvlRank();
186  // Set up some heuristic sizes. We try to set the initial
187  // size based on available information. Otherwise we just
188  // initialize a few elements to start the reallocation chain.
189  // TODO: refine this
190  Value posHeuristic, crdHeuristic, valHeuristic;
191  if (stt.isAllDense()) {
192  valHeuristic = lvlSizesValues[0];
193  for (Level lvl = 1; lvl < lvlRank; lvl++)
194  valHeuristic =
195  builder.create<arith::MulIOp>(loc, valHeuristic, lvlSizesValues[lvl]);
196  } else if (sizeHint) {
197  if (stt.getAoSCOOStart() == 0) {
198  posHeuristic = constantIndex(builder, loc, 2);
199  crdHeuristic = builder.create<arith::MulIOp>(
200  loc, constantIndex(builder, loc, lvlRank), sizeHint); // AOS
201  } else if (lvlRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
202  posHeuristic = builder.create<arith::AddIOp>(
203  loc, sizeHint, constantIndex(builder, loc, 1));
204  crdHeuristic = sizeHint;
205  } else {
206  posHeuristic = crdHeuristic = constantIndex(builder, loc, 16);
207  }
208  valHeuristic = sizeHint;
209  } else {
210  posHeuristic = crdHeuristic = valHeuristic =
211  constantIndex(builder, loc, 16);
212  }
213  // Initializes all fields. An initial storage specifier and allocated
214  // positions/coordinates/values memrefs (with heuristic capacity).
216  stt,
217  [&builder, &fields, stt, loc, posHeuristic, crdHeuristic, valHeuristic,
218  enableInit](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
219  Level /*lvl*/, LevelType /*lt*/) -> bool {
220  assert(fields.size() == fIdx);
221  Value field;
222  switch (fKind) {
224  field = SparseTensorSpecifier::getInitValue(builder, loc, stt);
225  break;
227  field = createAllocation(builder, loc, cast<MemRefType>(fType),
228  posHeuristic, enableInit);
229  break;
231  field = createAllocation(builder, loc, cast<MemRefType>(fType),
232  crdHeuristic, enableInit);
233  break;
235  field = createAllocation(builder, loc, cast<MemRefType>(fType),
236  valHeuristic, enableInit);
237  break;
238  }
239  assert(field);
240  fields.push_back(field);
241  // Returns true to continue the iteration.
242  return true;
243  });
244  // Initialize the storage scheme to an empty tensor. Sets the lvlSizes
245  // and gives all position fields an initial zero entry, so that it is
246  // easier to maintain the "linear + 1" length property.
247  MutSparseTensorDescriptor desc(stt, fields);
248  Value posZero = constantZero(builder, loc, stt.getPosType());
249  for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
250  desc.setLvlSize(builder, loc, lvl, lvlSizesValues[lvl]);
251  const auto lt = stt.getLvlType(lvl);
252  if (isCompressedLT(lt) || isLooseCompressedLT(lt))
253  createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
254  /*value=*/posZero);
255  }
256  allocSchemeForRank(builder, loc, desc, /*rank=*/0);
257 }
258 
259 /// Helper method that generates block specific to compressed case:
260 ///
261 /// // given: parentPos = posCursor[lvl-1]
262 /// pstart = desc.positions[lvl][parentPos]
263 /// pstop = desc.positions[lvl][parentPos+1]
264 /// plast = pstop - 1
265 /// msz = desc.coordinates[lvl].size()
266 /// if (pstart < pstop) {
267 /// isPresent = (desc.coordinates[lvl][plast] == lvlCoords[lvl])
268 /// } else { // first insertion
269 /// isPresent = false
270 /// desc.positions[lvl][parentPos] = msz
271 /// }
272 /// if (isPresent) { // coordinate is already present
273 /// pnext = plast
274 /// } else {
275 /// desc.coordinates[lvl].push_back(lvlCoords[lvl])
276 /// desc.positions[lvl][parentPos+1] = msz+1
277 /// pnext = msz
278 /// <prepare level lvl+1>
279 /// }
280 /// posCursor[lvl] = pnext
281 static Value genCompressed(OpBuilder &builder, Location loc,
282  MutSparseTensorDescriptor desc, ValueRange lvlCoords,
283  Value /*unused*/, Value parentPos, Level lvl) {
284  const SparseTensorType stt(desc.getRankedTensorType());
285  const Level lvlRank = stt.getLvlRank();
286  assert(lvl < lvlRank && "Level is out of bounds");
287  assert(lvlCoords.size() == static_cast<size_t>(lvlRank) &&
288  "Level-rank mismatch");
289  SmallVector<Type> types;
290  Type indexType = builder.getIndexType();
291  Type boolType = builder.getIntegerType(1);
292  unsigned crdFidx;
293  unsigned crdStride;
294  std::tie(crdFidx, crdStride) = desc.getCrdMemRefIndexAndStride(lvl);
295  const Value one = constantIndex(builder, loc, 1);
296  const Value pp1 = builder.create<arith::AddIOp>(loc, parentPos, one);
297  const Value positionsAtLvl = desc.getPosMemRef(lvl);
298  const Value pstart = genLoad(builder, loc, positionsAtLvl, parentPos);
299  const Value pstop = genLoad(builder, loc, positionsAtLvl, pp1);
300  const Value crdMsz = desc.getCrdMemSize(builder, loc, lvl);
301  const Value crdStrideC =
302  crdStride > 1 ? constantIndex(builder, loc, crdStride) : Value();
303  const Value msz =
304  crdStrideC ? builder.create<arith::DivUIOp>(loc, crdMsz, crdStrideC)
305  : crdMsz;
306  const Value plast = builder.create<arith::SubIOp>(
307  loc, genCast(builder, loc, pstop, indexType), one);
308  // Conditional expression.
309  Value lt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
310  pstart, pstop);
311  types.push_back(boolType);
312  scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
313  types.pop_back();
314  builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
315  Value crd =
316  genLoad(builder, loc, desc.getMemRefField(crdFidx),
317  crdStrideC ? builder.create<arith::MulIOp>(loc, plast, crdStrideC)
318  : plast);
319  Value eq = builder.create<arith::CmpIOp>(
320  loc, arith::CmpIPredicate::eq, genCast(builder, loc, crd, indexType),
321  lvlCoords[lvl]);
322  builder.create<scf::YieldOp>(loc, eq);
323  builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
324  if (lvl > 0)
325  genStore(builder, loc, msz, positionsAtLvl, parentPos);
326  builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
327  builder.setInsertionPointAfter(ifOp1);
328  // If present construct. Note that for a non-unique dimension level, we
329  // simply set the condition to false and rely on CSE/DCE to clean up the IR.
330  //
331  // TODO: generate less temporary IR?
332  //
333  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
334  types.push_back(desc.getField(i).getType());
335  types.push_back(indexType);
336  const Value p = stt.isUniqueLvl(lvl) ? ifOp1.getResult(0)
337  : constantI1(builder, loc, false);
338  scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
339  // If present (fields unaffected, update pnext to plast).
340  builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
341 
342  // FIXME: This does not looks like a clean way, but probably the most
343  // efficient way.
344  desc.getFields().push_back(plast);
345  builder.create<scf::YieldOp>(loc, desc.getFields());
346  desc.getFields().pop_back();
347 
348  // If !present (changes fields, update pnext).
349  builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
350  Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
351  genStore(builder, loc, mszp1, positionsAtLvl, pp1);
352  createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, lvl,
353  /*value=*/lvlCoords[lvl]);
354  // Prepare the next level "as needed".
355  if ((lvl + 1) < lvlRank)
356  allocSchemeForRank(builder, loc, desc, lvl + 1);
357 
358  desc.getFields().push_back(msz);
359  builder.create<scf::YieldOp>(loc, desc.getFields());
360  desc.getFields().pop_back();
361 
362  // Update fields and return next pos.
363  builder.setInsertionPointAfter(ifOp2);
364  unsigned o = 0;
365  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
366  desc.setField(i, ifOp2.getResult(o++));
367  return ifOp2.getResult(o);
368 }
369 
370 /// Generates insertion finalization code.
371 static void genEndInsert(OpBuilder &builder, Location loc,
372  SparseTensorDescriptor desc) {
373  const SparseTensorType stt(desc.getRankedTensorType());
374  const Level lvlRank = stt.getLvlRank();
375  for (Level lvl = 0; lvl < lvlRank; lvl++) {
376  const auto lt = stt.getLvlType(lvl);
377  if (isCompressedLT(lt)) {
378  // Compressed dimensions need a position cleanup for all entries
379  // that were not visited during the insertion pass.
380  //
381  // TODO: avoid cleanup and keep compressed scheme consistent at all
382  // times?
383  //
384  if (lvl > 0) {
385  Type posType = stt.getPosType();
386  Value posMemRef = desc.getPosMemRef(lvl);
387  Value hi = desc.getPosMemSize(builder, loc, lvl);
388  Value zero = constantIndex(builder, loc, 0);
389  Value one = constantIndex(builder, loc, 1);
390  // Vector of only one, but needed by createFor's prototype.
391  SmallVector<Value, 1> inits{genLoad(builder, loc, posMemRef, zero)};
392  scf::ForOp loop = createFor(builder, loc, hi, inits, one);
393  Value i = loop.getInductionVar();
394  Value oldv = loop.getRegionIterArg(0);
395  Value newv = genLoad(builder, loc, posMemRef, i);
396  Value posZero = constantZero(builder, loc, posType);
397  Value cond = builder.create<arith::CmpIOp>(
398  loc, arith::CmpIPredicate::eq, newv, posZero);
399  scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(posType),
400  cond, /*else*/ true);
401  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
402  genStore(builder, loc, oldv, posMemRef, i);
403  builder.create<scf::YieldOp>(loc, oldv);
404  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
405  builder.create<scf::YieldOp>(loc, newv);
406  builder.setInsertionPointAfter(ifOp);
407  builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
408  builder.setInsertionPointAfter(loop);
409  }
410  } else {
411  assert(isDenseLT(lt) || isLooseCompressedLT(lt) || isSingletonLT(lt) ||
412  isNOutOfMLT(lt));
413  }
414  }
415 }
416 
417 /// Generates a subview into the sizes.
418 static Value genSliceToSize(OpBuilder &builder, Location loc, Value mem,
419  Value sz) {
420  auto elemTp = llvm::cast<MemRefType>(mem.getType()).getElementType();
421  return builder
422  .create<memref::SubViewOp>(
423  loc, MemRefType::get({ShapedType::kDynamic}, elemTp), mem,
424  ValueRange{}, ValueRange{sz}, ValueRange{},
425  ArrayRef<int64_t>{0}, // static offset
426  ArrayRef<int64_t>{ShapedType::kDynamic}, // dynamic size
427  ArrayRef<int64_t>{1}) // static stride
428  .getResult();
429 }
430 
431 /// Creates the reassociation array.
433 getReassociationForFlattening(ShapedType srcTp, unsigned batchLvls) {
434  SmallVector<ReassociationIndices> ret(batchLvls + 1, {});
435  // Create reassociation in the form:
436  // {0}, {1}, ..., {batchLvl - 1}, {batchLvl, ..., rank}
437  for (unsigned i = 0; i < batchLvls; i++)
438  ret[i].push_back(i);
439 
440  for (int i = batchLvls, e = srcTp.getRank(); i < e; i++)
441  ret.back().push_back(i);
442 
443  return ret;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 // Codegen rules.
448 //===----------------------------------------------------------------------===//
449 
450 namespace {
451 
452 /// Helper class to help lowering sparse_tensor.insert operation.
453 class SparseInsertGenerator
454  : public FuncCallOrInlineGenerator<SparseInsertGenerator> {
455 public:
456  SparseInsertGenerator(TensorType rtp, TypeRange retTypes, ValueRange params,
457  bool genCall)
458  : FuncCallOrInlineGenerator(retTypes, params, genCall), rtp(rtp){};
459 
460  /// Generates code along an insertion path without the need for a "cursor".
461  /// This current insertion strategy comes at the expense of some testing
462  /// overhead for each insertion. The strategy will be optimized later for
463  /// common insertion patterns. The current insertion strategy also assumes
464  /// insertions occur in "a reasonable order" that enables building the
465  /// storage scheme in an appending/inserting kind of fashion (i.e. no
466  /// in-between insertions that need data movement). The implementation
467  /// relies on CSE/DCE to clean up all bookkeeping that is not needed.
468  ///
469  /// TODO: better unord/not-unique; also generalize, optimize, specialize!
470  SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange args,
471  OpBuilder &builder, Location loc) {
472  const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
473  const Level lvlRank = stt.getLvlRank();
474  // Extract fields and coordinates from args.
475  SmallVector<Value> fields = llvm::to_vector(args.drop_back(lvlRank + 1));
476  MutSparseTensorDescriptor desc(stt, fields);
477  const SmallVector<Value> coords =
478  llvm::to_vector(args.take_back(lvlRank + 1).drop_back());
479  Value value = args.back();
480  Value parentPos = constantZero(builder, loc, builder.getIndexType());
481  // Generate code for every level.
482  for (Level lvl = 0; lvl < lvlRank; lvl++) {
483  const auto lt = stt.getLvlType(lvl);
484  if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
485  // Create:
486  // if (!present) {
487  // coordinates[lvl].push_back(coords[lvl])
488  // <update positions and prepare level lvl + 1>
489  // }
490  // positions[lvl] = coordinates.size() - 1
491  // <insert @ positions[lvl] at next level lvl + 1>
492  if (isLooseCompressedLT(lt)) {
493  Value two = constantIndex(builder, loc, 2);
494  parentPos = builder.create<arith::MulIOp>(loc, parentPos, two);
495  }
496  parentPos =
497  genCompressed(builder, loc, desc, coords, value, parentPos, lvl);
498  } else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
499  // Create:
500  // coordinates[lvl].push_back(coords[lvl])
501  // positions[lvl] = positions[lvl-1]
502  // <insert @ positions[lvl] at next level lvl + 1>
504  lvl, /*value=*/coords[lvl]);
505  } else {
506  assert(isDenseLT(lt));
507  // Construct the new position as:
508  // positions[lvl] = size * positions[lvl-1] + coords[lvl]
509  // <insert @ positions[lvl] at next level lvl + 1>
510  Value size = desc.getLvlSize(builder, loc, lvl);
511  Value mult = builder.create<arith::MulIOp>(loc, size, parentPos);
512  parentPos = builder.create<arith::AddIOp>(loc, mult, coords[lvl]);
513  }
514  }
515  // Reached the actual value append/insert.
516  if (!stt.isDenseLvl(lvlRank - 1))
518  std::nullopt, value);
519  else
520  genStore(builder, loc, value, desc.getValMemRef(), parentPos);
521  return fields;
522  }
523 
524  std::string getMangledFuncName() {
525  // The mangled name of the function has this format:
526  // <namePrefix>_<LT>_<shape>_<ordering>_<eltType>_<crdWidth>_<posWidth>
527  constexpr const char kInsertFuncNamePrefix[] = "_insert_";
528  const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
529  SmallString<32> nameBuffer;
530  llvm::raw_svector_ostream nameOstream(nameBuffer);
531  nameOstream << kInsertFuncNamePrefix;
532  const Level lvlRank = stt.getLvlRank();
533  for (Level l = 0; l < lvlRank; l++) {
534  std::string lvlType = toMLIRString(stt.getLvlType(l));
535  // Replace/remove punctuations in level properties.
536  std::replace_if(
537  lvlType.begin(), lvlType.end(),
538  [](char c) { return c == '(' || c == ','; }, '_');
539  llvm::erase_if(lvlType, [](char c) { return c == ')' || c == ' '; });
540  nameOstream << lvlType << "_";
541  }
542  // Static dim sizes are used in the generated code while dynamic sizes are
543  // loaded from the dimSizes buffer. This is the reason for adding the shape
544  // to the function name.
545  for (const auto sz : stt.getDimShape())
546  nameOstream << sz << "_";
547  // Permutation information is also used in generating insertion.
548  if (!stt.isIdentity())
549  nameOstream << stt.getDimToLvl() << "_";
550  nameOstream << stt.getElementType() << "_";
551  nameOstream << stt.getCrdWidth() << "_" << stt.getPosWidth();
552  return nameOstream.str().str();
553  }
554 
555 private:
556  TensorType rtp;
557 };
558 
559 /// Sparse tensor storage conversion rule for returns.
560 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
561 public:
564  matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
565  ConversionPatternRewriter &rewriter) const override {
566  SmallVector<Value> flattened;
567  flattenOperands(adaptor.getOperands(), flattened);
568  // Create a return with the flattened value extracted from sparse tensors.
569  rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
570  return success();
571  }
572 };
573 
574 /// Sparse tensor storage conversion rule for calls.
575 class SparseCallConverter : public OpConversionPattern<func::CallOp> {
576 public:
577  // The default CallOp converter can not handle 1:N type conversion.
580  matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
581  ConversionPatternRewriter &rewriter) const override {
582  Location loc = op.getLoc();
583  // In case of:
584  // sparse_tensor, f, sparse_tensor = call @foo(...)
585  // ==>
586  // memref..., f, memref = call @foo(...) replace with
587  // cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
588  SmallVector<Type> finalRetTy;
589  if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
590  return failure();
591 
592  // (1) Generates new call with flattened return value.
593  SmallVector<Value> flattened;
594  flattenOperands(adaptor.getOperands(), flattened);
595  auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
596  finalRetTy, flattened);
597  // (2) Create cast operation for sparse tensor returns.
598  SmallVector<Value> castedRet;
599  // Tracks the offset of current return value (of the original call)
600  // relative to the new call (after sparse tensor flattening);
601  unsigned retOffset = 0;
602  // Temporal buffer to hold the flattened list of type for
603  // a sparse tensor.
604  SmallVector<Type> sparseFlat;
605  for (auto ret : op.getResults()) {
606  assert(retOffset < newCall.getNumResults());
607  auto retType = ret.getType();
608  if (failed(typeConverter->convertType(retType, sparseFlat)))
609  llvm_unreachable("Failed to convert type in sparse tensor codegen");
610 
611  // Converted types can not be empty when the type conversion succeed.
612  assert(!sparseFlat.empty());
613  if (sparseFlat.size() > 1) {
614  auto flatSize = sparseFlat.size();
616  newCall.result_begin() + retOffset,
617  newCall.result_begin() + retOffset + flatSize));
618  castedRet.push_back(genTuple(rewriter, loc, retType, fields));
619  retOffset += flatSize;
620  } else {
621  // If this is an 1:1 conversion, no need for casting.
622  castedRet.push_back(newCall.getResult(retOffset));
623  retOffset++;
624  }
625  sparseFlat.clear();
626  }
627 
628  assert(castedRet.size() == op.getNumResults());
629  rewriter.replaceOp(op, castedRet);
630  return success();
631  }
632 };
633 
634 /// Sparse codegen rule for level accesses.
635 class SparseLvlOpConverter : public OpConversionPattern<LvlOp> {
636 public:
639  matchAndRewrite(LvlOp op, OpAdaptor adaptor,
640  ConversionPatternRewriter &rewriter) const override {
641  std::optional<int64_t> lvl = op.getConstantLvlIndex();
642  if (!lvl || !getSparseTensorEncoding(adaptor.getSource().getType()))
643  return failure();
644 
645  auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
646  auto sz = desc.getLvlSize(rewriter, op.getLoc(), *lvl);
647 
648  rewriter.replaceOp(op, sz);
649  return success();
650  }
651 };
652 
653 // TODO: use a new SortCOO operation here instead of reusing convert op.
654 struct SparseReorderCOOConverter : public OpConversionPattern<ReorderCOOOp> {
657  matchAndRewrite(ReorderCOOOp op, ReorderCOOOpAdaptor adaptor,
658  ConversionPatternRewriter &rewriter) const override {
659  Location loc = op.getLoc();
660  MLIRContext *ctx = op.getContext();
661 
662  SparseTensorType srcStt = getSparseTensorType(op.getInputCoo());
663  SparseTensorType dstStt = getSparseTensorType(op.getResultCoo());
664 
665  // Should have been verified.
666  assert(dstStt.isAllOrdered() && !srcStt.isAllOrdered() &&
667  dstStt.isCOOType() && srcStt.isCOOType());
668  assert(dstStt.hasSameDimToLvl(srcStt));
669 
670  // We don't need a mutable descriptor here as we perform sorting in-place.
671  auto nnz = genValMemSize(rewriter, op.getLoc(), adaptor.getInputCoo());
672  auto desc = getDescriptorFromTensorTuple(adaptor.getInputCoo());
673  auto crd = desc.getAOSMemRef();
674  auto val = desc.getValMemRef();
675 
676  // Otherwise we need another data shuffle and a non-identity map.
677  assert(dstStt.hasSameDimToLvl(srcStt));
678  (void)dstStt; // to silence warning when assertion is disabled
679 
680  auto id = AffineMap::getMultiDimIdentityMap(srcStt.getLvlRank(), ctx);
681 
682  rewriter.create<SortOp>(loc, nnz, crd, ValueRange{val}, id,
683  rewriter.getIndexAttr(0), op.getAlgorithm());
684 
685  // Since we do in-place sorting, the destinate tensor will have the same set
686  // of memrefs as the source tensor.
687  rewriter.replaceOp(op, adaptor.getInputCoo());
688  return success();
689  }
690 };
691 
692 template <typename Op, StorageSpecifierKind kind>
693 class SparseSliceGetterOpConverter : public OpConversionPattern<Op> {
694 public:
697  matchAndRewrite(Op op, typename Op::Adaptor adaptor,
698  ConversionPatternRewriter &rewriter) const override {
699  // Simply lowers to specifer.get <field> operation.
700  auto desc = getDescriptorFromTensorTuple(adaptor.getSlice());
701  auto v = desc.getSpecifierField(rewriter, op.getLoc(), kind,
702  op.getDim().getZExtValue());
703 
704  rewriter.replaceOp(op, v);
705  return success();
706  }
707 };
708 
709 /// Sparse codegen rule for trivial tensor casts.
710 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
711 public:
714  matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
715  ConversionPatternRewriter &rewriter) const override {
716  // Only rewrite identically annotated source/dest.
717  auto encDst = getSparseTensorEncoding(op.getType());
718  auto encSrc = getSparseTensorEncoding(op.getSource().getType());
719  if (!encDst || encDst != encSrc)
720  return failure();
721  rewriter.replaceOp(op, adaptor.getOperands());
722  return success();
723  }
724 };
725 
726 class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
727 public:
730  matchAndRewrite(ReinterpretMapOp op, OpAdaptor adaptor,
731  ConversionPatternRewriter &rewriter) const override {
732  // Simply fold the operation.
733  rewriter.replaceOp(op, adaptor.getSource());
734  return success();
735  }
736 };
737 
738 /// Sparse codegen rule for the alloc operator.
739 class SparseTensorAllocConverter
740  : public OpConversionPattern<bufferization::AllocTensorOp> {
741 public:
743  SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
744  bool enableInit)
745  : OpConversionPattern(typeConverter, context),
746  enableBufferInitialization(enableInit) {}
747 
749  matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
750  ConversionPatternRewriter &rewriter) const override {
751  const auto resType = getSparseTensorType(op);
752  if (!resType.hasEncoding())
753  return failure();
754 
755  Location loc = op.getLoc();
756  // Deal with copy.
757  if (op.getCopy()) {
758  auto desc = getDescriptorFromTensorTuple(adaptor.getCopy());
759  SmallVector<Value> fields;
760  fields.reserve(desc.getNumFields());
761  // Memcpy on memref fields.
762  for (auto field : desc.getMemRefFields()) {
763  auto memrefTp = cast<MemRefType>(field.getType());
764  auto size = rewriter.create<memref::DimOp>(loc, field, 0);
765  auto copied =
766  rewriter.create<memref::AllocOp>(loc, memrefTp, ValueRange{size});
767  rewriter.create<memref::CopyOp>(loc, field, copied);
768  fields.push_back(copied);
769  }
770  // Reuses specifier.
771  fields.push_back(desc.getSpecifier());
772  assert(fields.size() == desc.getNumFields());
773  rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
774  return success();
775  }
776 
777  if (!resType.isIdentity()) {
778  return rewriter.notifyMatchFailure(
779  op, "try run --sparse-reinterpret-map before codegen");
780  }
781  // Level size equals to dimension size since lvl2dim map is an identity map.
782  SmallVector<Value> lvlSizesValues;
783  createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
784  /*dimSizesValues=*/lvlSizesValues);
785 
786  // Construct allocation for each field.
787  Value sizeHint = op.getSizeHint();
788  SmallVector<Value> fields;
789  createAllocFields(rewriter, loc, resType, enableBufferInitialization,
790  sizeHint, lvlSizesValues, fields);
791 
792  // Replace operation with resulting memrefs.
793  rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
794  return success();
795  }
796 
797 private:
798  bool enableBufferInitialization;
799 };
800 
801 /// Sparse codegen rule for the empty tensor operator.
802 class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
803 public:
805  SparseTensorEmptyConverter(TypeConverter &typeConverter, MLIRContext *context,
806  bool enableInit)
807  : OpConversionPattern(typeConverter, context),
808  enableBufferInitialization(enableInit) {}
809 
811  matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor,
812  ConversionPatternRewriter &rewriter) const override {
813  const auto resType = getSparseTensorType(op);
814  if (!resType.hasEncoding())
815  return failure();
816 
817  if (!resType.isIdentity()) {
818  return rewriter.notifyMatchFailure(
819  op, "try run --sparse-reinterpret-map before codegen");
820  }
821 
822  Location loc = op.getLoc();
823  // Level size equals to dimension size since lvl2dim map is an identity map.
824  SmallVector<Value> lvlSizesValues;
825  createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
826  /*dimSizesValues=*/lvlSizesValues);
827  // Construct allocation for each field.
828  Value sizeHint; // none
829  SmallVector<Value> fields;
830  createAllocFields(rewriter, loc, resType, enableBufferInitialization,
831  sizeHint, lvlSizesValues, fields);
832 
833  // Replace operation with resulting memrefs.
834  rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
835  return success();
836  }
837 
838 private:
839  bool enableBufferInitialization;
840 };
841 
842 /// Sparse codegen rule for the dealloc operator.
843 class SparseTensorDeallocConverter
844  : public OpConversionPattern<bufferization::DeallocTensorOp> {
845 public:
847  SparseTensorDeallocConverter(TypeConverter &typeConverter,
848  MLIRContext *context, bool createDeallocs)
849  : OpConversionPattern(typeConverter, context),
850  createDeallocs(createDeallocs) {}
851 
853  matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
854  ConversionPatternRewriter &rewriter) const override {
855  auto enc = getSparseTensorEncoding(op.getTensor().getType());
856  if (!enc)
857  return failure();
858 
859  // If user requests not to deallocate sparse tensors, simply erase the
860  // operation.
861  if (createDeallocs) {
862  // Replace the sparse tensor deallocation with field deallocations.
863  Location loc = op.getLoc();
864  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
865  for (auto input : desc.getMemRefFields())
866  // Deallocate every buffer used to store the sparse tensor handler.
867  rewriter.create<memref::DeallocOp>(loc, input);
868  }
869  rewriter.eraseOp(op);
870  return success();
871  }
872 
873 private:
874  const bool createDeallocs;
875 };
876 
877 /// Sparse codegen rule for tensor rematerialization.
878 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
879 public:
882  matchAndRewrite(LoadOp op, OpAdaptor adaptor,
883  ConversionPatternRewriter &rewriter) const override {
884  // Prepare descriptor.
885  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
886  // Generate optional insertion finalization code.
887  if (op.getHasInserts())
888  genEndInsert(rewriter, op.getLoc(), desc);
889  // Replace operation with resulting memrefs.
890  rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
891  return success();
892  }
893 };
894 
895 /// Sparse codegen rule for the expand op.
896 class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
897 public:
900  matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
901  ConversionPatternRewriter &rewriter) const override {
902  if (!getSparseTensorEncoding(op.getTensor().getType()))
903  return failure();
904  Location loc = op->getLoc();
905  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
906  const auto srcType = getSparseTensorType(op.getTensor());
907  Type eltType = srcType.getElementType();
908  Type boolType = rewriter.getIntegerType(1);
909  Type idxType = rewriter.getIndexType();
910  // All initialization should be done on entry of the loop nest.
911  rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
912 
913  // Determine the size for access expansion (always the innermost stored
914  // level size).
915  const auto sz = desc.getLvlSize(rewriter, loc, srcType.getLvlRank() - 1);
916  // Generate a memref for `sz` elements of type `t`.
917  const auto genAlloc = [&](Type t) {
918  const auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
919  return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
920  };
921  // Allocate temporary buffers for values/filled-switch and added.
922  // We do not use stack buffers for this, since the expanded size may
923  // be rather large (as it envelops a single expanded dense dimension).
924  Value values = genAlloc(eltType);
925  Value filled = genAlloc(boolType);
926  Value added = genAlloc(idxType);
927  Value zero = constantZero(rewriter, loc, idxType);
928  // Reset the values/filled-switch to all-zero/false. Note that this
929  // introduces an O(N) operation into the computation, but this reset
930  // operation is amortized over the innermost loops for the access
931  // pattern expansion. As noted in the operation doc, we would like
932  // to amortize this setup cost even between kernels.
933  rewriter.create<linalg::FillOp>(
934  loc, ValueRange{constantZero(rewriter, loc, eltType)},
935  ValueRange{values});
936  rewriter.create<linalg::FillOp>(
937  loc, ValueRange{constantZero(rewriter, loc, boolType)},
938  ValueRange{filled});
939  // Replace expansion op with these buffers and initial coordinate.
940  assert(op.getNumResults() == 4);
941  rewriter.replaceOp(op, {values, filled, added, zero});
942  return success();
943  }
944 };
945 
946 /// Sparse codegen rule for the compress operator.
947 class SparseCompressConverter : public OpConversionPattern<CompressOp> {
948 public:
951  matchAndRewrite(CompressOp op, OpAdaptor adaptor,
952  ConversionPatternRewriter &rewriter) const override {
953  Location loc = op->getLoc();
954  SmallVector<Value> fields;
955  auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
956  Value values = adaptor.getValues();
957  Value filled = adaptor.getFilled();
958  Value added = adaptor.getAdded();
959  Value count = adaptor.getCount();
960  const SparseTensorType dstType(desc.getRankedTensorType());
961  Type eltType = dstType.getElementType();
962 
963  // If the innermost level is ordered, we need to sort the coordinates
964  // in the "added" array prior to applying the compression.
965  if (dstType.isOrderedLvl(dstType.getLvlRank() - 1))
966  rewriter.create<SortOp>(
967  loc, count, added, ValueRange{}, rewriter.getMultiDimIdentityMap(1),
968  rewriter.getIndexAttr(0), SparseTensorSortKind::HybridQuickSort);
969  // While performing the insertions, we also need to reset the elements
970  // of the values/filled-switch by only iterating over the set elements,
971  // to ensure that the runtime complexity remains proportional to the
972  // sparsity of the expanded access pattern.
973  //
974  // Generate
975  // out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
976  // crd = added[i];
977  // value = values[crd];
978  // insert({lvlCoords, crd}, value);
979  // new_memrefs = insert(in_memrefs, {lvlCoords, crd}, value);
980  // values[crd] = 0;
981  // filled[crd] = false;
982  // yield new_memrefs
983  // }
984  scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
985  Value i = loop.getInductionVar();
986 
987  Value crd = genLoad(rewriter, loc, added, i);
988  Value value = genLoad(rewriter, loc, values, crd);
989  SmallVector<Value> params(desc.getFields().begin(), desc.getFields().end());
990  SmallVector<Type> flatSpTensorTps = llvm::to_vector(
991  llvm::map_range(desc.getFields(), [](Value v) { return v.getType(); }));
992  params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
993  params.push_back(crd);
994  params.push_back(value);
995  SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
996  params, /*genCall=*/true);
997  SmallVector<Value> insertRet = insertGen.genCallOrInline(rewriter, loc);
998  genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, crd);
999  genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, crd);
1000  rewriter.create<scf::YieldOp>(loc, insertRet);
1001 
1002  rewriter.setInsertionPointAfter(loop);
1003  Value result = genTuple(rewriter, loc, dstType, loop->getResults());
1004  // Deallocate the buffers on exit of the full loop nest.
1005  Operation *parent = getTop(op);
1006  rewriter.setInsertionPointAfter(parent);
1007  rewriter.create<memref::DeallocOp>(loc, values);
1008  rewriter.create<memref::DeallocOp>(loc, filled);
1009  rewriter.create<memref::DeallocOp>(loc, added);
1010  // Replace operation with resulting memrefs.
1011  rewriter.replaceOp(op, result);
1012  return success();
1013  }
1014 };
1015 
1016 /// Sparse codegen rule for the insert operator.
1017 class SparseInsertConverter : public OpConversionPattern<tensor::InsertOp> {
1018 public:
1021  matchAndRewrite(tensor::InsertOp op, OpAdaptor adaptor,
1022  ConversionPatternRewriter &rewriter) const override {
1023  auto stt = getSparseTensorType(adaptor.getDest());
1024  if (!stt.hasEncoding())
1025  return failure();
1026  assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
1027 
1028  Location loc = op.getLoc();
1029  auto desc = getDescriptorFromTensorTuple(adaptor.getDest());
1030  TypeRange flatSpTensorTps = desc.getFields().getTypes();
1031  SmallVector<Value> params = llvm::to_vector(desc.getFields());
1032  params.append(adaptor.getIndices().begin(), adaptor.getIndices().end());
1033  params.push_back(adaptor.getScalar());
1034  SparseInsertGenerator insertGen(op.getDest().getType(), flatSpTensorTps,
1035  params, /*genCall=*/true);
1036  SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
1037  // Replace operation with resulting memrefs.
1038  rewriter.replaceOp(op,
1039  genTuple(rewriter, loc, op.getDest().getType(), ret));
1040  return success();
1041  }
1042 };
1043 
1044 /// Sparse codegen rule for position accesses.
1045 class SparseToPositionsConverter : public OpConversionPattern<ToPositionsOp> {
1046 public:
1047  using OpAdaptor = typename ToPositionsOp::Adaptor;
1050  matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
1051  ConversionPatternRewriter &rewriter) const override {
1052  // Replace the requested position access with corresponding field.
1053  // The cast_op is inserted by type converter to intermix 1:N type
1054  // conversion.
1055  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1056  rewriter.replaceOp(op, desc.getPosMemRef(op.getLevel()));
1057  return success();
1058  }
1059 };
1060 
1061 /// Sparse codegen rule for accessing the coordinates arrays.
1062 class SparseToCoordinatesConverter
1063  : public OpConversionPattern<ToCoordinatesOp> {
1064 public:
1065  using OpAdaptor = typename ToCoordinatesOp::Adaptor;
1068  matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
1069  ConversionPatternRewriter &rewriter) const override {
1070  // Replace the requested coordinates access with corresponding field.
1071  // The cast_op is inserted by type converter to intermix 1:N type
1072  // conversion.
1073  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1074  rewriter.replaceOp(
1075  op, desc.getCrdMemRefOrView(rewriter, op.getLoc(), op.getLevel()));
1076 
1077  return success();
1078  }
1079 };
1080 
1081 /// Sparse codegen rule for accessing the linear coordinates buffer.
1082 class SparseToCoordinatesBufferConverter
1083  : public OpConversionPattern<ToCoordinatesBufferOp> {
1084 public:
1085  using OpAdaptor = typename ToCoordinatesBufferOp::Adaptor;
1088  matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor,
1089  ConversionPatternRewriter &rewriter) const override {
1090  // Replace the requested coordinates access with corresponding field.
1091  // The cast_op is inserted by type converter to intermix 1:N type
1092  // conversion.
1093  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1094  rewriter.replaceOp(op, desc.getAOSMemRef());
1095 
1096  return success();
1097  }
1098 };
1099 
1100 /// Sparse codegen rule for value accesses.
1101 class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
1102 public:
1103  using OpAdaptor = typename ToValuesOp::Adaptor;
1106  matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
1107  ConversionPatternRewriter &rewriter) const override {
1108  // Replace the requested values access with corresponding field.
1109  // The cast_op is inserted by type converter to intermix 1:N type
1110  // conversion.
1111  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1112  rewriter.replaceOp(op, desc.getValMemRef());
1113  return success();
1114  }
1115 };
1116 
1117 /// Sparse codegen rule for the convert operator.
1118 class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
1119 public:
1122  matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
1123  ConversionPatternRewriter &rewriter) const override {
1124  SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
1125  SparseTensorEncodingAttr encSrc =
1126  getSparseTensorEncoding(op.getSource().getType());
1127  // The output tensor can not be a slice and those cases should have been
1128  // rejected by ConvertOp::verify() already.
1129  assert(!encDst.isSlice() && "Cannot convert to a sparse tensor slices.");
1130  // Different encoding (except for different bitwidth) should be handled by
1131  // rewriting.
1132  // We need further rewrites if the input tensor is a slice too.
1133  if (encDst.withoutBitWidths() != encSrc.withoutBitWidths() ||
1134  encSrc.isSlice()) {
1135  return failure();
1136  }
1137 
1138  Type retElemTp = op.getResult().getType().getElementType();
1139  Type srcElemTp = op.getSource().getType().getElementType();
1140  // Fold the trivial cases.
1141  if (retElemTp == srcElemTp && encDst == encSrc) {
1142  rewriter.replaceOp(op, adaptor.getSource());
1143  return success();
1144  }
1145  //
1146  // Do element-wise type conversion without using InsertOp.
1147  //
1148  // for each memref in srcTensor:
1149  // dst = memref.alloc
1150  // if srcMemRefType != dstMemRefType:
1151  // for every dst[i] = cast(src[i])
1152  // else:
1153  // dst = memref.copy(src)
1154  Location loc = op.getLoc();
1155  auto srcDesc = getDescriptorFromTensorTuple(adaptor.getSource());
1156  SmallVector<Value> fields;
1158  SparseTensorType(cast<RankedTensorType>(op.getResult().getType())),
1159  [&rewriter, &fields, srcDesc,
1160  loc](Type fTp, FieldIndex fIdx, SparseTensorFieldKind fKind, Level lvl,
1161  LevelType /*lt*/) -> bool {
1162  // Simply reuses the storage specifier as it is an SSA value.
1163  if (fKind == SparseTensorFieldKind::StorageSpec) {
1164  fields.push_back(srcDesc.getSpecifier());
1165  } else {
1166  // Allocates new memrefs
1167  Value srcMem = srcDesc.getMemRefField(fIdx);
1168  // TODO: We can instead use the actual memSize in specifier, that
1169  // would require a subViewOp to avoid overflow when copying
1170  // values.
1171  Value sz = linalg::createOrFoldDimOp(rewriter, loc, srcMem, 0);
1172  auto dstMem = rewriter.create<memref::AllocOp>(
1173  loc, cast<MemRefType>(fTp), sz);
1174  if (fTp != srcMem.getType()) {
1175  // Converts elements type.
1176  scf::buildLoopNest(
1177  rewriter, loc, constantIndex(rewriter, loc, 0), sz,
1178  constantIndex(rewriter, loc, 1),
1179  [srcMem, &dstMem](OpBuilder &builder, Location loc,
1180  ValueRange ivs) {
1181  Value v = builder.create<memref::LoadOp>(loc, srcMem, ivs);
1182  Value casted = genCast(builder, loc, v,
1183  dstMem.getType().getElementType());
1184  builder.create<memref::StoreOp>(loc, casted, dstMem, ivs);
1185  });
1186  } else {
1187  // TODO: We can even reuse the same memref for the new tensor,
1188  // but that requires a `ref-counting` based memory management
1189  // for shared memrefs between multiple sparse tensors.
1190  rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
1191  }
1192  fields.push_back(dstMem);
1193  }
1194  return true;
1195  });
1196 
1197  rewriter.replaceOp(
1198  op, genTuple(rewriter, loc, op.getResult().getType(), fields));
1199  return success();
1200  }
1201 };
1202 
1203 class SparseExtractSliceConverter
1204  : public OpConversionPattern<tensor::ExtractSliceOp> {
1205 public:
1208  matchAndRewrite(tensor::ExtractSliceOp op, OpAdaptor adaptor,
1209  ConversionPatternRewriter &rewriter) const override {
1210  Location loc = op.getLoc();
1211  MLIRContext *ctx = op.getContext();
1212  auto srcEnc = getSparseTensorEncoding(op.getSourceType());
1213  auto dstEnc = getSparseTensorEncoding(op.getResult().getType());
1214  // TODO: We should check these in ExtractSliceOp::verify.
1215  if (!srcEnc || !dstEnc || !dstEnc.isSlice())
1216  return failure();
1217  assert(srcEnc.withoutDimSlices() == dstEnc.withoutDimSlices());
1218 
1219  SmallVector<Value> fields;
1220  auto desc = getMutDescriptorFromTensorTuple(adaptor.getSource(), fields);
1221 
1222  auto newSpec = rewriter.create<StorageSpecifierInitOp>(
1223  loc, StorageSpecifierType::get(ctx, dstEnc), desc.getSpecifier());
1224  desc.setSpecifier(newSpec);
1225 
1226  // Fills in slice information.
1227  for (auto [idx, offset, size, stride] : llvm::enumerate(
1228  op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides())) {
1229  Dimension dim = idx;
1230 
1231  Value offsetV = getValueOrCreateConstantIndexOp(rewriter, loc, offset);
1232  Value sizeV = getValueOrCreateConstantIndexOp(rewriter, loc, size);
1233  Value strideV = getValueOrCreateConstantIndexOp(rewriter, loc, stride);
1234  // TODO: We could probably only set dynamic value here. But it would
1235  // requires us to fill the hole when casting a static slice to dynamic
1236  // slice.
1237  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimOffset,
1238  dim, offsetV);
1239 
1240  // FIXME: we need to distinguish level sizes and dimension size for slices
1241  // here. Maybe we should store slice level sizes in a different array
1242  // instead of reusing it.
1243  assert(srcEnc.isIdentity());
1244  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::LvlSize, dim,
1245  sizeV);
1246  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimStride,
1247  dim, strideV);
1248  }
1249 
1250  // NOTE: we can not generate tuples directly from descriptor here, as the
1251  // descriptor is holding the original type, yet we want the slice type
1252  // here (they shared every memref but with an updated specifier).
1253  rewriter.replaceOp(op, genTuple(rewriter, loc, op.getResult().getType(),
1254  desc.getFields()));
1255  return success();
1256  }
1257 };
1258 
1259 /// Sparse codegen rule for number of entries operator.
1260 class SparseNumberOfEntriesConverter
1261  : public OpConversionPattern<NumberOfEntriesOp> {
1262 public:
1265  matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
1266  ConversionPatternRewriter &rewriter) const override {
1267  // Query memSizes for the actually stored values.
1268  // FIXME: the nse value computed in this way might be wrong when there is
1269  // any "loose_compressed" level.
1270  rewriter.replaceOp(
1271  op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
1272  return success();
1273  }
1274 };
1275 
1276 struct SparseAssembleOpConverter : public OpConversionPattern<AssembleOp> {
1279  matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
1280  ConversionPatternRewriter &rewriter) const override {
1281  Location loc = op.getLoc();
1282  const auto stt = getSparseTensorType(op.getResult());
1283 
1284  SmallVector<Value> fields;
1285 
1287  stt,
1288  [&rewriter, &fields, &op, &stt,
1289  loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
1290  Level /*lvl*/, LevelType lt) -> bool {
1291  assert(fields.size() == fIdx);
1292  if (fKind == SparseTensorFieldKind::StorageSpec) {
1293  fields.push_back(
1294  SparseTensorSpecifier::getInitValue(rewriter, loc, stt));
1295  } else {
1296  // Else simply takes the inputs.
1297  Value tensor = fKind == SparseTensorFieldKind::ValMemRef
1298  ? op.getValues()
1299  : op.getLevels()[fIdx];
1300  // TODO: handle batch.
1301  TypedValue<BaseMemRefType> mem = genToMemref(rewriter, loc, tensor);
1302  if (mem.getType().getRank() > stt.getBatchLvlRank() + 1) {
1303  // Flattens the buffer to batchLvlRank.
1304  auto reassoc = getReassociationForFlattening(
1305  mem.getType(), stt.getBatchLvlRank());
1306  mem = rewriter.create<memref::CastOp>(
1307  loc, fType,
1308  rewriter.create<memref::CollapseShapeOp>(loc, mem, reassoc));
1309  } else {
1310  mem = rewriter.create<memref::CastOp>(loc, fType, mem);
1311  }
1312  fields.push_back(mem);
1313  }
1314  return true;
1315  });
1316 
1317  MutSparseTensorDescriptor desc(stt, fields);
1318  Value c0 = constantIndex(rewriter, loc, 0);
1319  Value c1 = constantIndex(rewriter, loc, 1);
1320  Value c2 = constantIndex(rewriter, loc, 2);
1321  Value posBack = c0; // index to the last value in the position array
1322  Value memSize = c1; // memory size for current array
1323 
1324  Level trailCOOStart = stt.getAoSCOOStart();
1325  Level trailCOORank = stt.getLvlRank() - trailCOOStart;
1326  // Sets up SparseTensorSpecifier.
1327  for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
1328  assert(!ShapedType::isDynamic(stt.getDimShape()[lvl]));
1329 
1330  // Sets up the level size.
1331  auto lvlSize = constantIndex(rewriter, loc, stt.getLvlShape()[lvl]);
1332  desc.setLvlSize(rewriter, loc, lvl, lvlSize);
1333  // We use a single AOS array to store the trailing COO, so there is only
1334  // one memory size to set for the entire COO section.
1335  if (lvl > trailCOOStart)
1336  continue;
1337 
1338  // Sets up the memory size by reading the last value in position array.
1339  LevelType lt = stt.getLvlType(lvl);
1340  // Simply forwards the position index when this is a dense level.
1341  if (lt.isa<LevelFormat::Dense>()) {
1342  memSize = rewriter.create<arith::MulIOp>(loc, lvlSize, memSize);
1343  posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
1344  continue;
1345  }
1346  if (lt.isa<LevelFormat::Batch>()) {
1347  // Skips batch levels as it is not linearized.
1348  // FIXME: this assumes that every batch has the same number of nse, need
1349  // to be generalized to handle varied-size batches.
1350  continue;
1351  }
1352 
1353  if (isWithPosLT(lt)) {
1354  assert(isCompressedLT(lt) || isLooseCompressedLT(lt));
1355  if (isLooseCompressedLT(lt)) {
1356  memSize = rewriter.create<arith::MulIOp>(loc, memSize, c2);
1357  posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
1358  } else {
1359  assert(isCompressedLT(lt));
1360  posBack = memSize;
1361  memSize = rewriter.create<arith::AddIOp>(loc, memSize, c1);
1362  }
1363  desc.setPosMemSize(rewriter, loc, lvl, memSize);
1364  // The last value in position array is the memory size for next level.
1365  // FIXME: this assumes that every batch has the same number of nse, need
1366  // to be generalized to handle varied-size batches.
1367  SmallVector<Value> batched(stt.getBatchLvlRank(),
1368  constantIndex(rewriter, loc, 0));
1369  batched.push_back(posBack);
1370  memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), batched);
1371  posBack = rewriter.create<arith::SubIOp>(loc, posBack, c1);
1372  }
1373  assert(isWithCrdLT(lt) && lvl <= trailCOOStart);
1374  // FIXME: This seems to be unnecessarily complex, can we simplify it?
1375  if (lvl == trailCOOStart) {
1376  Value cooSz = rewriter.create<arith::MulIOp>(
1377  loc, memSize, constantIndex(rewriter, loc, trailCOORank));
1378  desc.setCrdMemSize(rewriter, loc, lvl, cooSz);
1379  } else {
1380  desc.setCrdMemSize(rewriter, loc, lvl, memSize);
1381  }
1382  }
1383  desc.setValMemSize(rewriter, loc, memSize);
1384 
1385  rewriter.replaceOp(op, genTuple(rewriter, loc, desc));
1386  return success();
1387  }
1388 };
1389 
1390 struct SparseDisassembleOpConverter
1391  : public OpConversionPattern<DisassembleOp> {
1393  SparseDisassembleOpConverter(TypeConverter &typeConverter,
1394  MLIRContext *context)
1395  : OpConversionPattern(typeConverter, context) {}
1396 
1398  matchAndRewrite(DisassembleOp op, OpAdaptor adaptor,
1399  ConversionPatternRewriter &rewriter) const override {
1400  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1401  Location loc = op.getLoc();
1402  SmallVector<Value> retMem;
1403  SmallVector<Value> retLen;
1404  desc.getLayout().foreachField([desc, loc, &rewriter, &op, &retMem,
1405  &retLen](FieldIndex fid,
1406  SparseTensorFieldKind fKind,
1407  Level lvl, LevelType lt) -> bool {
1408  if (fKind == SparseTensorFieldKind::StorageSpec)
1409  return true;
1411  Value sz, src;
1413  if (fKind == SparseTensorFieldKind::ValMemRef) {
1414  sz = desc.getValMemSize(rewriter, loc);
1415  src = desc.getValMemRef();
1416  dst = genToMemref(rewriter, loc, op.getOutValues());
1417 
1418  retMem.push_back(dst);
1419  Type valLenTp = op.getValLen().getType();
1420  retLen.push_back(genScalarToTensor(rewriter, loc, sz, valLenTp));
1421  } else {
1422  assert(fKind == SparseTensorFieldKind::PosMemRef ||
1423  fKind == SparseTensorFieldKind::CrdMemRef);
1424 
1425  sz = fKind == SparseTensorFieldKind::PosMemRef
1426  ? desc.getPosMemSize(rewriter, loc, lvl)
1427  : desc.getCrdMemSize(rewriter, loc, lvl);
1428  src = desc.getMemRefField(fid);
1429  dst = genToMemref(rewriter, loc, op.getOutLevels()[fid]);
1430  retMem.push_back(dst);
1431  // Retrieves the corresponding level length type.
1432  Type lvlLenTp = op.getLvlLens().getTypes()[retLen.size()];
1433  retLen.push_back(genScalarToTensor(rewriter, loc, sz, lvlLenTp));
1434  }
1435  Value flatOut = dst;
1436  if (dst.getType().getRank() > stt.getBatchLvlRank() + 1) {
1437  auto reassoc =
1438  getReassociationForFlattening(dst.getType(), stt.getBatchLvlRank());
1439  flatOut = rewriter.create<memref::CollapseShapeOp>(loc, dst, reassoc);
1440  }
1441  Value dstMem = genSliceToSize(rewriter, loc, flatOut, sz);
1442  Value srcMem = genSliceToSize(rewriter, loc, src, sz);
1443  rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
1444  return true;
1445  });
1446 
1447  // Converts MemRefs back to Tensors.
1448  SmallVector<Value> retValues = llvm::to_vector(
1449  llvm::map_range(retMem, [&rewriter, loc](Value v) -> Value {
1450  return rewriter.create<bufferization::ToTensorOp>(loc, v);
1451  }));
1452  // Appends the actual memory length used in each buffer returned.
1453  retValues.append(retLen.begin(), retLen.end());
1454  rewriter.replaceOp(op, retValues);
1455  return success();
1456  }
1457 };
1458 
1459 struct SparseNewConverter : public OpConversionPattern<NewOp> {
1462  matchAndRewrite(NewOp op, OpAdaptor adaptor,
1463  ConversionPatternRewriter &rewriter) const override {
1464  Location loc = op.getLoc();
1465  const auto dstTp = getSparseTensorType(op.getResult());
1466  // Creating COO with NewOp is handled by direct IR codegen. All other cases
1467  // are handled by rewriting.
1468  if (!dstTp.hasEncoding() || dstTp.getAoSCOOStart() != 0)
1469  return failure();
1470 
1471  // Implement as follows:
1472  // %reader = @createCheckedSparseTensorReader(%filename)
1473  // %nse = @getSparseTensorNSE(%reader)
1474  // %coo = bufferization.alloc_tensor an ordered COO with
1475  // dst dim ordering, size_hint = %nse
1476  // %coordinates = sparse_tensor.coordinates_buffer(%coo)
1477  // %values = sparse_tensor.values(%coo)
1478  // %isSorted = @sparseTensorReaderReadToBuffers(%coordinates, %values)
1479  // if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
1480  // update storage specifier
1481  // @delSparseTensorReader(%reader)
1482  SmallVector<Value> dimSizesValues;
1483  Value dimSizesBuffer;
1484  Value reader = genReader(rewriter, loc, dstTp, adaptor.getOperands()[0],
1485  dimSizesValues, dimSizesBuffer);
1486 
1487  // Get the number of stored entries.
1488  const Type indexTp = rewriter.getIndexType();
1489  Value nse = createFuncCall(rewriter, loc, "getSparseTensorReaderNSE",
1490  {indexTp}, {reader}, EmitCInterface::Off)
1491  .getResult(0);
1492 
1493  // Construct the lvl sizes and the dim2lvl/lvl2dim buffers.
1494  SmallVector<Value> lvlSizesValues;
1495  Value dim2lvlBuffer;
1496  Value lvl2dimBuffer;
1497  genMapBuffers(rewriter, loc, dstTp, dimSizesValues, dimSizesBuffer,
1498  lvlSizesValues, dim2lvlBuffer, lvl2dimBuffer);
1499 
1500  // Construct allocation for each field.
1501  Value sizeHint = nse;
1502  SmallVector<Value> fields;
1503  createAllocFields(rewriter, loc, dstTp, /*enableInit=*/false, sizeHint,
1504  lvlSizesValues, fields);
1505 
1506  // Read the COO tensor data.
1507  MutSparseTensorDescriptor desc(dstTp, fields);
1508  Value xs = desc.getAOSMemRef();
1509  Value ys = desc.getValMemRef();
1510  const Type boolTp = rewriter.getIntegerType(1);
1511  const Type elemTp = dstTp.getElementType();
1512  const Type crdTp = dstTp.getCrdType();
1513  SmallString<32> readToBuffersFuncName{"getSparseTensorReaderReadToBuffers",
1515  primaryTypeFunctionSuffix(elemTp)};
1516  Value isSorted =
1517  createFuncCall(rewriter, loc, readToBuffersFuncName, {boolTp},
1518  {reader, dim2lvlBuffer, lvl2dimBuffer, xs, ys},
1519  EmitCInterface::On)
1520  .getResult(0);
1521 
1522  // If the destination tensor is a sorted COO, we need to sort the COO tensor
1523  // data if the input elements aren't sorted yet.
1524  const Level lvlRank = dstTp.getLvlRank();
1525  if (dstTp.isOrderedLvl(lvlRank - 1)) {
1526  Value kFalse = constantI1(rewriter, loc, false);
1527  Value notSorted = rewriter.create<arith::CmpIOp>(
1528  loc, arith::CmpIPredicate::eq, isSorted, kFalse);
1529  scf::IfOp ifOp =
1530  rewriter.create<scf::IfOp>(loc, notSorted, /*else*/ false);
1531  rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1532  auto xPerm = rewriter.getMultiDimIdentityMap(lvlRank);
1533  rewriter.create<SortOp>(loc, nse, xs, ValueRange{ys}, xPerm,
1534  rewriter.getIndexAttr(0),
1535  SparseTensorSortKind::HybridQuickSort);
1536  rewriter.setInsertionPointAfter(ifOp);
1537  }
1538 
1539  // Set PosMemRef0[1] = nse.
1540  const Value c1 = constantIndex(rewriter, loc, 1);
1541  const Value posMemref0 = desc.getPosMemRef(0);
1542  const Type posTp = dstTp.getPosType();
1543  const Value posNse = genCast(rewriter, loc, nse, posTp);
1544  rewriter.create<memref::StoreOp>(loc, posNse, posMemref0, c1);
1545 
1546  // Update storage specifier.
1547  Value coordinatesSize = rewriter.create<arith::MulIOp>(
1548  loc, nse, constantIndex(rewriter, loc, lvlRank));
1549  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::CrdMemSize, 0,
1550  coordinatesSize);
1551  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::ValMemSize,
1552  std::nullopt, nse);
1553 
1554  // Release the sparse tensor reader.
1555  createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
1556  EmitCInterface::Off);
1557 
1558  // Replace operation with resulting memrefs.
1559  rewriter.replaceOp(op, genTuple(rewriter, loc, dstTp, fields));
1560  return success();
1561  }
1562 };
1563 
1564 struct SparseHasRuntimeLibraryConverter
1565  : public OpConversionPattern<HasRuntimeLibraryOp> {
1568  matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor,
1569  ConversionPatternRewriter &rewriter) const override {
1570  auto i1Type = rewriter.getI1Type();
1571  rewriter.replaceOpWithNewOp<arith::ConstantOp>(
1572  op, i1Type, rewriter.getIntegerAttr(i1Type, 0));
1573  return success();
1574  }
1575 };
1576 
1577 } // namespace
1578 
1579 //===----------------------------------------------------------------------===//
1580 // Public method for populating conversion rules.
1581 //===----------------------------------------------------------------------===//
1582 
1583 /// Populates the given patterns list with conversion rules required for
1584 /// the sparsification of linear algebra operations.
1586  TypeConverter &typeConverter, RewritePatternSet &patterns,
1587  bool createSparseDeallocs, bool enableBufferInitialization) {
1588  patterns.add<
1589  SparseAssembleOpConverter, SparseDisassembleOpConverter,
1590  SparseReturnConverter, SparseCallConverter, SparseLvlOpConverter,
1591  SparseCastConverter, SparseExtractSliceConverter,
1592  SparseTensorLoadConverter, SparseExpandConverter, SparseCompressConverter,
1593  SparseInsertConverter, SparseReorderCOOConverter, SparseReMapConverter,
1594  SparseSliceGetterOpConverter<ToSliceOffsetOp,
1595  StorageSpecifierKind::DimOffset>,
1596  SparseSliceGetterOpConverter<ToSliceStrideOp,
1597  StorageSpecifierKind::DimStride>,
1598  SparseToPositionsConverter, SparseToCoordinatesConverter,
1599  SparseToCoordinatesBufferConverter, SparseToValuesConverter,
1600  SparseConvertConverter, SparseNewConverter,
1601  SparseNumberOfEntriesConverter, SparseHasRuntimeLibraryConverter>(
1602  typeConverter, patterns.getContext());
1603  patterns.add<SparseTensorDeallocConverter>(
1604  typeConverter, patterns.getContext(), createSparseDeallocs);
1605  patterns.add<SparseTensorAllocConverter, SparseTensorEmptyConverter>(
1606  typeConverter, patterns.getContext(), enableBufferInitialization);
1607 }
static void flattenOperands(ValueRange operands, SmallVectorImpl< Value > &flattened)
Flattens a list of operands that may contain sparse tensors.
static void createAllocFields(OpBuilder &builder, Location loc, SparseTensorType stt, bool enableInit, Value sizeHint, SmallVectorImpl< Value > &lvlSizesValues, SmallVectorImpl< Value > &fields)
Creates allocation for each field in sparse tensor type.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper, MutableArrayRef< Value > fields, Value lower=Value())
Creates a straightforward counting for-loop.
static SmallVector< ReassociationIndices > getReassociationForFlattening(ShapedType srcTp, unsigned batchLvls)
Creates the reassociation array.
static void genEndInsert(OpBuilder &builder, Location loc, SparseTensorDescriptor desc)
Generates insertion finalization code.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem, Value idx)
Generates a store with proper index typing and proper value.
static void allocSchemeForRank(OpBuilder &builder, Location loc, MutSparseTensorDescriptor desc, Level startLvl)
Generates code that allocates a sparse storage scheme for given rank.
static Value genCompressed(OpBuilder &builder, Location loc, MutSparseTensorDescriptor desc, ValueRange lvlCoords, Value, Value parentPos, Level lvl)
Helper method that generates block specific to compressed case:
static Value createAllocation(OpBuilder &builder, Location loc, MemRefType memRefType, Value sz, bool enableInit)
Creates allocation operation.
static void createPushback(OpBuilder &builder, Location loc, MutSparseTensorDescriptor desc, SparseTensorFieldKind kind, std::optional< Level > lvl, Value value, Value repeat=Value())
Creates a push back operation.
static Value genSliceToSize(OpBuilder &builder, Location loc, Value mem, Value sz)
Generates a subview into the sizes.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx)
Generates a load with proper index typing.
static void createDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt, ValueRange dynSizes, SmallVectorImpl< Value > &dimSizesValues)
Creates the dim sizes array, filling in from dynamic sizes.
@ NewOp
Op vectorized into a new Op whose results will replace original Op's results.
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
Definition: AffineMap.cpp:318
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:124
IntegerAttr getIntegerAttr(Type type, int64_t value)
Definition: Builders.cpp:238
AffineMap getMultiDimIdentityMap(unsigned rank)
Definition: Builders.cpp:394
IntegerType getIntegerType(unsigned width)
Definition: Builders.cpp:87
IntegerType getI1Type()
Definition: Builders.cpp:73
IndexType getIndexType()
Definition: Builders.cpp:71
This class implements a pattern rewriter for use with ConversionPatterns.
void replaceOp(Operation *op, ValueRange newValues) override
PatternRewriter hook for replacing an operation.
void eraseOp(Operation *op) override
PatternRewriter hook for erasing a dead operation.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:63
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class helps build Operations.
Definition: Builders.h:209
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:433
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:464
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:414
OpConversionPattern is a wrapper around ConversionPattern that allows for matching and rewriting agai...
OpConversionPattern(MLIRContext *context, PatternBenefit benefit=1)
This provides public APIs that all operations should have.
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Definition: Operation.h:402
MLIRContext * getContext()
Return the context this operation is associated with.
Definition: Operation.h:216
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
result_type_range getResultTypes()
Definition: Operation.h:423
result_range getResults()
Definition: Operation.h:410
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:399
MLIRContext * getContext() const
Definition: PatternMatch.h:822
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
Definition: PatternMatch.h:846
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:718
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:536
Tensor types represent multi-dimensional arrays, and have two variants: RankedTensorType and Unranked...
Definition: BuiltinTypes.h:91
Type conversion class.
This class provides an abstraction over the various different ranges of value types.
Definition: TypeRange.h:36
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:125
A helper class to simplify lowering operations with/without function calls.
Definition: CodegenUtils.h:78
Using SmallVector for mutable descriptor allows users to reuse it as a tmp buffers to append value fo...
void setMemRefField(SparseTensorFieldKind kind, std::optional< Level > lvl, Value v)
Adds additional setters for mutable descriptor, update the value for required field.
void setSpecifierField(OpBuilder &builder, Location loc, StorageSpecifierKind kind, std::optional< Level > lvl, Value v)
void setPosMemSize(OpBuilder &builder, Location loc, Level lvl, Value v)
void setValMemSize(OpBuilder &builder, Location loc, Value v)
void setLvlSize(OpBuilder &builder, Location loc, Level lvl, Value v)
void setCrdMemSize(OpBuilder &builder, Location loc, Level lvl, Value v)
Value getSpecifier() const
Getters: get the value for required field.
std::pair< FieldIndex, unsigned > getCrdMemRefIndexAndStride(Level lvl) const
Value getValMemSize(OpBuilder &builder, Location loc) const
Value getSpecifierField(OpBuilder &builder, Location loc, StorageSpecifierKind kind, std::optional< Level > lvl) const
Type getMemRefElementType(SparseTensorFieldKind kind, std::optional< Level > lvl) const
Value getCrdMemSize(OpBuilder &builder, Location loc, Level lvl) const
Value getMemRefField(SparseTensorFieldKind kind, std::optional< Level > lvl) const
Value getPosMemSize(OpBuilder &builder, Location loc, Level lvl) const
Value getLvlSize(OpBuilder &builder, Location loc, Level lvl) const
Uses ValueRange for immutable descriptors.
static Value getInitValue(OpBuilder &builder, Location loc, SparseTensorType stt)
A wrapper around RankedTensorType, which has three goals:
ArrayRef< Size > getDimShape() const
Returns the dimension-shape.
bool isAllOrdered() const
Returns true for tensors where every level is ordered.
bool isCOOType(Level startLvl=0, bool isUnique=true) const
Returns true iff this sparse tensor type has a trailing COO region starting at the given level.
Dimension getDimRank() const
Returns the dimension-rank.
bool isAllDense() const
Returns true for tensors where every level is dense.
bool hasSameDimToLvl(const SparseTensorType &other) const
Returns true iff the two types have the same mapping.
Level getLvlRank() const
Returns the level-rank.
Level getAoSCOOStart() const
Returns the starting level of this sparse tensor type for a trailing COO region that spans at least t...
Type getPosType() const
Returns the position-overhead MLIR type, defaulting to IndexType.
void foreachField(llvm::function_ref< bool(FieldIndex, SparseTensorFieldKind, Level, LevelType)>) const
For each field that will be allocated for the given sparse tensor encoding, calls the callback with t...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:285
Value constantIndex(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of index type.
Definition: CodegenUtils.h:334
bool isWithCrdLT(LevelType lt)
Definition: Enums.h:427
Value constantZero(OpBuilder &builder, Location loc, Type tp)
Generates a 0-valued constant of the given type.
Definition: CodegenUtils.h:312
bool isWithPosLT(LevelType lt)
Definition: Enums.h:428
std::string toMLIRString(LevelType lt)
Definition: Enums.h:443
Value constantOne(OpBuilder &builder, Location loc, Type tp)
Generates a 1-valued constant of the given type.
Definition: CodegenUtils.h:323
void foreachFieldAndTypeInSparseTensor(SparseTensorType, llvm::function_ref< bool(Type, FieldIndex, SparseTensorFieldKind, Level, LevelType)>)
unsigned FieldIndex
The type of field indices.
bool isSingletonLT(LevelType lt)
Definition: Enums.h:417
uint64_t Dimension
The type of dimension identifiers and dimension-ranks.
Definition: SparseTensor.h:35
bool isCompressedLT(LevelType lt)
Definition: Enums.h:411
uint64_t Level
The type of level identifiers and level-ranks.
Definition: SparseTensor.h:38
TypedValue< BaseMemRefType > genToMemref(OpBuilder &builder, Location loc, Value tensor)
Value genTuple(OpBuilder &builder, Location loc, Type tp, ValueRange values)
Packs the given values as a "tuple" value.
bool isLooseCompressedLT(LevelType lt)
Definition: Enums.h:414
Value constantI1(OpBuilder &builder, Location loc, bool b)
Generates a constant of i1 type.
Definition: CodegenUtils.h:359
Value genIndexLoad(OpBuilder &builder, Location loc, Value mem, ValueRange s)
Generates a pointer/index load from the sparse storage scheme.
int64_t Size
The type for individual components of a compile-time shape, including the value ShapedType::kDynamic ...
Definition: SparseTensor.h:42
StringRef overheadTypeFunctionSuffix(OverheadType ot)
Convert OverheadType to its function-name suffix.
Operation * getTop(Operation *op)
Scans to top of generated loop.
SparseTensorEncodingAttr getSparseTensorEncoding(Type type)
Convenience method to get a sparse encoding attribute from a type.
Value genMapBuffers(OpBuilder &builder, Location loc, SparseTensorType stt, ArrayRef< Value > dimSizesValues, Value dimSizesBuffer, SmallVectorImpl< Value > &lvlSizesValues, Value &dim2lvlBuffer, Value &lvl2dimBuffer)
Generates code to set up the buffer parameters for a map.
Value genReader(OpBuilder &builder, Location loc, SparseTensorType stt, Value tensor, SmallVectorImpl< Value > &dimSizesValues, Value &dimSizesBuffer)
Generates code that opens a reader and sets the dimension sizes.
Value genScalarToTensor(OpBuilder &builder, Location loc, Value elem, Type dstTp)
Add conversion from scalar to given type (possibly a 0-rank tensor).
SparseTensorDescriptor getDescriptorFromTensorTuple(Value tensor)
bool isDenseLT(LevelType lt)
Definition: Enums.h:409
SparseTensorType getSparseTensorType(Value val)
Convenience methods to obtain a SparseTensorType from a Value.
SparseTensorFieldKind
===-------------------------------------------------------------------—===// The sparse tensor storag...
func::CallOp createFuncCall(OpBuilder &builder, Location loc, StringRef name, TypeRange resultType, ValueRange operands, EmitCInterface emitCInterface)
Creates a CallOp to the function reference returned by getFunc() in the builder's module.
Value genCast(OpBuilder &builder, Location loc, Value value, Type dstTy)
Add type casting between arith and index types when needed.
StringRef primaryTypeFunctionSuffix(PrimaryType pt)
Convert PrimaryType to its function-name suffix.
MutSparseTensorDescriptor getMutDescriptorFromTensorTuple(Value tensor, SmallVectorImpl< Value > &fields)
Value genValMemSize(OpBuilder &builder, Location loc, Value tensor)
Generates code to retrieve the values size for the sparse tensor.
StorageSpecifierKind toSpecifierKind(SparseTensorFieldKind kind)
bool isNOutOfMLT(LevelType lt)
Definition: Enums.h:420
UnrealizedConversionCastOp getTuple(Value tensor)
Returns the "tuple" value of the adapted tensor.
Include the generated interface declarations.
LogicalResult failure(bool isFailure=true)
Utility function to generate a LogicalResult.
Definition: LogicalResult.h:62
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
Definition: Value.h:494
LogicalResult success(bool isSuccess=true)
Utility function to generate a LogicalResult.
Definition: LogicalResult.h:56
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:41
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
void populateSparseTensorCodegenPatterns(TypeConverter &typeConverter, RewritePatternSet &patterns, bool createSparseDeallocs, bool enableBufferInitialization)
Sets up sparse tensor codegen rules.
bool failed(LogicalResult result)
Utility function that returns true if the provided LogicalResult corresponds to a failure value.
Definition: LogicalResult.h:72
This class represents an efficient way to signal success or failure.
Definition: LogicalResult.h:26
This enum defines all the sparse representations supportable by the SparseTensor dialect.
Definition: Enums.h:238
constexpr bool isa() const
Check if the LevelType is in the LevelFormat.
Definition: Enums.h:326