MLIR  20.0.0git
SparseTensorCodegen.cpp
Go to the documentation of this file.
1 //===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pass that converts sparse tensor types and primitives to actual compiler
10 // visible buffers and actual compiler IR that implements these primitives on
11 // the selected sparse tensor storage schemes. This pass provides an alternative
12 // to the SparseTensorConversion pass, eliminating the dependence on a runtime
13 // support library (other than for file I/O), and providing many more
14 // opportunities for subsequent compiler optimization of the generated code.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "Utils/CodegenUtils.h"
20 
32 
33 #include <optional>
34 
35 using namespace mlir;
36 using namespace mlir::sparse_tensor;
37 
38 //===----------------------------------------------------------------------===//
39 // Helper methods.
40 //===----------------------------------------------------------------------===//
41 
42 /// Flattens a list of operands that may contain sparse tensors.
43 static void flattenOperands(ValueRange operands,
44  SmallVectorImpl<Value> &flattened) {
45  // In case of
46  // sparse_tensor, c, sparse_tensor
47  // ==>
48  // memref ..., c, memref ...
49  for (auto operand : operands) {
50  if (getSparseTensorEncoding(operand.getType())) {
51  auto tuple = getTuple(operand);
52  // An unrealized_conversion_cast will be inserted by type converter to
53  // inter-mix the gap between 1:N conversion between sparse tensors and
54  // fields. In this case, take the operands in the cast and replace the
55  // sparse tensor output with the flattened type array.
56  flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
57  } else {
58  flattened.push_back(operand);
59  }
60  }
61 }
62 
63 /// Generates a load with proper `index` typing.
64 static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
65  idx = genCast(builder, loc, idx, builder.getIndexType());
66  return builder.create<memref::LoadOp>(loc, mem, idx);
67 }
68 
69 /// Generates a store with proper `index` typing and proper value.
70 static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
71  Value idx) {
72  idx = genCast(builder, loc, idx, builder.getIndexType());
73  val = genCast(builder, loc, val,
74  cast<ShapedType>(mem.getType()).getElementType());
75  builder.create<memref::StoreOp>(loc, val, mem, idx);
76 }
77 
78 /// Creates a straightforward counting for-loop.
79 static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
81  Value lower = Value()) {
82  Type indexType = builder.getIndexType();
83  if (!lower)
84  lower = constantZero(builder, loc, indexType);
85  Value one = constantOne(builder, loc, indexType);
86  scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
87  for (unsigned i = 0, e = fields.size(); i < e; i++)
88  fields[i] = forOp.getRegionIterArg(i);
89  builder.setInsertionPointToStart(forOp.getBody());
90  return forOp;
91 }
92 
93 /// Creates a push back operation.
94 static void createPushback(OpBuilder &builder, Location loc,
96  SparseTensorFieldKind kind, std::optional<Level> lvl,
97  Value value, Value repeat = Value()) {
98  Type etp = desc.getMemRefElementType(kind, lvl);
99  Value field = desc.getMemRefField(kind, lvl);
100  StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
101 
102  auto pushBackOp = builder.create<PushBackOp>(
103  loc, desc.getSpecifierField(builder, loc, specFieldKind, lvl), field,
104  genCast(builder, loc, value, etp), repeat);
105 
106  desc.setMemRefField(kind, lvl, pushBackOp.getOutBuffer());
107  desc.setSpecifierField(builder, loc, specFieldKind, lvl,
108  pushBackOp.getNewSize());
109 }
110 
111 /// Generates code that allocates a sparse storage scheme for given rank.
112 static void allocSchemeForRank(OpBuilder &builder, Location loc,
113  MutSparseTensorDescriptor desc, Level startLvl) {
114  const SparseTensorType stt(desc.getRankedTensorType());
115  Value linear = constantIndex(builder, loc, 1);
116  const Level lvlRank = stt.getLvlRank();
117  for (Level lvl = startLvl; lvl < lvlRank; lvl++) {
118  const auto lt = stt.getLvlType(lvl);
119  if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
120  // Append linear x positions, initialized to zero. Since each compressed
121  // dimension initially already has a single zero entry, this maintains
122  // the desired "linear + 1" length property at all times. For loose
123  // compression, we multiply linear by two in order to append both the
124  // lo/hi positions.
125  Value posZero = constantZero(builder, loc, stt.getPosType());
126  if (isLooseCompressedLT(lt)) {
127  Value two = constantIndex(builder, loc, 2);
128  linear = builder.create<arith::MulIOp>(loc, linear, two);
129  }
130  createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
131  /*value=*/posZero, /*repeat=*/linear);
132  return;
133  } else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
134  return; // nothing to do
135  }
136  // Keep compounding the size, but nothing needs to be initialized
137  // at this level. We will eventually reach a compressed level or
138  // otherwise the values array for the from-here "all-dense" case.
139  assert(isDenseLT(lt));
140  Value size = desc.getLvlSize(builder, loc, lvl);
141  linear = builder.create<arith::MulIOp>(loc, linear, size);
142  }
143  // Reached values array so prepare for an insertion.
144  Value valZero = constantZero(builder, loc, stt.getElementType());
146  std::nullopt, /*value=*/valZero, /*repeat=*/linear);
147 }
148 
149 /// Creates allocation operation.
151  MemRefType memRefType, Value sz,
152  bool enableInit) {
153  Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
154  Type elemType = memRefType.getElementType();
155  if (enableInit) {
156  Value fillValue = constantZero(builder, loc, elemType);
157  builder.create<linalg::FillOp>(loc, fillValue, buffer);
158  }
159  return buffer;
160 }
161 
162 /// Creates the dim sizes array, filling in from dynamic sizes.
163 static void createDimSizes(OpBuilder &builder, Location loc,
164  SparseTensorType stt, ValueRange dynSizes,
165  /*out*/ SmallVectorImpl<Value> &dimSizesValues) {
166  const Dimension dimRank = stt.getDimRank();
167  dimSizesValues.clear();
168  dimSizesValues.reserve(dimRank);
169  unsigned i = 0;
170  for (const Size sz : stt.getDimShape())
171  dimSizesValues.push_back(ShapedType::isDynamic(sz)
172  ? dynSizes[i++]
173  : constantIndex(builder, loc, sz));
174 }
175 
176 /// Creates allocation for each field in sparse tensor type. Note that
177 /// for all dynamic memrefs in the sparse tensor stroage layout, the
178 /// memory size is really the capacity of the "vector", while the actual
179 /// size resides in the sizes array.
180 static void createAllocFields(OpBuilder &builder, Location loc,
181  SparseTensorType stt, bool enableInit,
182  Value sizeHint,
183  SmallVectorImpl<Value> &lvlSizesValues,
184  /*out*/ SmallVectorImpl<Value> &fields) {
185  Level lvlRank = stt.getLvlRank();
186  // Set up some heuristic sizes. We try to set the initial
187  // size based on available information. Otherwise we just
188  // initialize a few elements to start the reallocation chain.
189  // TODO: refine this
190  Value posHeuristic, crdHeuristic, valHeuristic;
191  if (stt.isAllDense()) {
192  valHeuristic = lvlSizesValues[0];
193  for (Level lvl = 1; lvl < lvlRank; lvl++)
194  valHeuristic =
195  builder.create<arith::MulIOp>(loc, valHeuristic, lvlSizesValues[lvl]);
196  } else if (sizeHint) {
197  if (stt.getAoSCOOStart() == 0) {
198  posHeuristic = constantIndex(builder, loc, 2);
199  crdHeuristic = builder.create<arith::MulIOp>(
200  loc, constantIndex(builder, loc, lvlRank), sizeHint); // AOS
201  } else if (lvlRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
202  posHeuristic = builder.create<arith::AddIOp>(
203  loc, sizeHint, constantIndex(builder, loc, 1));
204  crdHeuristic = sizeHint;
205  } else {
206  posHeuristic = crdHeuristic = constantIndex(builder, loc, 16);
207  }
208  valHeuristic = sizeHint;
209  } else {
210  posHeuristic = crdHeuristic = valHeuristic =
211  constantIndex(builder, loc, 16);
212  }
213  // Initializes all fields. An initial storage specifier and allocated
214  // positions/coordinates/values memrefs (with heuristic capacity).
216  stt,
217  [&builder, &fields, stt, loc, posHeuristic, crdHeuristic, valHeuristic,
218  enableInit](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
219  Level /*lvl*/, LevelType /*lt*/) -> bool {
220  assert(fields.size() == fIdx);
221  Value field;
222  switch (fKind) {
224  field = SparseTensorSpecifier::getInitValue(builder, loc, stt);
225  break;
227  field = createAllocation(builder, loc, cast<MemRefType>(fType),
228  posHeuristic, enableInit);
229  break;
231  field = createAllocation(builder, loc, cast<MemRefType>(fType),
232  crdHeuristic, enableInit);
233  break;
235  field = createAllocation(builder, loc, cast<MemRefType>(fType),
236  valHeuristic, enableInit);
237  break;
238  }
239  assert(field);
240  fields.push_back(field);
241  // Returns true to continue the iteration.
242  return true;
243  });
244  // Initialize the storage scheme to an empty tensor. Sets the lvlSizes
245  // and gives all position fields an initial zero entry, so that it is
246  // easier to maintain the "linear + 1" length property.
247  MutSparseTensorDescriptor desc(stt, fields);
248  Value posZero = constantZero(builder, loc, stt.getPosType());
249  for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
250  desc.setLvlSize(builder, loc, lvl, lvlSizesValues[lvl]);
251  const auto lt = stt.getLvlType(lvl);
252  if (isCompressedLT(lt) || isLooseCompressedLT(lt))
253  createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
254  /*value=*/posZero);
255  }
256  allocSchemeForRank(builder, loc, desc, /*rank=*/0);
257 }
258 
259 /// Helper method that generates block specific to compressed case:
260 ///
261 /// // given: parentPos = posCursor[lvl-1]
262 /// pstart = desc.positions[lvl][parentPos]
263 /// pstop = desc.positions[lvl][parentPos+1]
264 /// plast = pstop - 1
265 /// msz = desc.coordinates[lvl].size()
266 /// if (pstart < pstop) {
267 /// isPresent = (desc.coordinates[lvl][plast] == lvlCoords[lvl])
268 /// } else { // first insertion
269 /// isPresent = false
270 /// desc.positions[lvl][parentPos] = msz
271 /// }
272 /// if (isPresent) { // coordinate is already present
273 /// pnext = plast
274 /// } else {
275 /// desc.coordinates[lvl].push_back(lvlCoords[lvl])
276 /// desc.positions[lvl][parentPos+1] = msz+1
277 /// pnext = msz
278 /// <prepare level lvl+1>
279 /// }
280 /// posCursor[lvl] = pnext
281 static Value genCompressed(OpBuilder &builder, Location loc,
282  MutSparseTensorDescriptor desc, ValueRange lvlCoords,
283  Value /*unused*/, Value parentPos, Level lvl) {
284  const SparseTensorType stt(desc.getRankedTensorType());
285  const Level lvlRank = stt.getLvlRank();
286  assert(lvl < lvlRank && "Level is out of bounds");
287  assert(lvlCoords.size() == static_cast<size_t>(lvlRank) &&
288  "Level-rank mismatch");
289  SmallVector<Type> types;
290  Type indexType = builder.getIndexType();
291  Type boolType = builder.getIntegerType(1);
292  unsigned crdFidx;
293  unsigned crdStride;
294  std::tie(crdFidx, crdStride) = desc.getCrdMemRefIndexAndStride(lvl);
295  const Value one = constantIndex(builder, loc, 1);
296  const Value pp1 = builder.create<arith::AddIOp>(loc, parentPos, one);
297  const Value positionsAtLvl = desc.getPosMemRef(lvl);
298  const Value pstart = genLoad(builder, loc, positionsAtLvl, parentPos);
299  const Value pstop = genLoad(builder, loc, positionsAtLvl, pp1);
300  const Value crdMsz = desc.getCrdMemSize(builder, loc, lvl);
301  const Value crdStrideC =
302  crdStride > 1 ? constantIndex(builder, loc, crdStride) : Value();
303  const Value msz =
304  crdStrideC ? builder.create<arith::DivUIOp>(loc, crdMsz, crdStrideC)
305  : crdMsz;
306  const Value plast = builder.create<arith::SubIOp>(
307  loc, genCast(builder, loc, pstop, indexType), one);
308  // Conditional expression.
309  Value lt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
310  pstart, pstop);
311  types.push_back(boolType);
312  scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
313  types.pop_back();
314  builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
315  Value crd =
316  genLoad(builder, loc, desc.getMemRefField(crdFidx),
317  crdStrideC ? builder.create<arith::MulIOp>(loc, plast, crdStrideC)
318  : plast);
319  Value eq = builder.create<arith::CmpIOp>(
320  loc, arith::CmpIPredicate::eq, genCast(builder, loc, crd, indexType),
321  lvlCoords[lvl]);
322  builder.create<scf::YieldOp>(loc, eq);
323  builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
324  if (lvl > 0)
325  genStore(builder, loc, msz, positionsAtLvl, parentPos);
326  builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
327  builder.setInsertionPointAfter(ifOp1);
328  // If present construct. Note that for a non-unique dimension level, we
329  // simply set the condition to false and rely on CSE/DCE to clean up the IR.
330  //
331  // TODO: generate less temporary IR?
332  //
333  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
334  types.push_back(desc.getField(i).getType());
335  types.push_back(indexType);
336  const Value p = stt.isUniqueLvl(lvl) ? ifOp1.getResult(0)
337  : constantI1(builder, loc, false);
338  scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
339  // If present (fields unaffected, update pnext to plast).
340  builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
341 
342  // FIXME: This does not looks like a clean way, but probably the most
343  // efficient way.
344  desc.getFields().push_back(plast);
345  builder.create<scf::YieldOp>(loc, desc.getFields());
346  desc.getFields().pop_back();
347 
348  // If !present (changes fields, update pnext).
349  builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
350  Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
351  genStore(builder, loc, mszp1, positionsAtLvl, pp1);
352  createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, lvl,
353  /*value=*/lvlCoords[lvl]);
354  // Prepare the next level "as needed".
355  if ((lvl + 1) < lvlRank)
356  allocSchemeForRank(builder, loc, desc, lvl + 1);
357 
358  desc.getFields().push_back(msz);
359  builder.create<scf::YieldOp>(loc, desc.getFields());
360  desc.getFields().pop_back();
361 
362  // Update fields and return next pos.
363  builder.setInsertionPointAfter(ifOp2);
364  unsigned o = 0;
365  for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
366  desc.setField(i, ifOp2.getResult(o++));
367  return ifOp2.getResult(o);
368 }
369 
370 /// Generates insertion finalization code.
371 static void genEndInsert(OpBuilder &builder, Location loc,
372  SparseTensorDescriptor desc) {
373  const SparseTensorType stt(desc.getRankedTensorType());
374  const Level lvlRank = stt.getLvlRank();
375  for (Level lvl = 0; lvl < lvlRank; lvl++) {
376  const auto lt = stt.getLvlType(lvl);
377  if (isCompressedLT(lt)) {
378  // Compressed dimensions need a position cleanup for all entries
379  // that were not visited during the insertion pass.
380  //
381  // TODO: avoid cleanup and keep compressed scheme consistent at all
382  // times?
383  //
384  if (lvl > 0) {
385  Type posType = stt.getPosType();
386  Value posMemRef = desc.getPosMemRef(lvl);
387  Value hi = desc.getPosMemSize(builder, loc, lvl);
388  Value zero = constantIndex(builder, loc, 0);
389  Value one = constantIndex(builder, loc, 1);
390  // Vector of only one, but needed by createFor's prototype.
391  SmallVector<Value, 1> inits{genLoad(builder, loc, posMemRef, zero)};
392  scf::ForOp loop = createFor(builder, loc, hi, inits, one);
393  Value i = loop.getInductionVar();
394  Value oldv = loop.getRegionIterArg(0);
395  Value newv = genLoad(builder, loc, posMemRef, i);
396  Value posZero = constantZero(builder, loc, posType);
397  Value cond = builder.create<arith::CmpIOp>(
398  loc, arith::CmpIPredicate::eq, newv, posZero);
399  scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(posType),
400  cond, /*else*/ true);
401  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
402  genStore(builder, loc, oldv, posMemRef, i);
403  builder.create<scf::YieldOp>(loc, oldv);
404  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
405  builder.create<scf::YieldOp>(loc, newv);
406  builder.setInsertionPointAfter(ifOp);
407  builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
408  builder.setInsertionPointAfter(loop);
409  }
410  } else {
411  assert(isDenseLT(lt) || isLooseCompressedLT(lt) || isSingletonLT(lt) ||
412  isNOutOfMLT(lt));
413  }
414  }
415 }
416 
417 /// Generates a subview into the sizes.
418 static Value genSliceToSize(OpBuilder &builder, Location loc, Value mem,
419  Value sz) {
420  auto memTp = llvm::cast<MemRefType>(mem.getType());
421  // For higher-dimensional memrefs, we assume that the innermost
422  // dimension is always of the right size.
423  // TODO: generate complex truncating view here too?
424  if (memTp.getRank() > 1)
425  return mem;
426  // Truncate linear memrefs to given size.
427  return builder
428  .create<memref::SubViewOp>(
429  loc, MemRefType::get({ShapedType::kDynamic}, memTp.getElementType()),
430  mem, ValueRange{}, ValueRange{sz}, ValueRange{},
431  ArrayRef<int64_t>{0}, // static offset
432  ArrayRef<int64_t>{ShapedType::kDynamic}, // dynamic size
433  ArrayRef<int64_t>{1}) // static stride
434  .getResult();
435 }
436 
437 /// Creates the reassociation array.
439 getReassociationForFlattening(ShapedType srcTp, unsigned batchLvls) {
440  SmallVector<ReassociationIndices> ret(batchLvls + 1, {});
441  // Create reassociation in the form:
442  // {0}, {1}, ..., {batchLvl - 1}, {batchLvl, ..., rank}
443  for (unsigned i = 0; i < batchLvls; i++)
444  ret[i].push_back(i);
445 
446  for (int i = batchLvls, e = srcTp.getRank(); i < e; i++)
447  ret.back().push_back(i);
448 
449  return ret;
450 }
451 
452 //===----------------------------------------------------------------------===//
453 // Codegen rules.
454 //===----------------------------------------------------------------------===//
455 
456 namespace {
457 
458 /// Helper class to help lowering sparse_tensor.insert operation.
459 class SparseInsertGenerator
460  : public FuncCallOrInlineGenerator<SparseInsertGenerator> {
461 public:
462  SparseInsertGenerator(TensorType rtp, TypeRange retTypes, ValueRange params,
463  bool genCall)
464  : FuncCallOrInlineGenerator(retTypes, params, genCall), rtp(rtp){};
465 
466  /// Generates code along an insertion path without the need for a "cursor".
467  /// This current insertion strategy comes at the expense of some testing
468  /// overhead for each insertion. The strategy will be optimized later for
469  /// common insertion patterns. The current insertion strategy also assumes
470  /// insertions occur in "a reasonable order" that enables building the
471  /// storage scheme in an appending/inserting kind of fashion (i.e. no
472  /// in-between insertions that need data movement). The implementation
473  /// relies on CSE/DCE to clean up all bookkeeping that is not needed.
474  ///
475  /// TODO: better unord/not-unique; also generalize, optimize, specialize!
476  SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange args,
477  OpBuilder &builder, Location loc) {
478  const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
479  const Level lvlRank = stt.getLvlRank();
480  // Extract fields and coordinates from args.
481  SmallVector<Value> fields = llvm::to_vector(args.drop_back(lvlRank + 1));
482  MutSparseTensorDescriptor desc(stt, fields);
483  const SmallVector<Value> coords =
484  llvm::to_vector(args.take_back(lvlRank + 1).drop_back());
485  Value value = args.back();
486  Value parentPos = constantZero(builder, loc, builder.getIndexType());
487  // Generate code for every level.
488  for (Level lvl = 0; lvl < lvlRank; lvl++) {
489  const auto lt = stt.getLvlType(lvl);
490  if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
491  // Create:
492  // if (!present) {
493  // coordinates[lvl].push_back(coords[lvl])
494  // <update positions and prepare level lvl + 1>
495  // }
496  // positions[lvl] = coordinates.size() - 1
497  // <insert @ positions[lvl] at next level lvl + 1>
498  if (isLooseCompressedLT(lt)) {
499  Value two = constantIndex(builder, loc, 2);
500  parentPos = builder.create<arith::MulIOp>(loc, parentPos, two);
501  }
502  parentPos =
503  genCompressed(builder, loc, desc, coords, value, parentPos, lvl);
504  } else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
505  // Create:
506  // coordinates[lvl].push_back(coords[lvl])
507  // positions[lvl] = positions[lvl-1]
508  // <insert @ positions[lvl] at next level lvl + 1>
510  lvl, /*value=*/coords[lvl]);
511  } else {
512  assert(isDenseLT(lt));
513  // Construct the new position as:
514  // positions[lvl] = size * positions[lvl-1] + coords[lvl]
515  // <insert @ positions[lvl] at next level lvl + 1>
516  Value size = desc.getLvlSize(builder, loc, lvl);
517  Value mult = builder.create<arith::MulIOp>(loc, size, parentPos);
518  parentPos = builder.create<arith::AddIOp>(loc, mult, coords[lvl]);
519  }
520  }
521  // Reached the actual value append/insert.
522  if (!stt.isDenseLvl(lvlRank - 1))
524  std::nullopt, value);
525  else
526  genStore(builder, loc, value, desc.getValMemRef(), parentPos);
527  return fields;
528  }
529 
530  std::string getMangledFuncName() {
531  // The mangled name of the function has this format:
532  // <namePrefix>_<LT>_<shape>_<ordering>_<eltType>_<crdWidth>_<posWidth>
533  constexpr const char kInsertFuncNamePrefix[] = "_insert_";
534  const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
535  SmallString<32> nameBuffer;
536  llvm::raw_svector_ostream nameOstream(nameBuffer);
537  nameOstream << kInsertFuncNamePrefix;
538  const Level lvlRank = stt.getLvlRank();
539  for (Level l = 0; l < lvlRank; l++) {
540  std::string lvlType = toMLIRString(stt.getLvlType(l));
541  // Replace/remove punctuations in level properties.
542  std::replace_if(
543  lvlType.begin(), lvlType.end(),
544  [](char c) { return c == '(' || c == ','; }, '_');
545  llvm::erase_if(lvlType, [](char c) { return c == ')' || c == ' '; });
546  nameOstream << lvlType << "_";
547  }
548  // Static dim sizes are used in the generated code while dynamic sizes are
549  // loaded from the dimSizes buffer. This is the reason for adding the shape
550  // to the function name.
551  for (const auto sz : stt.getDimShape())
552  nameOstream << sz << "_";
553  // Permutation information is also used in generating insertion.
554  if (!stt.isIdentity())
555  nameOstream << stt.getDimToLvl() << "_";
556  nameOstream << stt.getElementType() << "_";
557  nameOstream << stt.getCrdWidth() << "_" << stt.getPosWidth();
558  return nameOstream.str().str();
559  }
560 
561 private:
562  TensorType rtp;
563 };
564 
565 /// Sparse tensor storage conversion rule for returns.
566 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
567 public:
569  LogicalResult
570  matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
571  ConversionPatternRewriter &rewriter) const override {
572  SmallVector<Value> flattened;
573  flattenOperands(adaptor.getOperands(), flattened);
574  // Create a return with the flattened value extracted from sparse tensors.
575  rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
576  return success();
577  }
578 };
579 
580 /// Sparse tensor storage conversion rule for calls.
581 class SparseCallConverter : public OpConversionPattern<func::CallOp> {
582 public:
583  // The default CallOp converter can not handle 1:N type conversion.
585  LogicalResult
586  matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
587  ConversionPatternRewriter &rewriter) const override {
588  Location loc = op.getLoc();
589  // In case of:
590  // sparse_tensor, f, sparse_tensor = call @foo(...)
591  // ==>
592  // memref..., f, memref = call @foo(...) replace with
593  // cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
594  SmallVector<Type> finalRetTy;
595  if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
596  return failure();
597 
598  // (1) Generates new call with flattened return value.
599  SmallVector<Value> flattened;
600  flattenOperands(adaptor.getOperands(), flattened);
601  auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
602  finalRetTy, flattened);
603  // (2) Create cast operation for sparse tensor returns.
604  SmallVector<Value> castedRet;
605  // Tracks the offset of current return value (of the original call)
606  // relative to the new call (after sparse tensor flattening);
607  unsigned retOffset = 0;
608  // Temporal buffer to hold the flattened list of type for
609  // a sparse tensor.
610  SmallVector<Type> sparseFlat;
611  for (auto ret : op.getResults()) {
612  assert(retOffset < newCall.getNumResults());
613  auto retType = ret.getType();
614  if (failed(typeConverter->convertType(retType, sparseFlat)))
615  llvm_unreachable("Failed to convert type in sparse tensor codegen");
616 
617  // Converted types can not be empty when the type conversion succeed.
618  assert(!sparseFlat.empty());
619  if (sparseFlat.size() > 1) {
620  auto flatSize = sparseFlat.size();
622  newCall.result_begin() + retOffset,
623  newCall.result_begin() + retOffset + flatSize));
624  castedRet.push_back(genTuple(rewriter, loc, retType, fields));
625  retOffset += flatSize;
626  } else {
627  // If this is an 1:1 conversion, no need for casting.
628  castedRet.push_back(newCall.getResult(retOffset));
629  retOffset++;
630  }
631  sparseFlat.clear();
632  }
633 
634  assert(castedRet.size() == op.getNumResults());
635  rewriter.replaceOp(op, castedRet);
636  return success();
637  }
638 };
639 
640 /// Sparse codegen rule for level accesses.
641 class SparseLvlOpConverter : public OpConversionPattern<LvlOp> {
642 public:
644  LogicalResult
645  matchAndRewrite(LvlOp op, OpAdaptor adaptor,
646  ConversionPatternRewriter &rewriter) const override {
647  std::optional<int64_t> lvl = op.getConstantLvlIndex();
648  if (!lvl || !getSparseTensorEncoding(adaptor.getSource().getType()))
649  return failure();
650 
651  auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
652  auto sz = desc.getLvlSize(rewriter, op.getLoc(), *lvl);
653 
654  rewriter.replaceOp(op, sz);
655  return success();
656  }
657 };
658 
659 // TODO: use a new SortCOO operation here instead of reusing convert op.
660 struct SparseReorderCOOConverter : public OpConversionPattern<ReorderCOOOp> {
662  LogicalResult
663  matchAndRewrite(ReorderCOOOp op, ReorderCOOOpAdaptor adaptor,
664  ConversionPatternRewriter &rewriter) const override {
665  Location loc = op.getLoc();
666  MLIRContext *ctx = op.getContext();
667 
668  SparseTensorType srcStt = getSparseTensorType(op.getInputCoo());
669  SparseTensorType dstStt = getSparseTensorType(op.getResultCoo());
670 
671  // Should have been verified.
672  assert(dstStt.isAllOrdered() && !srcStt.isAllOrdered() &&
673  dstStt.isCOOType() && srcStt.isCOOType());
674  assert(dstStt.hasSameDimToLvl(srcStt));
675 
676  // We don't need a mutable descriptor here as we perform sorting in-place.
677  auto nnz = genValMemSize(rewriter, op.getLoc(), adaptor.getInputCoo());
678  auto desc = getDescriptorFromTensorTuple(adaptor.getInputCoo());
679  auto crd = desc.getAOSMemRef();
680  auto val = desc.getValMemRef();
681 
682  // Otherwise we need another data shuffle and a non-identity map.
683  assert(dstStt.hasSameDimToLvl(srcStt));
684  (void)dstStt; // to silence warning when assertion is disabled
685 
686  auto id = AffineMap::getMultiDimIdentityMap(srcStt.getLvlRank(), ctx);
687 
688  rewriter.create<SortOp>(loc, nnz, crd, ValueRange{val}, id,
689  rewriter.getIndexAttr(0), op.getAlgorithm());
690 
691  // Since we do in-place sorting, the destinate tensor will have the same set
692  // of memrefs as the source tensor.
693  rewriter.replaceOp(op, adaptor.getInputCoo());
694  return success();
695  }
696 };
697 
698 template <typename Op, StorageSpecifierKind kind>
699 class SparseSliceGetterOpConverter : public OpConversionPattern<Op> {
700 public:
702  LogicalResult
703  matchAndRewrite(Op op, typename Op::Adaptor adaptor,
704  ConversionPatternRewriter &rewriter) const override {
705  // Simply lowers to specifer.get <field> operation.
706  auto desc = getDescriptorFromTensorTuple(adaptor.getSlice());
707  auto v = desc.getSpecifierField(rewriter, op.getLoc(), kind,
708  op.getDim().getZExtValue());
709 
710  rewriter.replaceOp(op, v);
711  return success();
712  }
713 };
714 
715 /// Sparse codegen rule for trivial tensor casts.
716 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
717 public:
719  LogicalResult
720  matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
721  ConversionPatternRewriter &rewriter) const override {
722  // Only rewrite identically annotated source/dest.
723  auto encDst = getSparseTensorEncoding(op.getType());
724  auto encSrc = getSparseTensorEncoding(op.getSource().getType());
725  if (!encDst || encDst != encSrc)
726  return failure();
727  rewriter.replaceOp(op, adaptor.getOperands());
728  return success();
729  }
730 };
731 
732 class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
733 public:
735  LogicalResult
736  matchAndRewrite(ReinterpretMapOp op, OpAdaptor adaptor,
737  ConversionPatternRewriter &rewriter) const override {
738  // Simply fold the operation.
739  rewriter.replaceOp(op, adaptor.getSource());
740  return success();
741  }
742 };
743 
744 /// Sparse codegen rule for the alloc operator.
745 class SparseTensorAllocConverter
746  : public OpConversionPattern<bufferization::AllocTensorOp> {
747 public:
749  SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
750  bool enableInit)
751  : OpConversionPattern(typeConverter, context),
752  enableBufferInitialization(enableInit) {}
753 
754  LogicalResult
755  matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
756  ConversionPatternRewriter &rewriter) const override {
757  const auto resType = getSparseTensorType(op);
758  if (!resType.hasEncoding())
759  return failure();
760 
761  Location loc = op.getLoc();
762  // Deal with copy.
763  if (op.getCopy()) {
764  auto desc = getDescriptorFromTensorTuple(adaptor.getCopy());
765  SmallVector<Value> fields;
766  fields.reserve(desc.getNumFields());
767  // Memcpy on memref fields.
768  for (auto field : desc.getMemRefFields()) {
769  auto memrefTp = cast<MemRefType>(field.getType());
770  auto size = rewriter.create<memref::DimOp>(loc, field, 0);
771  auto copied =
772  rewriter.create<memref::AllocOp>(loc, memrefTp, ValueRange{size});
773  rewriter.create<memref::CopyOp>(loc, field, copied);
774  fields.push_back(copied);
775  }
776  // Reuses specifier.
777  fields.push_back(desc.getSpecifier());
778  assert(fields.size() == desc.getNumFields());
779  rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
780  return success();
781  }
782 
783  if (!resType.isIdentity()) {
784  return rewriter.notifyMatchFailure(
785  op, "try run --sparse-reinterpret-map before codegen");
786  }
787  // Level size equals to dimension size since lvl2dim map is an identity map.
788  SmallVector<Value> lvlSizesValues;
789  createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
790  /*dimSizesValues=*/lvlSizesValues);
791 
792  // Construct allocation for each field.
793  Value sizeHint = op.getSizeHint();
794  SmallVector<Value> fields;
795  createAllocFields(rewriter, loc, resType, enableBufferInitialization,
796  sizeHint, lvlSizesValues, fields);
797 
798  // Replace operation with resulting memrefs.
799  rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
800  return success();
801  }
802 
803 private:
804  bool enableBufferInitialization;
805 };
806 
807 /// Sparse codegen rule for the empty tensor operator.
808 class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
809 public:
811  SparseTensorEmptyConverter(TypeConverter &typeConverter, MLIRContext *context,
812  bool enableInit)
813  : OpConversionPattern(typeConverter, context),
814  enableBufferInitialization(enableInit) {}
815 
816  LogicalResult
817  matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor,
818  ConversionPatternRewriter &rewriter) const override {
819  const auto resType = getSparseTensorType(op);
820  if (!resType.hasEncoding())
821  return failure();
822 
823  if (!resType.isIdentity()) {
824  return rewriter.notifyMatchFailure(
825  op, "try run --sparse-reinterpret-map before codegen");
826  }
827 
828  Location loc = op.getLoc();
829  // Level size equals to dimension size since lvl2dim map is an identity map.
830  SmallVector<Value> lvlSizesValues;
831  createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
832  /*dimSizesValues=*/lvlSizesValues);
833  // Construct allocation for each field.
834  Value sizeHint; // none
835  SmallVector<Value> fields;
836  createAllocFields(rewriter, loc, resType, enableBufferInitialization,
837  sizeHint, lvlSizesValues, fields);
838 
839  // Replace operation with resulting memrefs.
840  rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
841  return success();
842  }
843 
844 private:
845  bool enableBufferInitialization;
846 };
847 
848 /// Sparse codegen rule for the dealloc operator.
849 class SparseTensorDeallocConverter
850  : public OpConversionPattern<bufferization::DeallocTensorOp> {
851 public:
853  SparseTensorDeallocConverter(TypeConverter &typeConverter,
854  MLIRContext *context, bool createDeallocs)
855  : OpConversionPattern(typeConverter, context),
856  createDeallocs(createDeallocs) {}
857 
858  LogicalResult
859  matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
860  ConversionPatternRewriter &rewriter) const override {
861  auto enc = getSparseTensorEncoding(op.getTensor().getType());
862  if (!enc)
863  return failure();
864 
865  // If user requests not to deallocate sparse tensors, simply erase the
866  // operation.
867  if (createDeallocs) {
868  // Replace the sparse tensor deallocation with field deallocations.
869  Location loc = op.getLoc();
870  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
871  for (auto input : desc.getMemRefFields())
872  // Deallocate every buffer used to store the sparse tensor handler.
873  rewriter.create<memref::DeallocOp>(loc, input);
874  }
875  rewriter.eraseOp(op);
876  return success();
877  }
878 
879 private:
880  const bool createDeallocs;
881 };
882 
883 /// Sparse codegen rule for tensor rematerialization.
884 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
885 public:
887  LogicalResult
888  matchAndRewrite(LoadOp op, OpAdaptor adaptor,
889  ConversionPatternRewriter &rewriter) const override {
890  // Prepare descriptor.
891  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
892  // Generate optional insertion finalization code.
893  if (op.getHasInserts())
894  genEndInsert(rewriter, op.getLoc(), desc);
895  // Replace operation with resulting memrefs.
896  rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
897  return success();
898  }
899 };
900 
901 /// Sparse codegen rule for the expand op.
902 class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
903 public:
905  LogicalResult
906  matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
907  ConversionPatternRewriter &rewriter) const override {
908  if (!getSparseTensorEncoding(op.getTensor().getType()))
909  return failure();
910  Location loc = op->getLoc();
911  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
912  const auto srcType = getSparseTensorType(op.getTensor());
913  Type eltType = srcType.getElementType();
914  Type boolType = rewriter.getIntegerType(1);
915  Type idxType = rewriter.getIndexType();
916  // All initialization should be done on entry of the loop nest.
917  rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
918 
919  // Determine the size for access expansion (always the innermost stored
920  // level size).
921  const auto sz = desc.getLvlSize(rewriter, loc, srcType.getLvlRank() - 1);
922  // Generate a memref for `sz` elements of type `t`.
923  const auto genAlloc = [&](Type t) {
924  const auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
925  return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
926  };
927  // Allocate temporary buffers for values/filled-switch and added.
928  // We do not use stack buffers for this, since the expanded size may
929  // be rather large (as it envelops a single expanded dense dimension).
930  Value values = genAlloc(eltType);
931  Value filled = genAlloc(boolType);
932  Value added = genAlloc(idxType);
933  Value zero = constantZero(rewriter, loc, idxType);
934  // Reset the values/filled-switch to all-zero/false. Note that this
935  // introduces an O(N) operation into the computation, but this reset
936  // operation is amortized over the innermost loops for the access
937  // pattern expansion. As noted in the operation doc, we would like
938  // to amortize this setup cost even between kernels.
939  rewriter.create<linalg::FillOp>(
940  loc, ValueRange{constantZero(rewriter, loc, eltType)},
941  ValueRange{values});
942  rewriter.create<linalg::FillOp>(
943  loc, ValueRange{constantZero(rewriter, loc, boolType)},
944  ValueRange{filled});
945  // Replace expansion op with these buffers and initial coordinate.
946  assert(op.getNumResults() == 4);
947  rewriter.replaceOp(op, {values, filled, added, zero});
948  return success();
949  }
950 };
951 
952 /// Sparse codegen rule for the compress operator.
953 class SparseCompressConverter : public OpConversionPattern<CompressOp> {
954 public:
956  LogicalResult
957  matchAndRewrite(CompressOp op, OpAdaptor adaptor,
958  ConversionPatternRewriter &rewriter) const override {
959  Location loc = op->getLoc();
960  SmallVector<Value> fields;
961  auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
962  Value values = adaptor.getValues();
963  Value filled = adaptor.getFilled();
964  Value added = adaptor.getAdded();
965  Value count = adaptor.getCount();
966  const SparseTensorType dstType(desc.getRankedTensorType());
967  Type eltType = dstType.getElementType();
968 
969  // If the innermost level is ordered, we need to sort the coordinates
970  // in the "added" array prior to applying the compression.
971  if (dstType.isOrderedLvl(dstType.getLvlRank() - 1))
972  rewriter.create<SortOp>(
973  loc, count, added, ValueRange{}, rewriter.getMultiDimIdentityMap(1),
974  rewriter.getIndexAttr(0), SparseTensorSortKind::HybridQuickSort);
975  // While performing the insertions, we also need to reset the elements
976  // of the values/filled-switch by only iterating over the set elements,
977  // to ensure that the runtime complexity remains proportional to the
978  // sparsity of the expanded access pattern.
979  //
980  // Generate
981  // out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
982  // crd = added[i];
983  // value = values[crd];
984  // insert({lvlCoords, crd}, value);
985  // new_memrefs = insert(in_memrefs, {lvlCoords, crd}, value);
986  // values[crd] = 0;
987  // filled[crd] = false;
988  // yield new_memrefs
989  // }
990  scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
991  Value i = loop.getInductionVar();
992 
993  Value crd = genLoad(rewriter, loc, added, i);
994  Value value = genLoad(rewriter, loc, values, crd);
995  SmallVector<Value> params(desc.getFields().begin(), desc.getFields().end());
996  SmallVector<Type> flatSpTensorTps = llvm::to_vector(
997  llvm::map_range(desc.getFields(), [](Value v) { return v.getType(); }));
998  params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
999  params.push_back(crd);
1000  params.push_back(value);
1001  SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
1002  params, /*genCall=*/true);
1003  SmallVector<Value> insertRet = insertGen.genCallOrInline(rewriter, loc);
1004  genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, crd);
1005  genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, crd);
1006  rewriter.create<scf::YieldOp>(loc, insertRet);
1007 
1008  rewriter.setInsertionPointAfter(loop);
1009  Value result = genTuple(rewriter, loc, dstType, loop->getResults());
1010  // Deallocate the buffers on exit of the full loop nest.
1011  Operation *parent = getTop(op);
1012  rewriter.setInsertionPointAfter(parent);
1013  rewriter.create<memref::DeallocOp>(loc, values);
1014  rewriter.create<memref::DeallocOp>(loc, filled);
1015  rewriter.create<memref::DeallocOp>(loc, added);
1016  // Replace operation with resulting memrefs.
1017  rewriter.replaceOp(op, result);
1018  return success();
1019  }
1020 };
1021 
1022 /// Sparse codegen rule for the insert operator.
1023 class SparseInsertConverter : public OpConversionPattern<tensor::InsertOp> {
1024 public:
1026  LogicalResult
1027  matchAndRewrite(tensor::InsertOp op, OpAdaptor adaptor,
1028  ConversionPatternRewriter &rewriter) const override {
1029  auto stt = getSparseTensorType(adaptor.getDest());
1030  if (!stt.hasEncoding())
1031  return failure();
1032  assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
1033 
1034  Location loc = op.getLoc();
1035  auto desc = getDescriptorFromTensorTuple(adaptor.getDest());
1036  TypeRange flatSpTensorTps = desc.getFields().getTypes();
1037  SmallVector<Value> params = llvm::to_vector(desc.getFields());
1038  params.append(adaptor.getIndices().begin(), adaptor.getIndices().end());
1039  params.push_back(adaptor.getScalar());
1040  SparseInsertGenerator insertGen(op.getDest().getType(), flatSpTensorTps,
1041  params, /*genCall=*/true);
1042  SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
1043  // Replace operation with resulting memrefs.
1044  rewriter.replaceOp(op,
1045  genTuple(rewriter, loc, op.getDest().getType(), ret));
1046  return success();
1047  }
1048 };
1049 
1050 /// Sparse codegen rule for position accesses.
1051 class SparseToPositionsConverter : public OpConversionPattern<ToPositionsOp> {
1052 public:
1053  using OpAdaptor = typename ToPositionsOp::Adaptor;
1055  LogicalResult
1056  matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
1057  ConversionPatternRewriter &rewriter) const override {
1058  // Replace the requested position access with corresponding field.
1059  // The view is restricted to the actual size to ensure clients
1060  // of this operation truly observe size, not capacity!
1061  Location loc = op.getLoc();
1062  Level lvl = op.getLevel();
1063  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1064  auto mem = desc.getPosMemRef(lvl);
1065  auto size = desc.getPosMemSize(rewriter, loc, lvl);
1066  rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
1067  return success();
1068  }
1069 };
1070 
1071 /// Sparse codegen rule for accessing the coordinates arrays.
1072 class SparseToCoordinatesConverter
1073  : public OpConversionPattern<ToCoordinatesOp> {
1074 public:
1075  using OpAdaptor = typename ToCoordinatesOp::Adaptor;
1077  LogicalResult
1078  matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
1079  ConversionPatternRewriter &rewriter) const override {
1080  // Replace the requested coordinates access with corresponding field.
1081  // The view is restricted to the actual size to ensure clients
1082  // of this operation truly observe size, not capacity!
1083  Location loc = op.getLoc();
1084  Level lvl = op.getLevel();
1085  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1086  auto mem = desc.getCrdMemRefOrView(rewriter, loc, lvl);
1087  if (lvl < getSparseTensorType(op.getTensor()).getAoSCOOStart()) {
1088  auto size = desc.getCrdMemSize(rewriter, loc, lvl);
1089  mem = genSliceToSize(rewriter, loc, mem, size);
1090  }
1091  rewriter.replaceOp(op, mem);
1092  return success();
1093  }
1094 };
1095 
1096 /// Sparse codegen rule for accessing the linear coordinates buffer.
1097 class SparseToCoordinatesBufferConverter
1098  : public OpConversionPattern<ToCoordinatesBufferOp> {
1099 public:
1100  using OpAdaptor = typename ToCoordinatesBufferOp::Adaptor;
1102  LogicalResult
1103  matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor,
1104  ConversionPatternRewriter &rewriter) const override {
1105  // Replace the requested coordinates access with corresponding field.
1106  // The view is restricted to the actual size to ensure clients
1107  // of this operation truly observe size, not capacity!
1108  Location loc = op.getLoc();
1109  Level lvl = getSparseTensorType(op.getTensor()).getAoSCOOStart();
1110  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1111  auto mem = desc.getAOSMemRef();
1112  auto size = desc.getCrdMemSize(rewriter, loc, lvl);
1113  rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
1114  return success();
1115  }
1116 };
1117 
1118 /// Sparse codegen rule for value accesses.
1119 class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
1120 public:
1121  using OpAdaptor = typename ToValuesOp::Adaptor;
1123  LogicalResult
1124  matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
1125  ConversionPatternRewriter &rewriter) const override {
1126  // Replace the requested values access with corresponding field.
1127  // The view is restricted to the actual size to ensure clients
1128  // of this operation truly observe size, not capacity!
1129  Location loc = op.getLoc();
1130  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1131  auto mem = desc.getValMemRef();
1132  auto size = desc.getValMemSize(rewriter, loc);
1133  rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
1134  return success();
1135  }
1136 };
1137 
1138 /// Sparse codegen rule for the convert operator.
1139 class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
1140 public:
1142  LogicalResult
1143  matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
1144  ConversionPatternRewriter &rewriter) const override {
1145  SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
1146  SparseTensorEncodingAttr encSrc =
1147  getSparseTensorEncoding(op.getSource().getType());
1148  // The output tensor can not be a slice and those cases should have been
1149  // rejected by ConvertOp::verify() already.
1150  assert(!encDst.isSlice() && "Cannot convert to a sparse tensor slices.");
1151  // Different encoding (except for different bitwidth) should be handled by
1152  // rewriting.
1153  // We need further rewrites if the input tensor is a slice too.
1154  if (encDst.withoutBitWidths() != encSrc.withoutBitWidths() ||
1155  encSrc.isSlice()) {
1156  return failure();
1157  }
1158 
1159  Type retElemTp = op.getResult().getType().getElementType();
1160  Type srcElemTp = op.getSource().getType().getElementType();
1161  // Fold the trivial cases.
1162  if (retElemTp == srcElemTp && encDst == encSrc) {
1163  rewriter.replaceOp(op, adaptor.getSource());
1164  return success();
1165  }
1166  //
1167  // Do element-wise type conversion without using InsertOp.
1168  //
1169  // for each memref in srcTensor:
1170  // dst = memref.alloc
1171  // if srcMemRefType != dstMemRefType:
1172  // for every dst[i] = cast(src[i])
1173  // else:
1174  // dst = memref.copy(src)
1175  Location loc = op.getLoc();
1176  auto srcDesc = getDescriptorFromTensorTuple(adaptor.getSource());
1177  SmallVector<Value> fields;
1179  SparseTensorType(cast<RankedTensorType>(op.getResult().getType())),
1180  [&rewriter, &fields, srcDesc,
1181  loc](Type fTp, FieldIndex fIdx, SparseTensorFieldKind fKind, Level lvl,
1182  LevelType /*lt*/) -> bool {
1183  // Simply reuses the storage specifier as it is an SSA value.
1184  if (fKind == SparseTensorFieldKind::StorageSpec) {
1185  fields.push_back(srcDesc.getSpecifier());
1186  } else {
1187  // Allocates new memrefs
1188  Value srcMem = srcDesc.getMemRefField(fIdx);
1189  // TODO: We can instead use the actual memSize in specifier, that
1190  // would require a subViewOp to avoid overflow when copying
1191  // values.
1192  Value sz = linalg::createOrFoldDimOp(rewriter, loc, srcMem, 0);
1193  auto dstMem = rewriter.create<memref::AllocOp>(
1194  loc, cast<MemRefType>(fTp), sz);
1195  if (fTp != srcMem.getType()) {
1196  // Converts elements type.
1197  scf::buildLoopNest(
1198  rewriter, loc, constantIndex(rewriter, loc, 0), sz,
1199  constantIndex(rewriter, loc, 1),
1200  [srcMem, &dstMem](OpBuilder &builder, Location loc,
1201  ValueRange ivs) {
1202  Value v = builder.create<memref::LoadOp>(loc, srcMem, ivs);
1203  Value casted = genCast(builder, loc, v,
1204  dstMem.getType().getElementType());
1205  builder.create<memref::StoreOp>(loc, casted, dstMem, ivs);
1206  });
1207  } else {
1208  // TODO: We can even reuse the same memref for the new tensor,
1209  // but that requires a `ref-counting` based memory management
1210  // for shared memrefs between multiple sparse tensors.
1211  rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
1212  }
1213  fields.push_back(dstMem);
1214  }
1215  return true;
1216  });
1217 
1218  rewriter.replaceOp(
1219  op, genTuple(rewriter, loc, op.getResult().getType(), fields));
1220  return success();
1221  }
1222 };
1223 
1224 class SparseExtractSliceConverter
1225  : public OpConversionPattern<tensor::ExtractSliceOp> {
1226 public:
1228  LogicalResult
1229  matchAndRewrite(tensor::ExtractSliceOp op, OpAdaptor adaptor,
1230  ConversionPatternRewriter &rewriter) const override {
1231  Location loc = op.getLoc();
1232  MLIRContext *ctx = op.getContext();
1233  auto srcEnc = getSparseTensorEncoding(op.getSourceType());
1234  auto dstEnc = getSparseTensorEncoding(op.getResult().getType());
1235  // TODO: We should check these in ExtractSliceOp::verify.
1236  if (!srcEnc || !dstEnc || !dstEnc.isSlice())
1237  return failure();
1238  assert(srcEnc.withoutDimSlices() == dstEnc.withoutDimSlices());
1239 
1240  SmallVector<Value> fields;
1241  auto desc = getMutDescriptorFromTensorTuple(adaptor.getSource(), fields);
1242 
1243  auto newSpec = rewriter.create<StorageSpecifierInitOp>(
1244  loc, StorageSpecifierType::get(ctx, dstEnc), desc.getSpecifier());
1245  desc.setSpecifier(newSpec);
1246 
1247  // Fills in slice information.
1248  for (auto [idx, offset, size, stride] : llvm::enumerate(
1249  op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides())) {
1250  Dimension dim = idx;
1251 
1252  Value offsetV = getValueOrCreateConstantIndexOp(rewriter, loc, offset);
1253  Value sizeV = getValueOrCreateConstantIndexOp(rewriter, loc, size);
1254  Value strideV = getValueOrCreateConstantIndexOp(rewriter, loc, stride);
1255  // TODO: We could probably only set dynamic value here. But it would
1256  // requires us to fill the hole when casting a static slice to dynamic
1257  // slice.
1258  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimOffset,
1259  dim, offsetV);
1260 
1261  // FIXME: we need to distinguish level sizes and dimension size for slices
1262  // here. Maybe we should store slice level sizes in a different array
1263  // instead of reusing it.
1264  assert(srcEnc.isIdentity());
1265  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::LvlSize, dim,
1266  sizeV);
1267  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimStride,
1268  dim, strideV);
1269  }
1270 
1271  // NOTE: we can not generate tuples directly from descriptor here, as the
1272  // descriptor is holding the original type, yet we want the slice type
1273  // here (they shared every memref but with an updated specifier).
1274  rewriter.replaceOp(op, genTuple(rewriter, loc, op.getResult().getType(),
1275  desc.getFields()));
1276  return success();
1277  }
1278 };
1279 
1280 /// Sparse codegen rule for number of entries operator.
1281 class SparseNumberOfEntriesConverter
1282  : public OpConversionPattern<NumberOfEntriesOp> {
1283 public:
1285  LogicalResult
1286  matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
1287  ConversionPatternRewriter &rewriter) const override {
1288  // Query memSizes for the actually stored values.
1289  // FIXME: the nse value computed in this way might be wrong when there is
1290  // any "loose_compressed" level.
1291  rewriter.replaceOp(
1292  op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
1293  return success();
1294  }
1295 };
1296 
1297 struct SparseAssembleOpConverter : public OpConversionPattern<AssembleOp> {
1299  LogicalResult
1300  matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
1301  ConversionPatternRewriter &rewriter) const override {
1302  Location loc = op.getLoc();
1303  const auto stt = getSparseTensorType(op.getResult());
1304 
1305  SmallVector<Value> fields;
1306 
1308  stt,
1309  [&rewriter, &fields, &op, &stt,
1310  loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
1311  Level /*lvl*/, LevelType lt) -> bool {
1312  assert(fields.size() == fIdx);
1313  if (fKind == SparseTensorFieldKind::StorageSpec) {
1314  fields.push_back(
1315  SparseTensorSpecifier::getInitValue(rewriter, loc, stt));
1316  } else {
1317  // Else simply takes the inputs.
1318  Value tensor = fKind == SparseTensorFieldKind::ValMemRef
1319  ? op.getValues()
1320  : op.getLevels()[fIdx];
1321  // TODO: handle batch.
1322  TypedValue<BaseMemRefType> mem = genToMemref(rewriter, loc, tensor);
1323  if (mem.getType().getRank() > stt.getBatchLvlRank() + 1) {
1324  // Flattens the buffer to batchLvlRank.
1325  auto reassoc = getReassociationForFlattening(
1326  mem.getType(), stt.getBatchLvlRank());
1327  mem = rewriter.create<memref::CastOp>(
1328  loc, fType,
1329  rewriter.create<memref::CollapseShapeOp>(loc, mem, reassoc));
1330  } else {
1331  mem = rewriter.create<memref::CastOp>(loc, fType, mem);
1332  }
1333  fields.push_back(mem);
1334  }
1335  return true;
1336  });
1337 
1338  MutSparseTensorDescriptor desc(stt, fields);
1339  Value c0 = constantIndex(rewriter, loc, 0);
1340  Value c1 = constantIndex(rewriter, loc, 1);
1341  Value c2 = constantIndex(rewriter, loc, 2);
1342  Value posBack = c0; // index to the last value in the position array
1343  Value memSize = c1; // memory size for current array
1344 
1345  Level trailCOOStart = stt.getAoSCOOStart();
1346  Level trailCOORank = stt.getLvlRank() - trailCOOStart;
1347  // Sets up SparseTensorSpecifier.
1348  for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
1349  assert(!ShapedType::isDynamic(stt.getDimShape()[lvl]));
1350 
1351  // Sets up the level size.
1352  auto lvlSize = constantIndex(rewriter, loc, stt.getLvlShape()[lvl]);
1353  desc.setLvlSize(rewriter, loc, lvl, lvlSize);
1354  // We use a single AOS array to store the trailing COO, so there is only
1355  // one memory size to set for the entire COO section.
1356  if (lvl > trailCOOStart)
1357  continue;
1358 
1359  // Sets up the memory size by reading the last value in position array.
1360  LevelType lt = stt.getLvlType(lvl);
1361  // Simply forwards the position index when this is a dense level.
1362  if (lt.isa<LevelFormat::Dense>()) {
1363  memSize = rewriter.create<arith::MulIOp>(loc, lvlSize, memSize);
1364  posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
1365  continue;
1366  }
1367  if (lt.isa<LevelFormat::Batch>()) {
1368  // Skips batch levels as it is not linearized.
1369  // FIXME: this assumes that every batch has the same number of nse, need
1370  // to be generalized to handle varied-size batches.
1371  continue;
1372  }
1373 
1374  if (isWithPosLT(lt)) {
1375  assert(isCompressedLT(lt) || isLooseCompressedLT(lt));
1376  if (isLooseCompressedLT(lt)) {
1377  memSize = rewriter.create<arith::MulIOp>(loc, memSize, c2);
1378  posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
1379  } else {
1380  assert(isCompressedLT(lt));
1381  posBack = memSize;
1382  memSize = rewriter.create<arith::AddIOp>(loc, memSize, c1);
1383  }
1384  desc.setPosMemSize(rewriter, loc, lvl, memSize);
1385  // The last value in position array is the memory size for next level.
1386  // FIXME: this assumes that every batch has the same number of nse, need
1387  // to be generalized to handle varied-size batches.
1388  SmallVector<Value> batched(stt.getBatchLvlRank(),
1389  constantIndex(rewriter, loc, 0));
1390  batched.push_back(posBack);
1391  memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), batched);
1392  posBack = rewriter.create<arith::SubIOp>(loc, posBack, c1);
1393  }
1394  assert(isWithCrdLT(lt) && lvl <= trailCOOStart);
1395  // FIXME: This seems to be unnecessarily complex, can we simplify it?
1396  if (lvl == trailCOOStart) {
1397  Value cooSz = rewriter.create<arith::MulIOp>(
1398  loc, memSize, constantIndex(rewriter, loc, trailCOORank));
1399  desc.setCrdMemSize(rewriter, loc, lvl, cooSz);
1400  } else {
1401  desc.setCrdMemSize(rewriter, loc, lvl, memSize);
1402  }
1403  }
1404  desc.setValMemSize(rewriter, loc, memSize);
1405 
1406  rewriter.replaceOp(op, genTuple(rewriter, loc, desc));
1407  return success();
1408  }
1409 };
1410 
1411 struct SparseDisassembleOpConverter
1412  : public OpConversionPattern<DisassembleOp> {
1414  SparseDisassembleOpConverter(TypeConverter &typeConverter,
1415  MLIRContext *context)
1416  : OpConversionPattern(typeConverter, context) {}
1417 
1418  LogicalResult
1419  matchAndRewrite(DisassembleOp op, OpAdaptor adaptor,
1420  ConversionPatternRewriter &rewriter) const override {
1421  auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
1422  Location loc = op.getLoc();
1423  SmallVector<Value> retMem;
1424  SmallVector<Value> retLen;
1425  desc.getLayout().foreachField([desc, loc, &rewriter, &op, &retMem,
1426  &retLen](FieldIndex fid,
1427  SparseTensorFieldKind fKind,
1428  Level lvl, LevelType lt) -> bool {
1429  if (fKind == SparseTensorFieldKind::StorageSpec)
1430  return true;
1432  Value sz, src;
1434  if (fKind == SparseTensorFieldKind::ValMemRef) {
1435  sz = desc.getValMemSize(rewriter, loc);
1436  src = desc.getValMemRef();
1437  dst = genToMemref(rewriter, loc, op.getOutValues());
1438 
1439  retMem.push_back(dst);
1440  Type valLenTp = op.getValLen().getType();
1441  retLen.push_back(genScalarToTensor(rewriter, loc, sz, valLenTp));
1442  } else {
1443  assert(fKind == SparseTensorFieldKind::PosMemRef ||
1444  fKind == SparseTensorFieldKind::CrdMemRef);
1445 
1446  sz = fKind == SparseTensorFieldKind::PosMemRef
1447  ? desc.getPosMemSize(rewriter, loc, lvl)
1448  : desc.getCrdMemSize(rewriter, loc, lvl);
1449  src = desc.getMemRefField(fid);
1450  dst = genToMemref(rewriter, loc, op.getOutLevels()[fid]);
1451  retMem.push_back(dst);
1452  // Retrieves the corresponding level length type.
1453  Type lvlLenTp = op.getLvlLens().getTypes()[retLen.size()];
1454  retLen.push_back(genScalarToTensor(rewriter, loc, sz, lvlLenTp));
1455  }
1456  Value flatOut = dst;
1457  if (dst.getType().getRank() > stt.getBatchLvlRank() + 1) {
1458  auto reassoc =
1459  getReassociationForFlattening(dst.getType(), stt.getBatchLvlRank());
1460  flatOut = rewriter.create<memref::CollapseShapeOp>(loc, dst, reassoc);
1461  }
1462  Value dstMem = genSliceToSize(rewriter, loc, flatOut, sz);
1463  Value srcMem = genSliceToSize(rewriter, loc, src, sz);
1464  rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
1465  return true;
1466  });
1467 
1468  // Converts MemRefs back to Tensors.
1469  SmallVector<Value> retValues = llvm::to_vector(
1470  llvm::map_range(retMem, [&rewriter, loc](Value v) -> Value {
1471  return rewriter.create<bufferization::ToTensorOp>(loc, v);
1472  }));
1473  // Appends the actual memory length used in each buffer returned.
1474  retValues.append(retLen.begin(), retLen.end());
1475  rewriter.replaceOp(op, retValues);
1476  return success();
1477  }
1478 };
1479 
1480 struct SparseNewConverter : public OpConversionPattern<NewOp> {
1482  LogicalResult
1483  matchAndRewrite(NewOp op, OpAdaptor adaptor,
1484  ConversionPatternRewriter &rewriter) const override {
1485  Location loc = op.getLoc();
1486  const auto dstTp = getSparseTensorType(op.getResult());
1487  // Creating COO with NewOp is handled by direct IR codegen. All other cases
1488  // are handled by rewriting.
1489  if (!dstTp.hasEncoding() || dstTp.getAoSCOOStart() != 0)
1490  return failure();
1491 
1492  // Implement as follows:
1493  // %reader = @createCheckedSparseTensorReader(%filename)
1494  // %nse = @getSparseTensorNSE(%reader)
1495  // %coo = bufferization.alloc_tensor an ordered COO with
1496  // dst dim ordering, size_hint = %nse
1497  // %coordinates = sparse_tensor.coordinates_buffer(%coo)
1498  // %values = sparse_tensor.values(%coo)
1499  // %isSorted = @sparseTensorReaderReadToBuffers(%coordinates, %values)
1500  // if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
1501  // update storage specifier
1502  // @delSparseTensorReader(%reader)
1503  SmallVector<Value> dimSizesValues;
1504  Value dimSizesBuffer;
1505  Value reader = genReader(rewriter, loc, dstTp, adaptor.getOperands()[0],
1506  dimSizesValues, dimSizesBuffer);
1507 
1508  // Get the number of stored entries.
1509  const Type indexTp = rewriter.getIndexType();
1510  Value nse = createFuncCall(rewriter, loc, "getSparseTensorReaderNSE",
1511  {indexTp}, {reader}, EmitCInterface::Off)
1512  .getResult(0);
1513 
1514  // Construct the lvl sizes and the dim2lvl/lvl2dim buffers.
1515  SmallVector<Value> lvlSizesValues;
1516  Value dim2lvlBuffer;
1517  Value lvl2dimBuffer;
1518  genMapBuffers(rewriter, loc, dstTp, dimSizesValues, dimSizesBuffer,
1519  lvlSizesValues, dim2lvlBuffer, lvl2dimBuffer);
1520 
1521  // Construct allocation for each field.
1522  Value sizeHint = nse;
1523  SmallVector<Value> fields;
1524  createAllocFields(rewriter, loc, dstTp, /*enableInit=*/false, sizeHint,
1525  lvlSizesValues, fields);
1526 
1527  // Read the COO tensor data.
1528  MutSparseTensorDescriptor desc(dstTp, fields);
1529  Value xs = desc.getAOSMemRef();
1530  Value ys = desc.getValMemRef();
1531  const Type boolTp = rewriter.getIntegerType(1);
1532  const Type elemTp = dstTp.getElementType();
1533  const Type crdTp = dstTp.getCrdType();
1534  SmallString<32> readToBuffersFuncName{"getSparseTensorReaderReadToBuffers",
1536  primaryTypeFunctionSuffix(elemTp)};
1537  Value isSorted =
1538  createFuncCall(rewriter, loc, readToBuffersFuncName, {boolTp},
1539  {reader, dim2lvlBuffer, lvl2dimBuffer, xs, ys},
1540  EmitCInterface::On)
1541  .getResult(0);
1542 
1543  // If the destination tensor is a sorted COO, we need to sort the COO tensor
1544  // data if the input elements aren't sorted yet.
1545  const Level lvlRank = dstTp.getLvlRank();
1546  if (dstTp.isOrderedLvl(lvlRank - 1)) {
1547  Value kFalse = constantI1(rewriter, loc, false);
1548  Value notSorted = rewriter.create<arith::CmpIOp>(
1549  loc, arith::CmpIPredicate::eq, isSorted, kFalse);
1550  scf::IfOp ifOp =
1551  rewriter.create<scf::IfOp>(loc, notSorted, /*else*/ false);
1552  rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1553  auto xPerm = rewriter.getMultiDimIdentityMap(lvlRank);
1554  rewriter.create<SortOp>(loc, nse, xs, ValueRange{ys}, xPerm,
1555  rewriter.getIndexAttr(0),
1556  SparseTensorSortKind::HybridQuickSort);
1557  rewriter.setInsertionPointAfter(ifOp);
1558  }
1559 
1560  // Set PosMemRef0[1] = nse.
1561  const Value c1 = constantIndex(rewriter, loc, 1);
1562  const Value posMemref0 = desc.getPosMemRef(0);
1563  const Type posTp = dstTp.getPosType();
1564  const Value posNse = genCast(rewriter, loc, nse, posTp);
1565  rewriter.create<memref::StoreOp>(loc, posNse, posMemref0, c1);
1566 
1567  // Update storage specifier.
1568  Value coordinatesSize = rewriter.create<arith::MulIOp>(
1569  loc, nse, constantIndex(rewriter, loc, lvlRank));
1570  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::CrdMemSize, 0,
1571  coordinatesSize);
1572  desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::ValMemSize,
1573  std::nullopt, nse);
1574 
1575  // Release the sparse tensor reader.
1576  createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
1577  EmitCInterface::Off);
1578 
1579  // Replace operation with resulting memrefs.
1580  rewriter.replaceOp(op, genTuple(rewriter, loc, dstTp, fields));
1581  return success();
1582  }
1583 };
1584 
1585 struct SparseHasRuntimeLibraryConverter
1586  : public OpConversionPattern<HasRuntimeLibraryOp> {
1588  LogicalResult
1589  matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor,
1590  ConversionPatternRewriter &rewriter) const override {
1591  auto i1Type = rewriter.getI1Type();
1592  rewriter.replaceOpWithNewOp<arith::ConstantOp>(
1593  op, i1Type, rewriter.getIntegerAttr(i1Type, 0));
1594  return success();
1595  }
1596 };
1597 
1598 } // namespace
1599 
1600 //===----------------------------------------------------------------------===//
1601 // Public method for populating conversion rules.
1602 //===----------------------------------------------------------------------===//
1603 
1604 /// Populates the given patterns list with conversion rules required for
1605 /// the sparsification of linear algebra operations.
1607  TypeConverter &typeConverter, RewritePatternSet &patterns,
1608  bool createSparseDeallocs, bool enableBufferInitialization) {
1609  patterns.add<
1610  SparseAssembleOpConverter, SparseDisassembleOpConverter,
1611  SparseReturnConverter, SparseCallConverter, SparseLvlOpConverter,
1612  SparseCastConverter, SparseExtractSliceConverter,
1613  SparseTensorLoadConverter, SparseExpandConverter, SparseCompressConverter,
1614  SparseInsertConverter, SparseReorderCOOConverter, SparseReMapConverter,
1615  SparseSliceGetterOpConverter<ToSliceOffsetOp,
1616  StorageSpecifierKind::DimOffset>,
1617  SparseSliceGetterOpConverter<ToSliceStrideOp,
1618  StorageSpecifierKind::DimStride>,
1619  SparseToPositionsConverter, SparseToCoordinatesConverter,
1620  SparseToCoordinatesBufferConverter, SparseToValuesConverter,
1621  SparseConvertConverter, SparseNewConverter,
1622  SparseNumberOfEntriesConverter, SparseHasRuntimeLibraryConverter>(
1623  typeConverter, patterns.getContext());
1624  patterns.add<SparseTensorDeallocConverter>(
1625  typeConverter, patterns.getContext(), createSparseDeallocs);
1626  patterns.add<SparseTensorAllocConverter, SparseTensorEmptyConverter>(
1627  typeConverter, patterns.getContext(), enableBufferInitialization);
1628 }
static void flattenOperands(ValueRange operands, SmallVectorImpl< Value > &flattened)
Flattens a list of operands that may contain sparse tensors.
static void createAllocFields(OpBuilder &builder, Location loc, SparseTensorType stt, bool enableInit, Value sizeHint, SmallVectorImpl< Value > &lvlSizesValues, SmallVectorImpl< Value > &fields)
Creates allocation for each field in sparse tensor type.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper, MutableArrayRef< Value > fields, Value lower=Value())
Creates a straightforward counting for-loop.
static SmallVector< ReassociationIndices > getReassociationForFlattening(ShapedType srcTp, unsigned batchLvls)
Creates the reassociation array.
static void genEndInsert(OpBuilder &builder, Location loc, SparseTensorDescriptor desc)
Generates insertion finalization code.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem, Value idx)
Generates a store with proper index typing and proper value.
static void allocSchemeForRank(OpBuilder &builder, Location loc, MutSparseTensorDescriptor desc, Level startLvl)
Generates code that allocates a sparse storage scheme for given rank.
static Value genCompressed(OpBuilder &builder, Location loc, MutSparseTensorDescriptor desc, ValueRange lvlCoords, Value, Value parentPos, Level lvl)
Helper method that generates block specific to compressed case:
static Value createAllocation(OpBuilder &builder, Location loc, MemRefType memRefType, Value sz, bool enableInit)
Creates allocation operation.
static void createPushback(OpBuilder &builder, Location loc, MutSparseTensorDescriptor desc, SparseTensorFieldKind kind, std::optional< Level > lvl, Value value, Value repeat=Value())
Creates a push back operation.
static Value genSliceToSize(OpBuilder &builder, Location loc, Value mem, Value sz)
Generates a subview into the sizes.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx)
Generates a load with proper index typing.
static void createDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt, ValueRange dynSizes, SmallVectorImpl< Value > &dimSizesValues)
Creates the dim sizes array, filling in from dynamic sizes.
@ NewOp
Op vectorized into a new Op whose results will replace original Op's results.
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
Definition: AffineMap.cpp:334
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:128
IntegerAttr getIntegerAttr(Type type, int64_t value)
Definition: Builders.cpp:242
AffineMap getMultiDimIdentityMap(unsigned rank)
Definition: Builders.cpp:398
IntegerType getIntegerType(unsigned width)
Definition: Builders.cpp:91
IntegerType getI1Type()
Definition: Builders.cpp:77
IndexType getIndexType()
Definition: Builders.cpp:75
This class implements a pattern rewriter for use with ConversionPatterns.
void replaceOp(Operation *op, ValueRange newValues) override
PatternRewriter hook for replacing an operation.
void eraseOp(Operation *op) override
PatternRewriter hook for erasing a dead operation.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:63
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class helps build Operations.
Definition: Builders.h:210
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:434
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:468
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:415
OpConversionPattern is a wrapper around ConversionPattern that allows for matching and rewriting agai...
OpConversionPattern(MLIRContext *context, PatternBenefit benefit=1)
This provides public APIs that all operations should have.
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Definition: Operation.h:402
MLIRContext * getContext()
Return the context this operation is associated with.
Definition: Operation.h:216
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
result_type_range getResultTypes()
Definition: Operation.h:423
result_range getResults()
Definition: Operation.h:410
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:399
MLIRContext * getContext() const
Definition: PatternMatch.h:823
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
Definition: PatternMatch.h:847
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:718
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:536
Tensor types represent multi-dimensional arrays, and have two variants: RankedTensorType and Unranked...
Definition: BuiltinTypes.h:97
Type conversion class.
This class provides an abstraction over the various different ranges of value types.
Definition: TypeRange.h:36
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
A helper class to simplify lowering operations with/without function calls.
Definition: CodegenUtils.h:78
Using SmallVector for mutable descriptor allows users to reuse it as a tmp buffers to append value fo...
void setMemRefField(SparseTensorFieldKind kind, std::optional< Level > lvl, Value v)
Adds additional setters for mutable descriptor, update the value for required field.
void setSpecifierField(OpBuilder &builder, Location loc, StorageSpecifierKind kind, std::optional< Level > lvl, Value v)
void setPosMemSize(OpBuilder &builder, Location loc, Level lvl, Value v)
void setValMemSize(OpBuilder &builder, Location loc, Value v)
void setLvlSize(OpBuilder &builder, Location loc, Level lvl, Value v)
void setCrdMemSize(OpBuilder &builder, Location loc, Level lvl, Value v)
Value getSpecifier() const
Getters: get the value for required field.
std::pair< FieldIndex, unsigned > getCrdMemRefIndexAndStride(Level lvl) const
Value getValMemSize(OpBuilder &builder, Location loc) const
Value getSpecifierField(OpBuilder &builder, Location loc, StorageSpecifierKind kind, std::optional< Level > lvl) const
Type getMemRefElementType(SparseTensorFieldKind kind, std::optional< Level > lvl) const
Value getCrdMemSize(OpBuilder &builder, Location loc, Level lvl) const
Value getMemRefField(SparseTensorFieldKind kind, std::optional< Level > lvl) const
Value getPosMemSize(OpBuilder &builder, Location loc, Level lvl) const
Value getLvlSize(OpBuilder &builder, Location loc, Level lvl) const
Uses ValueRange for immutable descriptors.
static Value getInitValue(OpBuilder &builder, Location loc, SparseTensorType stt)
A wrapper around RankedTensorType, which has three goals:
ArrayRef< Size > getDimShape() const
Returns the dimension-shape.
bool isAllOrdered() const
Returns true for tensors where every level is ordered.
bool isCOOType(Level startLvl=0, bool isUnique=true) const
Returns true iff this sparse tensor type has a trailing COO region starting at the given level.
Dimension getDimRank() const
Returns the dimension-rank.
bool isAllDense() const
Returns true for tensors where every level is dense.
bool hasSameDimToLvl(const SparseTensorType &other) const
Returns true iff the two types have the same mapping.
Level getLvlRank() const
Returns the level-rank.
Level getAoSCOOStart() const
Returns the starting level of this sparse tensor type for a trailing COO region that spans at least t...
Type getPosType() const
Returns the position-overhead MLIR type, defaulting to IndexType.
void foreachField(llvm::function_ref< bool(FieldIndex, SparseTensorFieldKind, Level, LevelType)>) const
For each field that will be allocated for the given sparse tensor encoding, calls the callback with t...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:285
Value constantIndex(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of index type.
Definition: CodegenUtils.h:334
bool isWithCrdLT(LevelType lt)
Definition: Enums.h:431
Value constantZero(OpBuilder &builder, Location loc, Type tp)
Generates a 0-valued constant of the given type.
Definition: CodegenUtils.h:312
bool isWithPosLT(LevelType lt)
Definition: Enums.h:432
std::string toMLIRString(LevelType lt)
Definition: Enums.h:447
Value constantOne(OpBuilder &builder, Location loc, Type tp)
Generates a 1-valued constant of the given type.
Definition: CodegenUtils.h:323
void foreachFieldAndTypeInSparseTensor(SparseTensorType, llvm::function_ref< bool(Type, FieldIndex, SparseTensorFieldKind, Level, LevelType)>)
unsigned FieldIndex
The type of field indices.
bool isSingletonLT(LevelType lt)
Definition: Enums.h:421
uint64_t Dimension
The type of dimension identifiers and dimension-ranks.
Definition: SparseTensor.h:39
bool isCompressedLT(LevelType lt)
Definition: Enums.h:415
uint64_t Level
The type of level identifiers and level-ranks.
Definition: SparseTensor.h:42
TypedValue< BaseMemRefType > genToMemref(OpBuilder &builder, Location loc, Value tensor)
Value genTuple(OpBuilder &builder, Location loc, Type tp, ValueRange values)
Packs the given values as a "tuple" value.
bool isLooseCompressedLT(LevelType lt)
Definition: Enums.h:418
Value constantI1(OpBuilder &builder, Location loc, bool b)
Generates a constant of i1 type.
Definition: CodegenUtils.h:359
Value genIndexLoad(OpBuilder &builder, Location loc, Value mem, ValueRange s)
Generates a pointer/index load from the sparse storage scheme.
int64_t Size
The type for individual components of a compile-time shape, including the value ShapedType::kDynamic ...
Definition: SparseTensor.h:46
StringRef overheadTypeFunctionSuffix(OverheadType ot)
Convert OverheadType to its function-name suffix.
Operation * getTop(Operation *op)
Scans to top of generated loop.
SparseTensorEncodingAttr getSparseTensorEncoding(Type type)
Convenience method to get a sparse encoding attribute from a type.
Value genMapBuffers(OpBuilder &builder, Location loc, SparseTensorType stt, ArrayRef< Value > dimSizesValues, Value dimSizesBuffer, SmallVectorImpl< Value > &lvlSizesValues, Value &dim2lvlBuffer, Value &lvl2dimBuffer)
Generates code to set up the buffer parameters for a map.
Value genReader(OpBuilder &builder, Location loc, SparseTensorType stt, Value tensor, SmallVectorImpl< Value > &dimSizesValues, Value &dimSizesBuffer)
Generates code that opens a reader and sets the dimension sizes.
Value genScalarToTensor(OpBuilder &builder, Location loc, Value elem, Type dstTp)
Add conversion from scalar to given type (possibly a 0-rank tensor).
SparseTensorDescriptor getDescriptorFromTensorTuple(Value tensor)
bool isDenseLT(LevelType lt)
Definition: Enums.h:413
SparseTensorType getSparseTensorType(Value val)
Convenience methods to obtain a SparseTensorType from a Value.
SparseTensorFieldKind
===-------------------------------------------------------------------—===// The sparse tensor storag...
func::CallOp createFuncCall(OpBuilder &builder, Location loc, StringRef name, TypeRange resultType, ValueRange operands, EmitCInterface emitCInterface)
Creates a CallOp to the function reference returned by getFunc() in the builder's module.
Value genCast(OpBuilder &builder, Location loc, Value value, Type dstTy)
Add type casting between arith and index types when needed.
StringRef primaryTypeFunctionSuffix(PrimaryType pt)
Convert PrimaryType to its function-name suffix.
MutSparseTensorDescriptor getMutDescriptorFromTensorTuple(Value tensor, SmallVectorImpl< Value > &fields)
Value genValMemSize(OpBuilder &builder, Location loc, Value tensor)
Generates code to retrieve the values size for the sparse tensor.
StorageSpecifierKind toSpecifierKind(SparseTensorFieldKind kind)
bool isNOutOfMLT(LevelType lt)
Definition: Enums.h:424
UnrealizedConversionCastOp getTuple(Value tensor)
Returns the "tuple" value of the adapted tensor.
Include the generated interface declarations.
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
Definition: Value.h:498
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
void populateSparseTensorCodegenPatterns(TypeConverter &typeConverter, RewritePatternSet &patterns, bool createSparseDeallocs, bool enableBufferInitialization)
Sets up sparse tensor codegen rules.
This enum defines all the sparse representations supportable by the SparseTensor dialect.
Definition: Enums.h:238
constexpr bool isa() const
Check if the LevelType is in the LevelFormat.
Definition: Enums.h:326