MLIR 22.0.0git
AMDGPUDialect.cpp
Go to the documentation of this file.
1//===- AMDGPUDialect.cpp - MLIR AMDGPU dialect implementation --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the AMDGPU dialect and its operations.
10//
11//===----------------------------------------------------------------------===//
12
14
21#include "mlir/IR/Builders.h"
23#include "mlir/IR/Diagnostics.h"
25#include "mlir/IR/Matchers.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/TypeSwitch.h"
33
34#include <algorithm>
35#include <cstdint>
36#include <limits>
37#include <optional>
38
39using namespace mlir;
40using namespace mlir::amdgpu;
41
42#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.cpp.inc"
43
44namespace {
45struct AMDGPUInlinerInterface final : DialectInlinerInterface {
47 bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final {
48 return true;
49 }
50};
51} // namespace
52
53void AMDGPUDialect::initialize() {
54 addOperations<
55#define GET_OP_LIST
56#include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc"
57 >();
58 addAttributes<
59#define GET_ATTRDEF_LIST
60#include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc"
61 >();
62 addInterfaces<AMDGPUInlinerInterface>();
63}
64
65//===----------------------------------------------------------------------===//
66// 8-bit float ops
67//===----------------------------------------------------------------------===//
68LogicalResult PackedTrunc2xFp8Op::verify() {
69 if (getExisting() && getExisting().getType() != getResult().getType())
70 return emitOpError("existing values must have same type as result");
71 return success();
72}
73
74LogicalResult PackedStochRoundFp8Op::verify() {
75 if (getExisting() && getExisting().getType() != getResult().getType())
76 return emitOpError("existing values must have same type as result");
77 return success();
78}
79
80//===----------------------------------------------------------------------===//
81// mxfp float ops
82//===----------------------------------------------------------------------===//
83LogicalResult PackedScaledTruncOp::verify() {
84 if (getExisting() && getExisting().getType() != getResult().getType())
85 return emitOpError("existing values must have same type as result");
86 return success();
87}
88
89//===----------------------------------------------------------------------===//
90// FatRawBufferCastOp
91//===----------------------------------------------------------------------===//
92
93/// Convert the type `source` to one with the same sizes and strides - and
94/// offset, unless `stripOffset` is true, in which case the offset is reset to
95/// 0, if the offset should be reset but the layout of `source` isn't either the
96/// identity layout or a strided layout, this function fails.
97static FailureOr<MemRefType> getFatRawBufferTypeLike(MemRefType source,
98 bool resetOffset) {
99 MLIRContext *ctx = source.getContext();
100 MemRefType::Builder mb(source);
102 amdgpu::AddressSpaceAttr::get(ctx, amdgpu::AddressSpace::FatRawBuffer));
103 MemRefLayoutAttrInterface layout = source.getLayout();
104 if (resetOffset && !layout.isIdentity()) {
105 auto stridedLayout = dyn_cast<StridedLayoutAttr>(layout);
106 if (!stridedLayout)
107 return failure();
108 MemRefLayoutAttrInterface newLayout =
109 StridedLayoutAttr::get(ctx, 0, stridedLayout.getStrides());
110 // Special case: if resetting the offset causes the strided layout to become
111 // the identity layout, then reset to the identity layout.
112 // TODO: this'll get a lot simpler when we have the contiguous layout.
113 SmallVector<int64_t> stridesIfIdentity;
114 if (source.hasStaticShape()) {
115 stridesIfIdentity = computeSuffixProduct(source.getShape());
116 } else if (source.getRank() <= 1) {
117 stridesIfIdentity = SmallVector<int64_t>(source.getRank(), 1);
118 }
119 if (stridesIfIdentity == stridedLayout.getStrides()) {
120 newLayout = AffineMapAttr::get(
121 AffineMap::getMultiDimIdentityMap(source.getRank(), ctx));
122 }
123 mb.setLayout(newLayout);
124 }
125 return (MemRefType)(mb);
126}
127
128LogicalResult FatRawBufferCastOp::inferReturnTypes(
129 MLIRContext *context, std::optional<Location> location, ValueRange operands,
130 DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
131 SmallVectorImpl<Type> &inferredReturnTypes) {
132 Adaptor adaptor(operands, attributes, properties, regions);
133 auto sourceType =
134 dyn_cast_if_present<MemRefType>(adaptor.getSource().getType());
135 if (!sourceType)
136 return failure();
137 FailureOr<MemRefType> resultType =
138 getFatRawBufferTypeLike(sourceType, adaptor.getResetOffset());
139 if (failed(resultType))
140 return failure();
141 inferredReturnTypes = SmallVector<Type>{*resultType};
142 return success();
143}
144
145LogicalResult FatRawBufferCastOp::verify() {
146 FailureOr<MemRefType> expectedResultType =
147 getFatRawBufferTypeLike(getSource().getType(), getResetOffset());
148 if (failed(expectedResultType))
149 return emitOpError("source type ")
150 << getSource().getType() << " can't have its offset reset";
151 if (getResult().getType() != *expectedResultType)
152 return emitOpError("expected result type to be ")
153 << *expectedResultType << " but got " << getResult().getType();
154 return success();
155}
156
157static bool hasGlobalMemorySpace(Attribute memorySpace) {
158 if (!memorySpace)
159 return true;
160 if (auto intMemorySpace = dyn_cast<IntegerAttr>(memorySpace))
161 return intMemorySpace.getInt() == 0 || intMemorySpace.getInt() == 1;
162 if (auto gpuMemorySpace = dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
163 return gpuMemorySpace.getValue() == gpu::AddressSpace::Global;
164 return false;
165}
166
167static bool hasWorkgroupMemorySpace(Attribute memorySpace) {
168 if (!memorySpace)
169 return false;
170 if (auto intMemorySpace = dyn_cast<IntegerAttr>(memorySpace))
171 return intMemorySpace.getInt() == 3;
172 if (auto gpuMemorySpace = dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
173 return gpuMemorySpace.getValue() == gpu::AddressSpace::Workgroup;
174 return false;
175}
176
177static bool hasFatRawBufferMemorySpace(Attribute memorySpace) {
178 if (!memorySpace)
179 return false;
180 if (auto intMemorySpace = dyn_cast<IntegerAttr>(memorySpace))
181 return intMemorySpace.getInt() == 7;
182 if (auto gpuMemorySpace = dyn_cast<amdgpu::AddressSpaceAttr>(memorySpace))
183 return gpuMemorySpace.getValue() == amdgpu::AddressSpace::FatRawBuffer;
184 return false;
185}
186
187//===----------------------------------------------------------------------===//
188// RawBuffer*Op
189//===----------------------------------------------------------------------===//
190template <typename T>
191static LogicalResult verifyRawBufferOp(T &op) {
192 MemRefType bufferType = llvm::cast<MemRefType>(op.getMemref().getType());
193 bool isGlobal = hasGlobalMemorySpace(bufferType.getMemorySpace());
194
195 if (!isGlobal)
196 return op.emitOpError(
197 "Buffer ops must operate on a memref in global memory");
198 if (!bufferType.hasRank())
199 return op.emitOpError(
200 "Cannot meaningfully buffer_store to an unranked memref");
201 if (static_cast<int64_t>(op.getIndices().size()) != bufferType.getRank())
202 return op.emitOpError("Expected " + Twine(bufferType.getRank()) +
203 " indices to memref");
204 return success();
205}
206
207LogicalResult RawBufferLoadOp::verify() { return verifyRawBufferOp(*this); }
208
209LogicalResult RawBufferStoreOp::verify() { return verifyRawBufferOp(*this); }
210
211LogicalResult RawBufferAtomicFaddOp::verify() {
212 return verifyRawBufferOp(*this);
213}
214
215LogicalResult RawBufferAtomicFmaxOp::verify() {
216 return verifyRawBufferOp(*this);
217}
218
219LogicalResult RawBufferAtomicSmaxOp::verify() {
220 return verifyRawBufferOp(*this);
221}
222
223LogicalResult RawBufferAtomicUminOp::verify() {
224 return verifyRawBufferOp(*this);
225}
226
227LogicalResult RawBufferAtomicCmpswapOp::verify() {
228 return verifyRawBufferOp(*this);
229}
230
231static std::optional<uint32_t> getConstantUint32(Value v) {
232 APInt cst;
233 if (!v.getType().isInteger(32))
234 return std::nullopt;
235 if (matchPattern(v, m_ConstantInt(&cst)))
236 return cst.getZExtValue();
237 return std::nullopt;
238}
239
240template <typename OpType>
241static bool staticallyOutOfBounds(OpType op) {
242 if (!op.getBoundsCheck())
243 return false;
244 MemRefType bufferType = op.getMemref().getType();
245 if (!bufferType.hasStaticShape())
246 return false;
247 int64_t offset;
248 SmallVector<int64_t> strides;
249 if (failed(bufferType.getStridesAndOffset(strides, offset)))
250 return false;
251 int64_t result = offset + op.getIndexOffset().value_or(0);
252 if (op.getSgprOffset()) {
253 std::optional<uint32_t> sgprOffset = getConstantUint32(op.getSgprOffset());
254 if (!sgprOffset)
255 return false;
256 result += *sgprOffset;
257 }
258 if (strides.size() != op.getIndices().size())
259 return false;
260 int64_t indexVal = 0;
261 for (auto pair : llvm::zip(strides, op.getIndices())) {
262 int64_t stride = std::get<0>(pair);
263 Value idx = std::get<1>(pair);
264 std::optional<uint32_t> idxVal = getConstantUint32(idx);
265 if (!idxVal)
266 return false;
267 indexVal += stride * *idxVal;
268 }
269 result += indexVal;
270 if (result > std::numeric_limits<uint32_t>::max())
271 // Overflow means don't drop
272 return false;
273 return result >= bufferType.getNumElements();
274}
275
276namespace {
277template <typename OpType>
278struct RemoveStaticallyOobBufferLoads final : public OpRewritePattern<OpType> {
279 using OpRewritePattern<OpType>::OpRewritePattern;
280
281 LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override {
282 if (!staticallyOutOfBounds(op))
283 return failure();
284 Type loadType = op.getResult().getType();
285 rw.replaceOpWithNewOp<arith::ConstantOp>(op, loadType,
286 rw.getZeroAttr(loadType));
287 return success();
288 }
289};
290
291template <typename OpType>
292struct RemoveStaticallyOobBufferWrites final : public OpRewritePattern<OpType> {
293 using OpRewritePattern<OpType>::OpRewritePattern;
294
295 LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override {
296 if (!staticallyOutOfBounds(op))
297 return failure();
298
299 rw.eraseOp(op);
300 return success();
301 }
302};
303} // end namespace
304
305void RawBufferLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
306 MLIRContext *context) {
307 results.add<RemoveStaticallyOobBufferLoads<RawBufferLoadOp>>(context);
308}
309
310void RawBufferStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
311 MLIRContext *context) {
312 results.add<RemoveStaticallyOobBufferWrites<RawBufferStoreOp>>(context);
313}
314
315void RawBufferAtomicFaddOp::getCanonicalizationPatterns(
316 RewritePatternSet &results, MLIRContext *context) {
317 results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicFaddOp>>(context);
318}
319
320void RawBufferAtomicFmaxOp::getCanonicalizationPatterns(
321 RewritePatternSet &results, MLIRContext *context) {
322 results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicFmaxOp>>(context);
323}
324
325void RawBufferAtomicSmaxOp::getCanonicalizationPatterns(
326 RewritePatternSet &results, MLIRContext *context) {
327 results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicSmaxOp>>(context);
328}
329
330void RawBufferAtomicUminOp::getCanonicalizationPatterns(
331 RewritePatternSet &results, MLIRContext *context) {
332 results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicUminOp>>(context);
333}
334
335void RawBufferAtomicCmpswapOp::getCanonicalizationPatterns(
336 RewritePatternSet &results, MLIRContext *context) {
337 results.add<RemoveStaticallyOobBufferLoads<RawBufferAtomicCmpswapOp>>(
338 context);
339}
340
341//===----------------------------------------------------------------------===//
342// ScaledExtPacked816Op
343//===----------------------------------------------------------------------===//
344LogicalResult ScaledExtPacked816Op::verify() {
345 int blockSize = getBlockSize();
346 assert((blockSize == 16 || blockSize == 32) && "invalid block size");
347 int firstScaleByte = getFirstScaleByte();
348 if (blockSize == 16 && !llvm::is_contained({0, 1}, firstScaleByte)) {
349 return emitOpError(
350 "blockSize of 16 can only have firstScaleByte be 0 or 1.");
351 }
352 if (blockSize == 32 && !llvm::is_contained({0, 2}, firstScaleByte)) {
353 return emitOpError(
354 "blockSize of 32 can only have firstScaleByte be 0 or 2.");
355 }
356
357 return success();
358}
359
360//===----------------------------------------------------------------------===//
361// WMMAOp
362//===----------------------------------------------------------------------===//
363
365 IntegerAttr &m, IntegerAttr &n,
366 IntegerAttr &k) {
367 SmallVector<int64_t, 3> dimensions;
368 if (parser.parseDimensionList(dimensions, false, false))
369 return failure();
370 if (dimensions.size() != 3)
371 return parser.emitError(parser.getCurrentLocation())
372 << "expected 3 dimensions in MNK dimension list";
373
374 m = parser.getBuilder().getI32IntegerAttr(dimensions[0]);
375 n = parser.getBuilder().getI32IntegerAttr(dimensions[1]);
376 k = parser.getBuilder().getI32IntegerAttr(dimensions[2]);
377 return success();
378}
379
380LogicalResult WMMAOp::verify() {
381 auto sourceAType = cast<VectorType>(getSourceA().getType());
382 auto sourceBType = cast<VectorType>(getSourceB().getType());
383 auto destType = cast<VectorType>(getDestC().getType());
384
385 Type sourceAElemType = sourceAType.getElementType();
386 Type sourceBElemType = sourceBType.getElementType();
387 if (sourceAType.getNumElements() != sourceBType.getNumElements()) {
388 return emitOpError("source vectors have different lengths: ")
389 << sourceAType << " vs. " << sourceBType;
390 }
391
392 bool isDestFloat = destType.getElementType().isFloat();
393 bool isSrcFloat = sourceAElemType.isFloat();
394
395 if (isDestFloat && !isSrcFloat)
396 return emitOpError("expected float sources with float destination");
397 if (!isDestFloat && isSrcFloat)
398 return emitOpError("expected int sources with int destination");
399
400 if (!sourceAElemType.isFloat(8) && sourceAElemType != sourceBElemType) {
401 return emitOpError(
402 "source element types must match (except for fp8/bf8) but have ")
403 << sourceAType << " and " << sourceBType;
404 }
405
406 if (isSrcFloat) {
407 if (getClamp())
408 return emitOpError("clamp flag is not supported for float types");
409 if (getUnsignedA() || getUnsignedB())
410 return emitOpError("unsigned flags are not supported for float types");
411 }
412 return success();
413}
414
415//===----------------------------------------------------------------------===//
416// MFMAOp
417//===----------------------------------------------------------------------===//
418LogicalResult MFMAOp::verify() {
419 constexpr uint32_t waveSize = 64;
421
422 Type sourceType = getSourceA().getType();
423 Type destType = getDestC().getType();
424
425 Type sourceElem = sourceType, destElem = destType;
426 uint32_t sourceLen = 1, destLen = 1;
427 if (auto sourceVector = dyn_cast<VectorType>(sourceType)) {
428 sourceLen = sourceVector.getNumElements();
429 sourceElem = sourceVector.getElementType();
430 }
431 if (auto destVector = dyn_cast<VectorType>(destType)) {
432 destLen = destVector.getNumElements();
433 destElem = destVector.getElementType();
434 }
435
436 Type sourceBType = getSourceB().getType();
437 if (sourceElem.isFloat(8) || sourceElem.isFloat(6) || sourceElem.isFloat(4)) {
438 int64_t sourceBLen = 1;
439 Type sourceBElem = sourceBType;
440 if (auto sourceBVector = llvm::dyn_cast<VectorType>(sourceBType)) {
441 sourceBLen = sourceBVector.getNumElements();
442 sourceBElem = sourceBVector.getElementType();
443 }
444 if (!sourceBElem.isFloat(8) && !sourceBElem.isFloat(6) &&
445 !sourceBElem.isFloat(4))
446 return emitOpError("expected both source operands to have small-float "
447 "elements if one does");
448 if (sourceLen != sourceBLen)
449 return emitOpError(
450 "expected both small-float source vectors to have the same length");
451 } else {
452 if (sourceType != sourceBType)
453 return emitOpError("expected both non-small-float source operand types "
454 "to match exactly");
455 }
456 // Normalize the wider integer types the compiler expects to i8.
457 if (sourceElem.isInteger(32)) {
458 sourceLen *= 4;
459 sourceElem = b.getI8Type();
460 }
461 if (sourceElem.isInteger(64)) {
462 sourceLen *= 8;
463 sourceElem = b.getI8Type();
464 }
465
466 int64_t numSourceElems = (getM() * getK() * getBlocks()) / waveSize;
467 if (sourceLen != numSourceElems)
468 return emitOpError("expected " + Twine(numSourceElems) +
469 " source values for this operation but got " +
470 Twine(sourceLen));
471
472 int64_t numDestElems = (getM() * getN() * getBlocks()) / waveSize;
473 if (destLen != numDestElems)
474 return emitOpError("expected " + Twine(numDestElems) +
475 " result values for this operation but got " +
476 Twine(destLen));
477
478 if (destElem.isF64() && getBlgp() != MFMAPermB::none)
479 return emitOpError(
480 "double-precision ops do not support permuting lanes of B");
481 if (destElem.isF64() && getCbsz() != 0)
482 return emitOpError(
483 "double-precision ops do not support permuting lanes of A");
484 if (getAbid() >= (1u << getCbsz()))
485 return emitOpError(
486 "block ID for permuting A (abid) must be below 2 ** cbsz");
487
488 if ((getNegateA() || getNegateB() || getNegateC()) && !destElem.isF64())
489 return emitOpError(
490 "negation flags only available for double-precision operations");
491
492 return success();
493}
494
495//===----------------------------------------------------------------------===//
496// DPPOp
497//===----------------------------------------------------------------------===//
498LogicalResult DPPOp::verify() {
499 Type srcType = getSrc().getType();
500 if (srcType.getIntOrFloatBitWidth() > 64) {
501 return emitOpError("integer and floating point types larger than 64 bits "
502 "are not supported");
503 }
504
505 DPPPerm kind = getKind();
506 Attribute permArgument = getPermArgument().value_or(Attribute{});
507
508 switch (kind) {
509
510 case DPPPerm::quad_perm: {
511 auto quadPermAttr = dyn_cast_or_null<ArrayAttr>(permArgument);
512 if (!quadPermAttr || quadPermAttr.size() != 4) {
513 return emitOpError("quad_perm attribute must have exactly 4 elements");
514 }
515 for (auto elem : quadPermAttr.getAsRange<IntegerAttr>()) {
516 int32_t num = elem.getInt();
517 if (num < 0 || num > 3) {
518 return emitOpError(
519 "Each element of quad_perm must be in the range [0, 3]");
520 }
521 }
522 } break;
523
524 case DPPPerm::row_shl:
525 case DPPPerm::row_shr:
526 case DPPPerm::row_ror: {
527 if (!permArgument) {
528 return emitOpError("Attribute '" + Twine(stringifyDPPPerm(kind)) +
529 "' value not specified");
530 }
531 if (auto intAttr = dyn_cast<IntegerAttr>(permArgument)) {
532 uint32_t attrValue = intAttr.getInt();
533 if (attrValue < 1 || attrValue > 15) {
534 return emitOpError("Attribute value must be between 1 and 15");
535 }
536 }
537 } break;
538
539 case DPPPerm::wave_shl:
540 case DPPPerm::wave_shr:
541 case DPPPerm::wave_rol:
542 case DPPPerm::wave_ror:
543 case DPPPerm::row_mirror:
544 case DPPPerm::row_half_mirror:
545 case DPPPerm::row_bcast_15:
546 case DPPPerm::row_bcast_31: {
547 if (permArgument && !isa<UnitAttr>(permArgument)) {
548 return emitOpError("Expected unit attribute for permArgument, but found "
549 "non-trivial argument");
550 }
551 break;
552 }
553 }
554 return success();
555}
556
557//===----------------------------------------------------------------------===//
558// PermlaneSwapOp
559//===----------------------------------------------------------------------===//
560LogicalResult PermlaneSwapOp::verify() {
561 unsigned rowLength = getRowLength();
562
563 if (rowLength != 16 && rowLength != 32)
564 return emitOpError("row_length attribute must either be 16 or 32.");
565
566 return success();
567}
568
569//===----------------------------------------------------------------------===//
570// GatherToLDSOp
571//===----------------------------------------------------------------------===//
572
573LogicalResult GatherToLDSOp::verify() {
574 MemRefType srcType = cast<MemRefType>(getSrc().getType());
575 MemRefType dstType = cast<MemRefType>(getDst().getType());
576
577 if (!dstType.areTrailingDimsContiguous(1))
578 return emitOpError("destination type inner most dim must be contiguous");
579
580 auto elemType = srcType.getElementType();
581 // Check $src and $dst element types are the same.
582 if (elemType != dstType.getElementType())
583 return emitOpError("source and destination element types must match");
584
585 // copy type sizes should be 1, 2, 4, 12 or 16 bytes.
586 auto transferType = getTransferType();
587 int transferSize;
588 if (auto vectorTransfer = dyn_cast<VectorType>(transferType)) {
589 transferSize = vectorTransfer.getNumElements() *
590 vectorTransfer.getElementTypeBitWidth();
591 } else {
592 transferSize = transferType.getIntOrFloatBitWidth();
593 }
594 if (!llvm::is_contained({8, 16, 32, 96, 128}, transferSize))
595 return emitOpError(
596 "Transfering type size must be 8, 16, 32, 96 or 128 bits");
597
598 if (!hasGlobalMemorySpace(srcType.getMemorySpace()) &&
599 !hasFatRawBufferMemorySpace(srcType.getMemorySpace()))
600 return emitOpError(
601 "source memory address space must be global or fat raw buffer");
602
603 if (!hasWorkgroupMemorySpace(dstType.getMemorySpace()))
604 return emitOpError("destination memory address space must be Workgroup");
605
606 return success();
607}
608
609namespace {
610/// If the source/target of a GatherToLDSOp is a CastOp that only removes static
611/// information or changes layout, the cast can be skipped.
612struct FoldGatherToLDSOfCast final : OpRewritePattern<GatherToLDSOp> {
614
615 LogicalResult matchAndRewrite(GatherToLDSOp gatherOp,
616 PatternRewriter &rewriter) const override {
617 bool modified = false;
618 auto foldCast = [&](OpOperand &operand) {
619 if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
620 if (memref::CastOp::canFoldIntoConsumerOp(castOp)) {
621 rewriter.modifyOpInPlace(gatherOp,
622 [&] { operand.assign(castOp.getSource()); });
623 modified = true;
624 }
625 }
626 };
627
628 foldCast(gatherOp.getSrcMutable());
629 foldCast(gatherOp.getDstMutable());
630
631 return success(modified);
632 }
633};
634} // namespace
635
636void GatherToLDSOp::getCanonicalizationPatterns(RewritePatternSet &results,
637 MLIRContext *context) {
638 results.add<FoldGatherToLDSOfCast>(context);
639}
640
641//===----------------------------------------------------------------------===//
642// TransposeLoadOp
643//===----------------------------------------------------------------------===//
644
645LogicalResult TransposeLoadOp::verify() {
646 MemRefType srcType = cast<MemRefType>(getSrc().getType());
647
648 if (!hasWorkgroupMemorySpace(srcType.getMemorySpace()))
649 return emitOpError("source memory address space must be Workgroup");
650
651 auto transferType = cast<VectorType>(getType());
652 size_t numElements = transferType.getNumElements();
653 size_t elementTypeSize =
654 transferType.getElementType().getIntOrFloatBitWidth();
655
656 // ElementSize -> NumElements
657 const llvm::SmallDenseMap<size_t, size_t> kValidLoadSizeMap = {
658 {4, 16},
659 {6, 16},
660 {8, 8},
661 {16, 4},
662 };
663
664 auto validNumElems = kValidLoadSizeMap.find(elementTypeSize);
665 if (validNumElems == kValidLoadSizeMap.end()) {
666 return emitOpError("Unsupported element type size for transpose load: ")
667 << elementTypeSize << " bits";
668 }
669 if (numElements != validNumElems->second) {
670 return emitOpError(
671 "Transferring type size mismatch: expected num of elements: ")
672 << validNumElems->second;
673 }
674
675 return success();
676}
677
678//===----------------------------------------------------------------------===//
679// ScaledMFMAOp
680//===----------------------------------------------------------------------===//
681
682namespace {
683/// Check if the scales input is used in other scaled mfma's while they exist.
684/// If theyre unused then pack the scales.
685struct PackScales final : OpRewritePattern<ScaledMFMAOp> {
687
688 LogicalResult matchAndRewrite(ScaledMFMAOp op,
689 PatternRewriter &rewriter) const override {
690 Location loc = op.getLoc();
691 auto setOpsel = [&op](unsigned idx, int64_t val) {
692 switch (idx) {
693 case 3:
694 op.setScalesIdxA(val);
695 break;
696 case 4:
697 op.setScalesIdxB(val);
698 break;
699 default:
700 break;
701 }
702 };
703
704 // For every scale operand of this ScaledMFMAOp, if the scale is produced by
705 // the extraction of a single scale from some vector, then attempt to
706 // extract 4 values from that vector instead.
707 //
708 // Example: (f8 here means f8E8M0FNU)
709 // %unit = vector.extract %ScaleSrc[offsets] : f8 from vector<...>
710 // %scale = vector.insert %unit, ... : f8 into vector<4xf8>
711 // amdgpu.scaled_mfma(%scale[0] * ...
712 //
713 // rewrite to:
714 //
715 // %reshaped = vector.shape_cast %ScaleSrc : vector<...> to vector<?xf8>
716 // %scale = vector.extract %reshaped[?] : vector<4xf8> from vector<?xf8>
717 // amdgpu.scaled_mfma(%scale[0-3] * ...
718 //
719 // This creates duplicate shape_casts for every use but these will be
720 // removed in CSE.
721 for (auto opIdx : std::array<int64_t, 2>({3, 4})) {
722 auto insertOp = op.getOperand(opIdx).getDefiningOp<vector::InsertOp>();
723 if (!insertOp) {
724 return rewriter.notifyMatchFailure(op,
725 "defining op not a vector.insert");
726 }
727 // If the extracted value is not a single scalar, then it has been packed.
728 if (isa<VectorType>(insertOp.getValueToStore().getType())) {
729 return rewriter.notifyMatchFailure(
730 op, "scaled mfma operand already packed");
731 }
732
733 auto extractOp =
734 insertOp.getValueToStore().getDefiningOp<vector::ExtractOp>();
735 if (!extractOp) {
736 return rewriter.notifyMatchFailure(op,
737 "defining op not a vector.extract");
738 }
739
740 Value scaleSrc = extractOp.getOperand(0);
741 auto scaleSrcType = dyn_cast<VectorType>(scaleSrc.getType());
742 if (!scaleSrcType) {
743 return rewriter.notifyMatchFailure(op, "not a vector type");
744 }
745
746 // We do not handle dynamic dims yet, assume that the input is padded to
747 // a static shape now.
748 if (!scaleSrcType.hasStaticShape()) {
749 return rewriter.notifyMatchFailure(op,
750 "dynamic dims not yet supported");
751 }
752
753 int64_t numElements = scaleSrcType.getNumElements();
754 if (numElements <= 4) {
755 return rewriter.notifyMatchFailure(
756 op, "no packing if # of scales less than four");
757 }
758
759 // Find a linearized idx using the size and offsets of the extract op.
760 auto extractedPos = llvm::to_vector_of<int64_t>(
761 llvm::reverse(extractOp.getStaticPosition()));
762 ArrayRef<int64_t> scaleSrcShape = scaleSrcType.getShape();
763 int64_t scaleSrcRank = scaleSrcType.getRank();
764 SmallVector<int64_t> extractSizes(scaleSrcRank, 1);
765 for (int64_t i = 1; i < scaleSrcRank; ++i) {
766 extractSizes[i] = extractSizes[i - 1] * scaleSrcShape[scaleSrcRank - i];
767 }
768 int64_t idx = linearize(extractedPos, extractSizes);
769
770 // All n scales (where n is the total number of scales) must now be
771 // extracted in chunks of 4 elements. This is done by dividing the
772 // original vector of scales into groups of 4 elements
773 // at offsets 0, 4, ..., m (where m = n/4). All extractions of a
774 // scale at a particular index are now replaced with an extraction
775 // of the entire group of 4 elements to which that index belongs.
776 //
777 // If the number of scales happens to be indivisible by 4, extract
778 // the remaining n - m scales in a chunk of 4 elements starting at
779 // offset n - 4.
780 int64_t offset = idx - (idx % 4);
781 int64_t opsel = idx - offset;
782 int64_t size = 4l;
783 // Accomdate remaining elements in the case of non-4-divisible vectors.
784 if (numElements - offset < size) {
785 opsel = size - (numElements - idx);
786 offset = numElements - 4l;
787 }
788 Type scaleSrcElemType = scaleSrcType.getElementType();
789 auto newSrcType =
790 VectorType::get(ArrayRef{numElements}, scaleSrcElemType);
791 Value newScaleSrc =
792 vector::ShapeCastOp::create(rewriter, loc, newSrcType, scaleSrc);
793 auto extract = vector::ExtractStridedSliceOp::create(
794 rewriter, loc, newScaleSrc, ArrayRef{offset}, ArrayRef{size},
795 ArrayRef{int64_t(1)});
796 rewriter.modifyOpInPlace(op, [&] {
797 op->setOperand(opIdx, extract);
798 setOpsel(opIdx, opsel);
799 });
800 }
801 return success();
802 }
803};
804} // namespace
805
806void ScaledMFMAOp::getCanonicalizationPatterns(RewritePatternSet &results,
807 MLIRContext *context) {
808 results.add<PackScales>(context);
809}
810
811#include "mlir/Dialect/AMDGPU/IR/AMDGPUEnums.cpp.inc"
812
813#define GET_ATTRDEF_CLASSES
814#include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc"
815
816#define GET_OP_CLASSES
817#include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc"
static LogicalResult verifyRawBufferOp(T &op)
static bool hasGlobalMemorySpace(Attribute memorySpace)
static bool hasWorkgroupMemorySpace(Attribute memorySpace)
static FailureOr< MemRefType > getFatRawBufferTypeLike(MemRefType source, bool resetOffset)
Convert the type source to one with the same sizes and strides - and offset, unless stripOffset is tr...
static bool hasFatRawBufferMemorySpace(Attribute memorySpace)
static bool staticallyOutOfBounds(OpType op)
static std::optional< uint32_t > getConstantUint32(Value v)
return success()
p<< " : "<< getMemRefType()<< ", "<< getType();}static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType, VectorType vectorType) { if(memrefType.getElementType() !=vectorType.getElementType()) return op-> emitOpError("requires memref and vector types of the same elemental type")
Given a list of lists of parsed operands, populates uniqueOperands with unique operands.
static bool isLegalToInline(InlinerInterface &interface, Region *src, Region *insertRegion, bool shouldCloneInlinedRegion, IRMapping &valueMapping)
Utility to check that all of the operations within 'src' can be inlined.
b
Return true if permutation is a valid permutation of the outer_dims_perm (case OuterOrInnerPerm::Oute...
b getContext())
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
virtual Builder & getBuilder() const =0
Return a builder which provides useful access to MLIRContext, global objects like types and attribute...
virtual InFlightDiagnostic emitError(SMLoc loc, const Twine &message={})=0
Emit a diagnostic at the specified location and return failure.
virtual ParseResult parseDimensionList(SmallVectorImpl< int64_t > &dimensions, bool allowDynamic=true, bool withTrailingX=true)=0
Parse a dimension list of a tensor or memref type.
virtual SMLoc getCurrentLocation()=0
Get the location of the next token and store it into the argument.
Attributes are known-constant values of operations.
Definition Attributes.h:25
This class is a general helper class for creating context-global objects like types,...
Definition Builders.h:51
IntegerAttr getI32IntegerAttr(int32_t value)
Definition Builders.cpp:200
TypedAttr getZeroAttr(Type type)
Definition Builders.cpp:324
This is the interface that must be implemented by the dialects of operations to be inlined.
DialectInlinerInterface(Dialect *dialect)
MLIRContext is the top-level object for a collection of MLIR operations.
Definition MLIRContext.h:63
This is a builder type that keeps local references to arguments.
Builder & setMemorySpace(Attribute newMemorySpace)
Builder & setLayout(MemRefLayoutAttrInterface newLayout)
The OpAsmParser has methods for interacting with the asm parser: parsing things from it,...
Simple wrapper around a void* in order to express generically how to pass in op properties through AP...
This class provides an abstraction over the different types of ranges over Regions.
Definition Region.h:346
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
void modifyOpInPlace(Operation *root, CallableT &&callable)
This method is a utility wrapper around an in-place modification of an operation.
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition Types.h:74
bool isFloat() const
Return true if this is an float type (with the specified width).
Definition Types.cpp:45
bool isInteger() const
Return true if this is an integer type (with the specified width).
Definition Types.cpp:56
unsigned getIntOrFloatBitWidth() const
Return the bit width of an integer or a float type, assert failure on other types.
Definition Types.cpp:122
This class provides an abstraction over the different types of ranges over Values.
Definition ValueRange.h:387
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
Type getType() const
Return the type of this value.
Definition Value.h:105
ParseResult parseMNKDimensionList(OpAsmParser &parser, IntegerAttr &m, IntegerAttr &n, IntegerAttr &k)
Parser for the custom<MNKDimensionList> custom assembly format used by WMMAOp.
detail::InFlightRemark failed(Location loc, RemarkOpts opts)
Report an optimization remark that failed.
Definition Remarks.h:561
uint64_t getN(LevelType lt)
Definition Enums.h:442
uint64_t getM(LevelType lt)
Definition Enums.h:443
SmallVector< unsigned > getBlockSize(AffineMap dimToLvl)
Given the dimToLvl map, returns the block sizes in a vector.
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition Matchers.h:490
detail::constant_int_value_binder m_ConstantInt(IntegerAttr::ValueType *bind_value)
Matches a constant holding a scalar/vector/tensor integer (splat) and writes the integer value to bin...
Definition Matchers.h:527
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
Definition Utils.cpp:304
SmallVector< int64_t > computeSuffixProduct(ArrayRef< int64_t > sizes)
Given a set of sizes, return the suffix product.
int64_t linearize(ArrayRef< int64_t > offsets, ArrayRef< int64_t > basis)
Return the linearized index of 'offsets' w.r.t.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
OpRewritePattern(MLIRContext *context, PatternBenefit benefit=1, ArrayRef< StringRef > generatedNames={})
Patterns must specify the root operation name they match against, and can also specify the benefit of...