MLIR  20.0.0git
AsyncParallelFor.cpp
Go to the documentation of this file.
1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements scf.parallel to scf.for + async.execute conversion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 
15 #include "PassDetail.h"
21 #include "mlir/IR/IRMapping.h"
23 #include "mlir/IR/Matchers.h"
24 #include "mlir/IR/PatternMatch.h"
25 #include "mlir/Support/LLVM.h"
28 #include <utility>
29 
30 namespace mlir {
31 #define GEN_PASS_DEF_ASYNCPARALLELFOR
32 #include "mlir/Dialect/Async/Passes.h.inc"
33 } // namespace mlir
34 
35 using namespace mlir;
36 using namespace mlir::async;
37 
38 #define DEBUG_TYPE "async-parallel-for"
39 
40 namespace {
41 
42 // Rewrite scf.parallel operation into multiple concurrent async.execute
43 // operations over non overlapping subranges of the original loop.
44 //
45 // Example:
46 //
47 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
48 // "do_some_compute"(%i, %j): () -> ()
49 // }
50 //
51 // Converted to:
52 //
53 // // Parallel compute function that executes the parallel body region for
54 // // a subset of the parallel iteration space defined by the one-dimensional
55 // // compute block index.
56 // func parallel_compute_function(%block_index : index, %block_size : index,
57 // <parallel operation properties>, ...) {
58 // // Compute multi-dimensional loop bounds for %block_index.
59 // %block_lbi, %block_lbj = ...
60 // %block_ubi, %block_ubj = ...
61 //
62 // // Clone parallel operation body into the scf.for loop nest.
63 // scf.for %i = %blockLbi to %blockUbi {
64 // scf.for %j = block_lbj to %block_ubj {
65 // "do_some_compute"(%i, %j): () -> ()
66 // }
67 // }
68 // }
69 //
70 // And a dispatch function depending on the `asyncDispatch` option.
71 //
72 // When async dispatch is on: (pseudocode)
73 //
74 // %block_size = ... compute parallel compute block size
75 // %block_count = ... compute the number of compute blocks
76 //
77 // func @async_dispatch(%block_start : index, %block_end : index, ...) {
78 // // Keep splitting block range until we reached a range of size 1.
79 // while (%block_end - %block_start > 1) {
80 // %mid_index = block_start + (block_end - block_start) / 2;
81 // async.execute { call @async_dispatch(%mid_index, %block_end); }
82 // %block_end = %mid_index
83 // }
84 //
85 // // Call parallel compute function for a single block.
86 // call @parallel_compute_fn(%block_start, %block_size, ...);
87 // }
88 //
89 // // Launch async dispatch for [0, block_count) range.
90 // call @async_dispatch(%c0, %block_count);
91 //
92 // When async dispatch is off:
93 //
94 // %block_size = ... compute parallel compute block size
95 // %block_count = ... compute the number of compute blocks
96 //
97 // scf.for %block_index = %c0 to %block_count {
98 // call @parallel_compute_fn(%block_index, %block_size, ...)
99 // }
100 //
101 struct AsyncParallelForPass
102  : public impl::AsyncParallelForBase<AsyncParallelForPass> {
103  AsyncParallelForPass() = default;
104 
105  AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
106  int32_t minTaskSize) {
107  this->asyncDispatch = asyncDispatch;
108  this->numWorkerThreads = numWorkerThreads;
109  this->minTaskSize = minTaskSize;
110  }
111 
112  void runOnOperation() override;
113 };
114 
115 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
116 public:
117  AsyncParallelForRewrite(
118  MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
119  AsyncMinTaskSizeComputationFunction computeMinTaskSize)
120  : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
121  numWorkerThreads(numWorkerThreads),
122  computeMinTaskSize(std::move(computeMinTaskSize)) {}
123 
124  LogicalResult matchAndRewrite(scf::ParallelOp op,
125  PatternRewriter &rewriter) const override;
126 
127 private:
128  bool asyncDispatch;
129  int32_t numWorkerThreads;
130  AsyncMinTaskSizeComputationFunction computeMinTaskSize;
131 };
132 
133 struct ParallelComputeFunctionType {
134  FunctionType type;
135  SmallVector<Value> captures;
136 };
137 
138 // Helper struct to parse parallel compute function argument list.
139 struct ParallelComputeFunctionArgs {
140  BlockArgument blockIndex();
141  BlockArgument blockSize();
142  ArrayRef<BlockArgument> tripCounts();
143  ArrayRef<BlockArgument> lowerBounds();
144  ArrayRef<BlockArgument> steps();
145  ArrayRef<BlockArgument> captures();
146 
147  unsigned numLoops;
149 };
150 
151 struct ParallelComputeFunctionBounds {
152  SmallVector<IntegerAttr> tripCounts;
153  SmallVector<IntegerAttr> lowerBounds;
154  SmallVector<IntegerAttr> upperBounds;
156 };
157 
158 struct ParallelComputeFunction {
159  unsigned numLoops;
160  func::FuncOp func;
161  llvm::SmallVector<Value> captures;
162 };
163 
164 } // namespace
165 
166 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
167 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
168 
169 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
170  return args.drop_front(2).take_front(numLoops);
171 }
172 
173 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
174  return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
175 }
176 
177 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
178  return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
179 }
180 
181 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
182  return args.drop_front(2 + 4 * numLoops);
183 }
184 
185 template <typename ValueRange>
187  SmallVector<IntegerAttr> attrs(values.size());
188  for (unsigned i = 0; i < values.size(); ++i)
189  matchPattern(values[i], m_Constant(&attrs[i]));
190  return attrs;
191 }
192 
193 // Converts one-dimensional iteration index in the [0, tripCount) interval
194 // into multidimensional iteration coordinate.
196  ArrayRef<Value> tripCounts) {
197  SmallVector<Value> coords(tripCounts.size());
198  assert(!tripCounts.empty() && "tripCounts must be not empty");
199 
200  for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
201  coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
202  index = b.create<arith::DivSIOp>(index, tripCounts[i]);
203  }
204 
205  return coords;
206 }
207 
208 // Returns a function type and implicit captures for a parallel compute
209 // function. We'll need a list of implicit captures to setup block and value
210 // mapping when we'll clone the body of the parallel operation.
211 static ParallelComputeFunctionType
212 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
213  // Values implicitly captured by the parallel operation.
214  llvm::SetVector<Value> captures;
215  getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
216 
217  SmallVector<Type> inputs;
218  inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
219 
220  Type indexTy = rewriter.getIndexType();
221 
222  // One-dimensional iteration space defined by the block index and size.
223  inputs.push_back(indexTy); // blockIndex
224  inputs.push_back(indexTy); // blockSize
225 
226  // Multi-dimensional parallel iteration space defined by the loop trip counts.
227  for (unsigned i = 0; i < op.getNumLoops(); ++i)
228  inputs.push_back(indexTy); // loop tripCount
229 
230  // Parallel operation lower bound, upper bound and step. Lower bound, upper
231  // bound and step passed as contiguous arguments:
232  // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
233  for (unsigned i = 0; i < op.getNumLoops(); ++i) {
234  inputs.push_back(indexTy); // lower bound
235  inputs.push_back(indexTy); // upper bound
236  inputs.push_back(indexTy); // step
237  }
238 
239  // Types of the implicit captures.
240  for (Value capture : captures)
241  inputs.push_back(capture.getType());
242 
243  // Convert captures to vector for later convenience.
244  SmallVector<Value> capturesVector(captures.begin(), captures.end());
245  return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
246 }
247 
248 // Create a parallel compute fuction from the parallel operation.
249 static ParallelComputeFunction createParallelComputeFunction(
250  scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
251  unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
252  OpBuilder::InsertionGuard guard(rewriter);
253  ImplicitLocOpBuilder b(op.getLoc(), rewriter);
254 
255  ModuleOp module = op->getParentOfType<ModuleOp>();
256 
257  ParallelComputeFunctionType computeFuncType =
258  getParallelComputeFunctionType(op, rewriter);
259 
260  FunctionType type = computeFuncType.type;
261  func::FuncOp func = func::FuncOp::create(
262  op.getLoc(),
263  numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops"
264  : "parallel_compute_fn",
265  type);
266  func.setPrivate();
267 
268  // Insert function into the module symbol table and assign it unique name.
269  SymbolTable symbolTable(module);
270  symbolTable.insert(func);
271  rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{});
272 
273  // Create function entry block.
274  Block *block =
275  b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
276  SmallVector<Location>(type.getNumInputs(), op.getLoc()));
277  b.setInsertionPointToEnd(block);
278 
279  ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
280 
281  // Block iteration position defined by the block index and size.
282  BlockArgument blockIndex = args.blockIndex();
283  BlockArgument blockSize = args.blockSize();
284 
285  // Constants used below.
286  Value c0 = b.create<arith::ConstantIndexOp>(0);
287  Value c1 = b.create<arith::ConstantIndexOp>(1);
288 
289  // Materialize known constants as constant operation in the function body.
290  auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
291  return llvm::to_vector(
292  llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
293  if (IntegerAttr attr = std::get<1>(tuple))
294  return b.create<arith::ConstantOp>(attr);
295  return std::get<0>(tuple);
296  }));
297  };
298 
299  // Multi-dimensional parallel iteration space defined by the loop trip counts.
300  auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
301 
302  // Parallel operation lower bound and step.
303  auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
304  auto steps = values(args.steps(), bounds.steps);
305 
306  // Remaining arguments are implicit captures of the parallel operation.
307  ArrayRef<BlockArgument> captures = args.captures();
308 
309  // Compute a product of trip counts to get the size of the flattened
310  // one-dimensional iteration space.
311  Value tripCount = tripCounts[0];
312  for (unsigned i = 1; i < tripCounts.size(); ++i)
313  tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
314 
315  // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
316  // blockFirstIndex = blockIndex * blockSize
317  Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
318 
319  // The last one-dimensional index in the block defined by the `blockIndex`:
320  // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
321  Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
322  Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
323  Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
324 
325  // Convert one-dimensional indices to multi-dimensional coordinates.
326  auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
327  auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
328 
329  // Compute loops upper bounds derived from the block last coordinates:
330  // blockEndCoord[i] = blockLastCoord[i] + 1
331  //
332  // Block first and last coordinates can be the same along the outer compute
333  // dimension when inner compute dimension contains multiple blocks.
334  SmallVector<Value> blockEndCoord(op.getNumLoops());
335  for (size_t i = 0; i < blockLastCoord.size(); ++i)
336  blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
337 
338  // Construct a loop nest out of scf.for operations that will iterate over
339  // all coordinates in [blockFirstCoord, blockLastCoord] range.
340  using LoopBodyBuilder =
341  std::function<void(OpBuilder &, Location, Value, ValueRange)>;
342  using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
343 
344  // Parallel region induction variables computed from the multi-dimensional
345  // iteration coordinate using parallel operation bounds and step:
346  //
347  // computeBlockInductionVars[loopIdx] =
348  // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
349  SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
350 
351  // We need to know if we are in the first or last iteration of the
352  // multi-dimensional loop for each loop in the nest, so we can decide what
353  // loop bounds should we use for the nested loops: bounds defined by compute
354  // block interval, or bounds defined by the parallel operation.
355  //
356  // Example: 2d parallel operation
357  // i j
358  // loop sizes: [50, 50]
359  // first coord: [25, 25]
360  // last coord: [30, 30]
361  //
362  // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
363  // is between 25 and 30 it should start at 0. The upper bound for `j` should
364  // be 50, except when `i` is equal to 30, then it should also be 30.
365  //
366  // Value at ith position specifies if all loops in [0, i) range of the loop
367  // nest are in the first/last iteration.
368  SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
369  SmallVector<Value> isBlockLastCoord(op.getNumLoops());
370 
371  // Builds inner loop nest inside async.execute operation that does all the
372  // work concurrently.
373  LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
374  return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
375  ValueRange args) {
376  ImplicitLocOpBuilder b(loc, nestedBuilder);
377 
378  // Compute induction variable for `loopIdx`.
379  computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
380  lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
381 
382  // Check if we are inside first or last iteration of the loop.
383  isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
384  arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
385  isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
386  arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
387 
388  // Check if the previous loop is in its first or last iteration.
389  if (loopIdx > 0) {
390  isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
391  isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
392  isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
393  isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
394  }
395 
396  // Keep building loop nest.
397  if (loopIdx < op.getNumLoops() - 1) {
398  if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
399  // For block aligned loops we always iterate starting from 0 up to
400  // the loop trip counts.
401  b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
402  workLoopBuilder(loopIdx + 1));
403 
404  } else {
405  // Select nested loop lower/upper bounds depending on our position in
406  // the multi-dimensional iteration space.
407  auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
408  blockFirstCoord[loopIdx + 1], c0);
409 
410  auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
411  blockEndCoord[loopIdx + 1],
412  tripCounts[loopIdx + 1]);
413 
414  b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
415  workLoopBuilder(loopIdx + 1));
416  }
417 
418  b.create<scf::YieldOp>(loc);
419  return;
420  }
421 
422  // Copy the body of the parallel op into the inner-most loop.
423  IRMapping mapping;
424  mapping.map(op.getInductionVars(), computeBlockInductionVars);
425  mapping.map(computeFuncType.captures, captures);
426 
427  for (auto &bodyOp : op.getRegion().front().without_terminator())
428  b.clone(bodyOp, mapping);
429  b.create<scf::YieldOp>(loc);
430  };
431  };
432 
433  b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
434  workLoopBuilder(0));
435  b.create<func::ReturnOp>(ValueRange());
436 
437  return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
438 }
439 
440 // Creates recursive async dispatch function for the given parallel compute
441 // function. Dispatch function keeps splitting block range into halves until it
442 // reaches a single block, and then excecutes it inline.
443 //
444 // Function pseudocode (mix of C++ and MLIR):
445 //
446 // func @async_dispatch(%block_start : index, %block_end : index, ...) {
447 //
448 // // Keep splitting block range until we reached a range of size 1.
449 // while (%block_end - %block_start > 1) {
450 // %mid_index = block_start + (block_end - block_start) / 2;
451 // async.execute { call @async_dispatch(%mid_index, %block_end); }
452 // %block_end = %mid_index
453 // }
454 //
455 // // Call parallel compute function for a single block.
456 // call @parallel_compute_fn(%block_start, %block_size, ...);
457 // }
458 //
459 static func::FuncOp
460 createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
461  PatternRewriter &rewriter) {
462  OpBuilder::InsertionGuard guard(rewriter);
463  Location loc = computeFunc.func.getLoc();
464  ImplicitLocOpBuilder b(loc, rewriter);
465 
466  ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
467 
468  ArrayRef<Type> computeFuncInputTypes =
469  computeFunc.func.getFunctionType().getInputs();
470 
471  // Compared to the parallel compute function async dispatch function takes
472  // additional !async.group argument. Also instead of a single `blockIndex` it
473  // takes `blockStart` and `blockEnd` arguments to define the range of
474  // dispatched blocks.
475  SmallVector<Type> inputTypes;
476  inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
477  inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
478  inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
479 
480  FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
481  func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type);
482  func.setPrivate();
483 
484  // Insert function into the module symbol table and assign it unique name.
485  SymbolTable symbolTable(module);
486  symbolTable.insert(func);
487  rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{});
488 
489  // Create function entry block.
490  Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
491  SmallVector<Location>(type.getNumInputs(), loc));
492  b.setInsertionPointToEnd(block);
493 
494  Type indexTy = b.getIndexType();
495  Value c1 = b.create<arith::ConstantIndexOp>(1);
496  Value c2 = b.create<arith::ConstantIndexOp>(2);
497 
498  // Get the async group that will track async dispatch completion.
499  Value group = block->getArgument(0);
500 
501  // Get the block iteration range: [blockStart, blockEnd)
502  Value blockStart = block->getArgument(1);
503  Value blockEnd = block->getArgument(2);
504 
505  // Create a work splitting while loop for the [blockStart, blockEnd) range.
506  SmallVector<Type> types = {indexTy, indexTy};
507  SmallVector<Value> operands = {blockStart, blockEnd};
508  SmallVector<Location> locations = {loc, loc};
509 
510  // Create a recursive dispatch loop.
511  scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
512  Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
513  Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
514 
515  // Setup dispatch loop condition block: decide if we need to go into the
516  // `after` block and launch one more async dispatch.
517  {
518  b.setInsertionPointToEnd(before);
519  Value start = before->getArgument(0);
520  Value end = before->getArgument(1);
521  Value distance = b.create<arith::SubIOp>(end, start);
522  Value dispatch =
523  b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
524  b.create<scf::ConditionOp>(dispatch, before->getArguments());
525  }
526 
527  // Setup the async dispatch loop body: recursively call dispatch function
528  // for the seconds half of the original range and go to the next iteration.
529  {
530  b.setInsertionPointToEnd(after);
531  Value start = after->getArgument(0);
532  Value end = after->getArgument(1);
533  Value distance = b.create<arith::SubIOp>(end, start);
534  Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
535  Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
536 
537  // Call parallel compute function inside the async.execute region.
538  auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
539  Location executeLoc, ValueRange executeArgs) {
540  // Update the original `blockStart` and `blockEnd` with new range.
541  SmallVector<Value> operands{block->getArguments().begin(),
542  block->getArguments().end()};
543  operands[1] = midIndex;
544  operands[2] = end;
545 
546  executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(),
547  func.getResultTypes(), operands);
548  executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
549  };
550 
551  // Create async.execute operation to dispatch half of the block range.
552  auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
553  executeBodyBuilder);
554  b.create<AddToGroupOp>(indexTy, execute.getToken(), group);
555  b.create<scf::YieldOp>(ValueRange({start, midIndex}));
556  }
557 
558  // After dispatching async operations to process the tail of the block range
559  // call the parallel compute function for the first block of the range.
560  b.setInsertionPointAfter(whileOp);
561 
562  // Drop async dispatch specific arguments: async group, block start and end.
563  auto forwardedInputs = block->getArguments().drop_front(3);
564  SmallVector<Value> computeFuncOperands = {blockStart};
565  computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
566 
567  b.create<func::CallOp>(computeFunc.func.getSymName(),
568  computeFunc.func.getResultTypes(),
569  computeFuncOperands);
570  b.create<func::ReturnOp>(ValueRange());
571 
572  return func;
573 }
574 
575 // Launch async dispatch of the parallel compute function.
577  ParallelComputeFunction &parallelComputeFunction,
578  scf::ParallelOp op, Value blockSize,
579  Value blockCount,
580  const SmallVector<Value> &tripCounts) {
581  MLIRContext *ctx = op->getContext();
582 
583  // Add one more level of indirection to dispatch parallel compute functions
584  // using async operations and recursive work splitting.
585  func::FuncOp asyncDispatchFunction =
586  createAsyncDispatchFunction(parallelComputeFunction, rewriter);
587 
588  Value c0 = b.create<arith::ConstantIndexOp>(0);
589  Value c1 = b.create<arith::ConstantIndexOp>(1);
590 
591  // Appends operands shared by async dispatch and parallel compute functions to
592  // the given operands vector.
593  auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
594  operands.append(tripCounts);
595  operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
596  operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
597  operands.append(op.getStep().begin(), op.getStep().end());
598  operands.append(parallelComputeFunction.captures);
599  };
600 
601  // Check if the block size is one, in this case we can skip the async dispatch
602  // completely. If this will be known statically, then canonicalization will
603  // erase async group operations.
604  Value isSingleBlock =
605  b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
606 
607  auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
608  ImplicitLocOpBuilder b(loc, nestedBuilder);
609 
610  // Call parallel compute function for the single block.
611  SmallVector<Value> operands = {c0, blockSize};
612  appendBlockComputeOperands(operands);
613 
614  b.create<func::CallOp>(parallelComputeFunction.func.getSymName(),
615  parallelComputeFunction.func.getResultTypes(),
616  operands);
617  b.create<scf::YieldOp>();
618  };
619 
620  auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
621  ImplicitLocOpBuilder b(loc, nestedBuilder);
622 
623  // Create an async.group to wait on all async tokens from the concurrent
624  // execution of multiple parallel compute function. First block will be
625  // executed synchronously in the caller thread.
626  Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
627  Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
628 
629  // Launch async dispatch function for [0, blockCount) range.
630  SmallVector<Value> operands = {group, c0, blockCount, blockSize};
631  appendBlockComputeOperands(operands);
632 
633  b.create<func::CallOp>(asyncDispatchFunction.getSymName(),
634  asyncDispatchFunction.getResultTypes(), operands);
635 
636  // Wait for the completion of all parallel compute operations.
637  b.create<AwaitAllOp>(group);
638 
639  b.create<scf::YieldOp>();
640  };
641 
642  // Dispatch either single block compute function, or launch async dispatch.
643  b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch);
644 }
645 
646 // Dispatch parallel compute functions by submitting all async compute tasks
647 // from a simple for loop in the caller thread.
648 static void
650  ParallelComputeFunction &parallelComputeFunction,
651  scf::ParallelOp op, Value blockSize, Value blockCount,
652  const SmallVector<Value> &tripCounts) {
653  MLIRContext *ctx = op->getContext();
654 
655  func::FuncOp compute = parallelComputeFunction.func;
656 
657  Value c0 = b.create<arith::ConstantIndexOp>(0);
658  Value c1 = b.create<arith::ConstantIndexOp>(1);
659 
660  // Create an async.group to wait on all async tokens from the concurrent
661  // execution of multiple parallel compute function. First block will be
662  // executed synchronously in the caller thread.
663  Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
664  Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
665 
666  // Call parallel compute function for all blocks.
667  using LoopBodyBuilder =
668  std::function<void(OpBuilder &, Location, Value, ValueRange)>;
669 
670  // Returns parallel compute function operands to process the given block.
671  auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
672  SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
673  computeFuncOperands.append(tripCounts);
674  computeFuncOperands.append(op.getLowerBound().begin(),
675  op.getLowerBound().end());
676  computeFuncOperands.append(op.getUpperBound().begin(),
677  op.getUpperBound().end());
678  computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
679  computeFuncOperands.append(parallelComputeFunction.captures);
680  return computeFuncOperands;
681  };
682 
683  // Induction variable is the index of the block: [0, blockCount).
684  LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
685  Value iv, ValueRange args) {
686  ImplicitLocOpBuilder b(loc, loopBuilder);
687 
688  // Call parallel compute function inside the async.execute region.
689  auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
690  Location executeLoc, ValueRange executeArgs) {
691  executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(),
692  compute.getResultTypes(),
693  computeFuncOperands(iv));
694  executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
695  };
696 
697  // Create async.execute operation to launch parallel computate function.
698  auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
699  executeBodyBuilder);
700  b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group);
701  b.create<scf::YieldOp>();
702  };
703 
704  // Iterate over all compute blocks and launch parallel compute operations.
705  b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
706 
707  // Call parallel compute function for the first block in the caller thread.
708  b.create<func::CallOp>(compute.getSymName(), compute.getResultTypes(),
709  computeFuncOperands(c0));
710 
711  // Wait for the completion of all async compute operations.
712  b.create<AwaitAllOp>(group);
713 }
714 
715 LogicalResult
716 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
717  PatternRewriter &rewriter) const {
718  // We do not currently support rewrite for parallel op with reductions.
719  if (op.getNumReductions() != 0)
720  return failure();
721 
722  ImplicitLocOpBuilder b(op.getLoc(), rewriter);
723 
724  // Computing minTaskSize emits IR and can be implemented as executing a cost
725  // model on the body of the scf.parallel. Thus it needs to be computed before
726  // the body of the scf.parallel has been manipulated.
727  Value minTaskSize = computeMinTaskSize(b, op);
728 
729  // Make sure that all constants will be inside the parallel operation body to
730  // reduce the number of parallel compute function arguments.
731  cloneConstantsIntoTheRegion(op.getRegion(), rewriter);
732 
733  // Compute trip count for each loop induction variable:
734  // tripCount = ceil_div(upperBound - lowerBound, step);
735  SmallVector<Value> tripCounts(op.getNumLoops());
736  for (size_t i = 0; i < op.getNumLoops(); ++i) {
737  auto lb = op.getLowerBound()[i];
738  auto ub = op.getUpperBound()[i];
739  auto step = op.getStep()[i];
740  auto range = b.createOrFold<arith::SubIOp>(ub, lb);
741  tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
742  }
743 
744  // Compute a product of trip counts to get the 1-dimensional iteration space
745  // for the scf.parallel operation.
746  Value tripCount = tripCounts[0];
747  for (size_t i = 1; i < tripCounts.size(); ++i)
748  tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
749 
750  // Short circuit no-op parallel loops (zero iterations) that can arise from
751  // the memrefs with dynamic dimension(s) equal to zero.
752  Value c0 = b.create<arith::ConstantIndexOp>(0);
753  Value isZeroIterations =
754  b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
755 
756  // Do absolutely nothing if the trip count is zero.
757  auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
758  nestedBuilder.create<scf::YieldOp>(loc);
759  };
760 
761  // Compute the parallel block size and dispatch concurrent tasks computing
762  // results for each block.
763  auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
764  ImplicitLocOpBuilder b(loc, nestedBuilder);
765 
766  // Collect statically known constants defining the loop nest in the parallel
767  // compute function. LLVM can't always push constants across the non-trivial
768  // async dispatch call graph, by providing these values explicitly we can
769  // choose to build more efficient loop nest, and rely on a better constant
770  // folding, loop unrolling and vectorization.
771  ParallelComputeFunctionBounds staticBounds = {
772  integerConstants(tripCounts),
773  integerConstants(op.getLowerBound()),
774  integerConstants(op.getUpperBound()),
775  integerConstants(op.getStep()),
776  };
777 
778  // Find how many inner iteration dimensions are statically known, and their
779  // product is smaller than the `512`. We align the parallel compute block
780  // size by the product of statically known dimensions, so that we can
781  // guarantee that the inner loops executes from 0 to the loop trip counts
782  // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
783  // unroll the loops. The constant `512` is arbitrary, it should depend on
784  // how many iterations LLVM will typically decide to unroll.
785  static constexpr int64_t maxUnrollableIterations = 512;
786 
787  // The number of inner loops with statically known number of iterations less
788  // than the `maxUnrollableIterations` value.
789  int numUnrollableLoops = 0;
790 
791  auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
792 
793  SmallVector<int64_t> numIterations(op.getNumLoops());
794  numIterations.back() = getInt(staticBounds.tripCounts.back());
795 
796  for (int i = op.getNumLoops() - 2; i >= 0; --i) {
797  int64_t tripCount = getInt(staticBounds.tripCounts[i]);
798  int64_t innerIterations = numIterations[i + 1];
799  numIterations[i] = tripCount * innerIterations;
800 
801  // Update the number of inner loops that we can potentially unroll.
802  if (innerIterations > 0 && innerIterations <= maxUnrollableIterations)
803  numUnrollableLoops++;
804  }
805 
806  Value numWorkerThreadsVal;
807  if (numWorkerThreads >= 0)
808  numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads);
809  else
810  numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
811 
812  // With large number of threads the value of creating many compute blocks
813  // is reduced because the problem typically becomes memory bound. For this
814  // reason we scale the number of workers using an equivalent to the
815  // following logic:
816  // float overshardingFactor = numWorkerThreads <= 4 ? 8.0
817  // : numWorkerThreads <= 8 ? 4.0
818  // : numWorkerThreads <= 16 ? 2.0
819  // : numWorkerThreads <= 32 ? 1.0
820  // : numWorkerThreads <= 64 ? 0.8
821  // : 0.6;
822 
823  // Pairs of non-inclusive lower end of the bracket and factor that the
824  // number of workers needs to be scaled with if it falls in that bucket.
825  const SmallVector<std::pair<int, float>> overshardingBrackets = {
826  {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
827  const float initialOvershardingFactor = 8.0f;
828 
829  Value scalingFactor = b.create<arith::ConstantFloatOp>(
830  llvm::APFloat(initialOvershardingFactor), b.getF32Type());
831  for (const std::pair<int, float> &p : overshardingBrackets) {
832  Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first);
833  Value inBracket = b.create<arith::CmpIOp>(
834  arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
835  Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
836  llvm::APFloat(p.second), b.getF32Type());
837  scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
838  scalingFactor);
839  }
840  Value numWorkersIndex =
841  b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
842  Value numWorkersFloat =
843  b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
844  Value scaledNumWorkers =
845  b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
846  Value scaledNumInt =
847  b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
848  Value scaledWorkers =
849  b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
850 
851  Value maxComputeBlocks = b.create<arith::MaxSIOp>(
852  b.create<arith::ConstantIndexOp>(1), scaledWorkers);
853 
854  // Compute parallel block size from the parallel problem size:
855  // blockSize = min(tripCount,
856  // max(ceil_div(tripCount, maxComputeBlocks),
857  // minTaskSize))
858  Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
859  Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
860  Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
861 
862  // Dispatch parallel compute function using async recursive work splitting,
863  // or by submitting compute task sequentially from a caller thread.
864  auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
865 
866  // Create a parallel compute function that takes a block id and computes
867  // the parallel operation body for a subset of iteration space.
868 
869  // Compute the number of parallel compute blocks.
870  Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
871 
872  // Dispatch parallel compute function without hints to unroll inner loops.
873  auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) {
874  ParallelComputeFunction compute =
875  createParallelComputeFunction(op, staticBounds, 0, rewriter);
876 
877  ImplicitLocOpBuilder b(loc, nestedBuilder);
878  doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts);
879  b.create<scf::YieldOp>();
880  };
881 
882  // Dispatch parallel compute function with hints for unrolling inner loops.
883  auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) {
884  ParallelComputeFunction compute = createParallelComputeFunction(
885  op, staticBounds, numUnrollableLoops, rewriter);
886 
887  ImplicitLocOpBuilder b(loc, nestedBuilder);
888  // Align the block size to be a multiple of the statically known
889  // number of iterations in the inner loops.
890  Value numIters = b.create<arith::ConstantIndexOp>(
891  numIterations[op.getNumLoops() - numUnrollableLoops]);
892  Value alignedBlockSize = b.create<arith::MulIOp>(
893  b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
894  doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount,
895  tripCounts);
896  b.create<scf::YieldOp>();
897  };
898 
899  // Dispatch to block aligned compute function only if the computed block
900  // size is larger than the number of iterations in the unrollable inner
901  // loops, because otherwise it can reduce the available parallelism.
902  if (numUnrollableLoops > 0) {
903  Value numIters = b.create<arith::ConstantIndexOp>(
904  numIterations[op.getNumLoops() - numUnrollableLoops]);
905  Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>(
906  arith::CmpIPredicate::sge, blockSize, numIters);
907 
908  b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned,
909  dispatchDefault);
910  b.create<scf::YieldOp>();
911  } else {
912  dispatchDefault(b, loc);
913  }
914  };
915 
916  // Replace the `scf.parallel` operation with the parallel compute function.
917  b.create<scf::IfOp>(isZeroIterations, noOp, dispatch);
918 
919  // Parallel operation was replaced with a block iteration loop.
920  rewriter.eraseOp(op);
921 
922  return success();
923 }
924 
925 void AsyncParallelForPass::runOnOperation() {
926  MLIRContext *ctx = &getContext();
927 
928  RewritePatternSet patterns(ctx);
930  patterns, asyncDispatch, numWorkerThreads,
931  [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
932  return builder.create<arith::ConstantIndexOp>(minTaskSize);
933  });
934  if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
935  signalPassFailure();
936 }
937 
938 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
939  return std::make_unique<AsyncParallelForPass>();
940 }
941 
942 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
943  int32_t numWorkerThreads,
944  int32_t minTaskSize) {
945  return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
946  minTaskSize);
947 }
948 
950  RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
951  const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
952  MLIRContext *ctx = patterns.getContext();
953  patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
954  computeMinTaskSize);
955 }
static ParallelComputeFunction createParallelComputeFunction(scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter)
static func::FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, PatternRewriter &rewriter)
static void doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, ParallelComputeFunction &parallelComputeFunction, scf::ParallelOp op, Value blockSize, Value blockCount, const SmallVector< Value > &tripCounts)
static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, ParallelComputeFunction &parallelComputeFunction, scf::ParallelOp op, Value blockSize, Value blockCount, const SmallVector< Value > &tripCounts)
static ParallelComputeFunctionType getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter)
static SmallVector< IntegerAttr > integerConstants(ValueRange values)
static MLIRContext * getContext(OpFoldResult val)
This class represents an argument of a Block.
Definition: Value.h:319
Block represents an ordered list of Operations.
Definition: Block.h:31
BlockArgument getArgument(unsigned i)
Definition: Block.h:127
BlockArgListType getArguments()
Definition: Block.h:85
FunctionType getFunctionType(TypeRange inputs, TypeRange results)
Definition: Builders.cpp:120
MLIRContext * getContext() const
Definition: Builders.h:55
IndexType getIndexType()
Definition: Builders.cpp:95
This is a utility class for mapping one set of IR entities to another.
Definition: IRMapping.h:26
void map(Value from, Value to)
Inserts a new mapping for 'from' to 'to'.
Definition: IRMapping.h:30
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
OpTy create(Args &&...args)
Create an operation of specific op type at the current insertion point and location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:356
This class helps build Operations.
Definition: Builders.h:215
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition: Builders.cpp:588
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Definition: Builders.h:444
Listener * getListener() const
Returns the current listener of this builder, or nullptr if this builder doesn't have a listener.
Definition: Builders.h:328
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes=std::nullopt, ArrayRef< Location > locs=std::nullopt)
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Definition: Builders.cpp:470
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:497
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:420
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:791
MLIRContext * getContext() const
Definition: PatternMatch.h:829
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
Definition: PatternMatch.h:853
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
This class allows for representing and managing the symbol table used by operations with the 'SymbolT...
Definition: SymbolTable.h:24
StringAttr insert(Operation *symbol, Block::iterator insertPt={})
Insert a new symbol into the table, and rename it as necessary to avoid collisions.
This class provides an abstraction over the various different ranges of value types.
Definition: TypeRange.h:36
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
std::function< Value(ImplicitLocOpBuilder, scf::ParallelOp)> AsyncMinTaskSizeComputationFunction
Emit the IR to compute the minimum number of iterations of scf.parallel body that would be viable for...
Definition: Transforms.h:29
void populateAsyncParallelForPatterns(RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, const AsyncMinTaskSizeComputationFunction &computeMinTaskSize)
Add a pattern to the given pattern list to lower scf.parallel to async operations.
void cloneConstantsIntoTheRegion(Region &region)
Clone ConstantLike operations that are defined above the given region and have users in the region in...
Definition: PassDetail.cpp:15
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition: Matchers.h:485
std::unique_ptr< Pass > createAsyncParallelForPass()
SmallVector< int64_t > delinearize(int64_t linearIndex, ArrayRef< int64_t > strides)
Given the strides together with a linear index in the dimension space, return the vector-space offset...
LogicalResult applyPatternsAndFoldGreedily(Region &region, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
void getUsedValuesDefinedAbove(Region &region, Region &limit, SetVector< Value > &values)
Fill values with a list of values defined at the ancestors of the limit region and used within region...
Definition: RegionUtils.cpp:67
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
Definition: Matchers.h:369
virtual void notifyOperationInserted(Operation *op, InsertPoint previous)
Notify the listener that the specified operation was inserted.
Definition: Builders.h:306
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:358