MLIR  20.0.0git
Utils.cpp
Go to the documentation of this file.
1 //===- Utils.cpp - Utils for GPU transform ops ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/IRMapping.h"
27 #include "mlir/IR/MLIRContext.h"
28 #include "mlir/IR/OpDefinition.h"
29 #include "mlir/IR/Value.h"
30 #include "mlir/IR/Visitors.h"
31 #include "mlir/Support/LLVM.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/TypeSwitch.h"
35 #include "llvm/Support/Debug.h"
36 
37 using namespace mlir;
38 using namespace mlir::gpu;
39 using namespace mlir::transform;
40 using namespace mlir::transform::gpu;
41 
42 #define DEBUG_TYPE "gpu-transforms"
43 
44 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
45 #define LDBG(X) LLVM_DEBUG(DBGS() << (X) << "\n")
46 #define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ")
47 
48 /// Return a flattened thread id for the workgroup with given sizes.
49 template <typename ThreadOrBlockIdOp>
50 static Value buildLinearId(RewriterBase &rewriter, Location loc,
51  ArrayRef<OpFoldResult> originalBasisOfr) {
52  LLVM_DEBUG(llvm::interleaveComma(
53  originalBasisOfr,
54  DBGS() << "----buildLinearId with originalBasisOfr: ");
55  llvm::dbgs() << "\n");
56  assert(originalBasisOfr.size() == 3 && "expected 3 sizes");
57  IndexType indexType = rewriter.getIndexType();
58  AffineExpr tx, ty, tz, bdx, bdy;
59  bindDims(rewriter.getContext(), tx, ty, tz);
60  bindSymbols(rewriter.getContext(), bdx, bdy);
62  rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::x)
63  .getResult(),
64  rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::y)
65  .getResult(),
66  rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::z)
67  .getResult(),
68  originalBasisOfr[0], originalBasisOfr[1]};
70  rewriter, loc, tx + ty * bdx + tz * bdx * bdy, vals);
71  return getValueOrCreateConstantIndexOp(rewriter, loc, ofr);
72 }
73 
74 /// Create a linear id builder that takes the `originalBasisOfr` and decompose
75 /// it in the basis of `forallMappingSizes`. The linear id builder returns an
76 /// n-D vector of ids for indexing and 1-D size + id for predicate generation.
77 template <typename ThreadOrBlockIdOp>
78 static GpuIdBuilderFnType commonLinearIdBuilderFn(int64_t multiplicity = 1) {
79  auto res = [multiplicity](RewriterBase &rewriter, Location loc,
80  ArrayRef<int64_t> forallMappingSizes,
81  ArrayRef<int64_t> originalBasis) {
82  SmallVector<OpFoldResult> originalBasisOfr =
83  getAsIndexOpFoldResult(rewriter.getContext(), originalBasis);
84  OpFoldResult linearId =
85  buildLinearId<ThreadOrBlockIdOp>(rewriter, loc, originalBasisOfr);
86  // Sizes in [0 .. n] -> [n .. 0] order to properly compute strides in
87  // "row-major" order.
88  SmallVector<int64_t> reverseBasisSizes(llvm::reverse(forallMappingSizes));
89  SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
90  AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
92  rewriter, loc, d0.floorDiv(multiplicity), {linearId});
93  SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
95  // Reverse back to be in [0 .. n] order.
96  for (AffineExpr e : llvm::reverse(delinearizingExprs)) {
97  ids.push_back(
98  affine::makeComposedAffineApply(rewriter, loc, e, {scaledLinearId}));
99  }
100 
101  // clang-format off
102  LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes,
103  DBGS() << "--delinearization basis: ");
104  llvm::dbgs() << "\n";
105  llvm::interleaveComma(strides,
106  DBGS() << "--delinearization strides: ");
107  llvm::dbgs() << "\n";
108  llvm::interleaveComma(delinearizingExprs,
109  DBGS() << "--delinearization exprs: ");
110  llvm::dbgs() << "\n";
111  llvm::interleaveComma(ids, DBGS() << "--ids: ");
112  llvm::dbgs() << "\n";);
113  // clang-format on
114 
115  // Return n-D ids for indexing and 1-D size + id for predicate generation.
116  return IdBuilderResult{
117  /*mappingIdOps=*/ids,
118  /*availableMappingSizes=*/
119  SmallVector<int64_t>{computeProduct(originalBasis)},
120  // `forallMappingSizes` iterate in the scaled basis, they need to be
121  // scaled back into the original basis to provide tight
122  // activeMappingSizes quantities for predication.
123  /*activeMappingSizes=*/
124  SmallVector<int64_t>{computeProduct(forallMappingSizes) *
125  multiplicity},
126  /*activeIdOps=*/SmallVector<Value>{cast<Value>(linearId)}};
127  };
128 
129  return res;
130 }
131 
132 /// Create a simple 3-D id builder that takes the `originalBasisOfr`
133 /// The 3-D id builder returns a 3-D vector of ids for indexing and 3-D sizes
134 /// + ids for predicate generation.
135 template <typename ThreadOrBlockIdOp>
136 static GpuIdBuilderFnType common3DIdBuilderFn(int64_t multiplicity = 1) {
137  auto res = [multiplicity](RewriterBase &rewriter, Location loc,
138  ArrayRef<int64_t> forallMappingSizes,
139  ArrayRef<int64_t> originalBasis) {
140  IndexType indexType = rewriter.getIndexType();
141  SmallVector<Value> ids{
142  rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::x),
143  rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::y),
144  rewriter.create<ThreadOrBlockIdOp>(loc, indexType, Dimension::z)};
145  // In the 3-D mapping case, scale the first dimension by the multiplicity.
146  SmallVector<Value> scaledIds = ids;
147  AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
148  scaledIds[0] = cast<Value>(affine::makeComposedFoldedAffineApply(
149  rewriter, loc, d0.floorDiv(multiplicity), {scaledIds[0]}));
150  // In the 3-D mapping case, unscale the first dimension by the multiplicity.
151  SmallVector<int64_t> forallMappingSizeInOriginalBasis(forallMappingSizes);
152  forallMappingSizeInOriginalBasis[0] *= multiplicity;
153  return IdBuilderResult{
154  /*mappingIdOps=*/scaledIds,
155  /*availableMappingSizes=*/SmallVector<int64_t>{originalBasis},
156  // `forallMappingSizes` iterate in the scaled basis, they need to be
157  // scaled back into the original basis to provide tight
158  // activeMappingSizes quantities for predication.
159  /*activeMappingSizes=*/
160  SmallVector<int64_t>{forallMappingSizeInOriginalBasis},
161  /*activeIdOps=*/ids};
162  };
163  return res;
164 }
165 
166 namespace mlir {
167 namespace transform {
168 namespace gpu {
169 
170 GpuIdBuilder::GpuIdBuilder(MLIRContext *ctx, bool useLinearMapping,
171  const MappingIdBuilderFnType &fn)
172  : mappingAttributes(), idBuilder() {
173  if (useLinearMapping) {
174  for (uint64_t d = static_cast<uint64_t>(MappingId::LinearDim0),
175  e = getMaxEnumValForMappingId();
176  d <= e; ++d)
177  mappingAttributes.push_back(fn(ctx, symbolizeMappingId(d).value()));
178  } else {
179  for (uint64_t d = static_cast<uint64_t>(MappingId::DimX),
180  e = static_cast<uint64_t>(MappingId::DimZ);
181  d <= e; ++d)
182  mappingAttributes.push_back(fn(ctx, symbolizeMappingId(d).value()));
183  }
184 }
185 
187  : GpuIdBuilder(ctx, useLinearMapping, [](MLIRContext *ctx, MappingId id) {
188  return GPUBlockMappingAttr::get(ctx, id);
189  }) {
190  idBuilder = useLinearMapping
191  ? commonLinearIdBuilderFn<BlockIdOp>(/*multiplicity=*/1)
192  : common3DIdBuilderFn<BlockIdOp>(/*multiplicity=*/1);
193 }
194 
196  bool useLinearMapping)
197  : GpuIdBuilder(ctx, useLinearMapping,
198  [](MLIRContext *ctx, MappingId id) {
199  return GPUWarpgroupMappingAttr::get(ctx, id);
200  }),
201  warpSize(warpSize) {
202  idBuilder = useLinearMapping
203  ? commonLinearIdBuilderFn<ThreadIdOp>(
204  /*multiplicity=*/kNumWarpsPerGroup * warpSize)
205  : common3DIdBuilderFn<ThreadIdOp>(
206  /*multiplicity=*/kNumWarpsPerGroup * warpSize);
207 }
208 
210  bool useLinearMapping)
211  : GpuIdBuilder(ctx, useLinearMapping,
212  [](MLIRContext *ctx, MappingId id) {
213  return GPUWarpMappingAttr::get(ctx, id);
214  }),
215  warpSize(warpSize) {
216  idBuilder =
217  useLinearMapping
218  ? commonLinearIdBuilderFn<ThreadIdOp>(/*multiplicity=*/warpSize)
219  : common3DIdBuilderFn<ThreadIdOp>(/*multiplicity=*/warpSize);
220 }
221 
223  : GpuIdBuilder(ctx, useLinearMapping, [](MLIRContext *ctx, MappingId id) {
224  return GPUThreadMappingAttr::get(ctx, id);
225  }) {
226  idBuilder = useLinearMapping
227  ? commonLinearIdBuilderFn<ThreadIdOp>(/*multiplicity=*/1)
228  : common3DIdBuilderFn<ThreadIdOp>(/*multiplicity=*/1);
229 }
230 
231 DiagnosedSilenceableFailure checkGpuLimits(TransformOpInterface transformOp,
232  std::optional<int64_t> gridDimX,
233  std::optional<int64_t> gridDimY,
234  std::optional<int64_t> gridDimZ,
235  std::optional<int64_t> blockDimX,
236  std::optional<int64_t> blockDimY,
237  std::optional<int64_t> blockDimZ) {
238 
239  // TODO: pass a configuration object to set the limits properly.
240  static constexpr int maxTotalBlockdim = 1024;
241  static constexpr int maxBlockdimx = 1024;
242  static constexpr int maxBlockdimy = 1024;
243  static constexpr int maxBlockdimz = 64;
244  static constexpr int maxTotalGriddim = 2147483647;
245  static constexpr int maxGriddimx = 2147483647;
246  static constexpr int maxGriddimy = 65535;
247  static constexpr int maxGriddimz = 65535;
248 
249  if ((blockDimX.value_or(1) * blockDimY.value_or(1) * blockDimZ.value_or(1)) >
250  maxTotalBlockdim ||
251  (gridDimX.value_or(1) * gridDimY.value_or(1) * gridDimZ.value_or(1)) >
252  maxTotalGriddim ||
253  blockDimX.value_or(1) > maxBlockdimx ||
254  blockDimY.value_or(1) > maxBlockdimy ||
255  blockDimZ.value_or(1) > maxBlockdimz ||
256  gridDimY.value_or(1) > maxGriddimy ||
257  gridDimZ.value_or(1) > maxGriddimz ||
258  gridDimX.value_or(1) > maxGriddimx) {
259  return transformOp.emitSilenceableError()
260  << "Trying to launch a GPU kernel with grid_dims = ("
261  << gridDimX.value_or(1) << ", " << gridDimY.value_or(1) << ", "
262  << gridDimZ.value_or(1) << ") block_dims = ("
263  << blockDimX.value_or(1) << ", " << blockDimY.value_or(1) << ", "
264  << blockDimZ.value_or(1) << "). It is larger than the limits.";
265  }
267 }
268 
270  RewriterBase &rewriter, Location loc, TransformOpInterface transformOp,
271  LaunchOp &launchOp, std::optional<int64_t> gridDimX,
272  std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
273  std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
274  std::optional<int64_t> blockDimZ) {
276  checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
277  blockDimY, blockDimZ);
278  if (!diag.succeeded())
279  return diag;
280 
281  auto createConst = [&](int dim) {
282  return rewriter.create<arith::ConstantIndexOp>(loc, dim);
283  };
284  OpBuilder::InsertionGuard guard(rewriter);
285  Value one = createConst(1);
286  Value gridSizeX = gridDimX.has_value() ? createConst(gridDimX.value()) : one;
287  Value gridSizeY = gridDimY.has_value() ? createConst(gridDimY.value()) : one;
288  Value gridSizeZ = gridDimZ.has_value() ? createConst(gridDimZ.value()) : one;
289  Value blkSizeX = blockDimX.has_value() ? createConst(blockDimX.value()) : one;
290  Value blkSizeY = blockDimY.has_value() ? createConst(blockDimY.value()) : one;
291  Value blkSizeZ = blockDimZ.has_value() ? createConst(blockDimZ.value()) : one;
292  launchOp = rewriter.create<LaunchOp>(loc, gridSizeX, gridSizeY, gridSizeZ,
293  blkSizeX, blkSizeY, blkSizeZ);
294  rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
295  rewriter.create<TerminatorOp>(loc);
297 }
298 
299 /// Alter kernel configuration of the given kernel.
301  RewriterBase &rewriter, LaunchOp gpuLaunch,
302  TransformOpInterface transformOp, std::optional<int64_t> gridDimX,
303  std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
304  std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
305  std::optional<int64_t> blockDimZ) {
307  checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
308  blockDimY, blockDimZ);
309  if (!diag.succeeded())
310  return diag;
311 
312  KernelDim3 currentBlockdim = gpuLaunch.getBlockSizeOperandValues();
313  OpBuilder::InsertionGuard guard(rewriter);
314  rewriter.setInsertionPointAfterValue(currentBlockdim.x);
315  auto createConstValue = [&](int dim) {
316  return rewriter.create<arith::ConstantIndexOp>(currentBlockdim.x.getLoc(),
317  dim);
318  };
319 
320  if (gridDimX.has_value())
321  gpuLaunch.getGridSizeXMutable().assign(createConstValue(gridDimX.value()));
322  if (gridDimY.has_value())
323  gpuLaunch.getGridSizeYMutable().assign(createConstValue(gridDimY.value()));
324  if (gridDimZ.has_value())
325  gpuLaunch.getGridSizeZMutable().assign(createConstValue(gridDimZ.value()));
326  if (blockDimX.has_value())
327  gpuLaunch.getBlockSizeXMutable().assign(
328  createConstValue(blockDimX.value()));
329  if (blockDimY.has_value())
330  gpuLaunch.getBlockSizeYMutable().assign(
331  createConstValue(blockDimY.value()));
332  if (blockDimZ.has_value())
333  gpuLaunch.getBlockSizeZMutable().assign(
334  createConstValue(blockDimZ.value()));
336 }
337 
338 } // namespace gpu
339 } // namespace transform
340 } // namespace mlir
static Value createConst(Location loc, Type type, int value, PatternRewriter &rewriter)
Create an integer or index constant.
Definition: ExpandOps.cpp:27
static GpuIdBuilderFnType commonLinearIdBuilderFn(int64_t multiplicity=1)
Create a linear id builder that takes the originalBasisOfr and decompose it in the basis of forallMap...
Definition: Utils.cpp:78
static Value buildLinearId(RewriterBase &rewriter, Location loc, ArrayRef< OpFoldResult > originalBasisOfr)
Return a flattened thread id for the workgroup with given sizes.
Definition: Utils.cpp:50
static GpuIdBuilderFnType common3DIdBuilderFn(int64_t multiplicity=1)
Create a simple 3-D id builder that takes the originalBasisOfr The 3-D id builder returns a 3-D vecto...
Definition: Utils.cpp:136
#define DBGS()
Definition: Utils.cpp:44
static std::string diag(const llvm::Value &value)
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExpr floorDiv(uint64_t v) const
Definition: AffineExpr.cpp:917
MLIRContext * getContext() const
Definition: Builders.h:56
IndexType getIndexType()
Definition: Builders.cpp:95
The result of a transform IR operation application.
static DiagnosedSilenceableFailure success()
Constructs a DiagnosedSilenceableFailure in the success state.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:357
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Definition: Builders.h:445
void setInsertionPointAfterValue(Value val)
Sets the insertion point to the node after the specified value.
Definition: Builders.h:430
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:497
This class represents a single result from folding an operation.
Definition: OpDefinition.h:268
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:400
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Location getLoc() const
Return the location of this value.
Definition: Value.cpp:26
Specialization of arith.constant op that returns an integer of index type.
Definition: Arith.h:93
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
Definition: AffineOps.cpp:1144
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
Definition: AffineOps.cpp:1194
DiagnosedSilenceableFailure alterGpuLaunch(RewriterBase &rewriter, mlir::gpu::LaunchOp gpuLaunch, TransformOpInterface transformOp, std::optional< int64_t > gridDimX=std::nullopt, std::optional< int64_t > gridDimY=std::nullopt, std::optional< int64_t > gridDimZ=std::nullopt, std::optional< int64_t > blockDimX=std::nullopt, std::optional< int64_t > blockDimY=std::nullopt, std::optional< int64_t > blockDimZ=std::nullopt)
Alter kernel configuration of the given kernel.
DiagnosedSilenceableFailure createGpuLaunch(RewriterBase &rewriter, Location loc, TransformOpInterface transformOp, mlir::gpu::LaunchOp &launchOp, std::optional< int64_t > gridDimX=std::nullopt, std::optional< int64_t > gridDimY=std::nullopt, std::optional< int64_t > gridDimZ=std::nullopt, std::optional< int64_t > blockDimX=std::nullopt, std::optional< int64_t > blockDimY=std::nullopt, std::optional< int64_t > blockDimZ=std::nullopt)
Create an empty-body gpu::LaunchOp using the provided kernel settings and put a terminator within.
DiagnosedSilenceableFailure checkGpuLimits(TransformOpInterface transformOp, std::optional< int64_t > gridDimX, std::optional< int64_t > gridDimY, std::optional< int64_t > gridDimZ, std::optional< int64_t > blockDimX, std::optional< int64_t > blockDimY, std::optional< int64_t > blockDimZ)
Determine if the size of the kernel configuration is supported by the GPU architecture being used.
Definition: Utils.cpp:231
std::function< IdBuilderResult(RewriterBase &, Location, ArrayRef< int64_t >, ArrayRef< int64_t >)> GpuIdBuilderFnType
Common gpu id builder type, allows the configuration of lowering for various mapping schemes.
Definition: Utils.h:59
Include the generated interface declarations.
OpFoldResult getAsIndexOpFoldResult(MLIRContext *ctx, int64_t val)
Convert int64_t to integer attributes of index type and return them as OpFoldResult.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
Definition: AffineExpr.h:348
SmallVector< int64_t > computeStrides(ArrayRef< int64_t > sizes)
Definition: IndexingUtils.h:47
SmallVector< int64_t > delinearize(int64_t linearIndex, ArrayRef< int64_t > strides)
Given the strides together with a linear index in the dimension space, return the vector-space offset...
int64_t computeProduct(ArrayRef< int64_t > basis)
Self-explicit.
void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to SymbolExpr at positions: [0 .
Definition: AffineExpr.h:362
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
Definition: AffineExpr.cpp:617
Utility class for the GPU dialect to represent triples of Values accessible through ....
Definition: GPUDialect.h:39
GpuBlockIdBuilder(MLIRContext *ctx, bool useLinearMapping=false)
Definition: Utils.cpp:186
Helper struct for configuring the rewrite of mapped scf.forall ops to various gpu id configurations.
Definition: Utils.h:63
SmallVector< DeviceMappingAttrInterface > mappingAttributes
The mapping attributes targeted by this generator.
Definition: Utils.h:72
GpuIdBuilderFnType idBuilder
The constructor that builds the concrete IR for mapping ids.
Definition: Utils.h:75
std::function< DeviceMappingAttrInterface(MLIRContext *, mlir::gpu::MappingId)> MappingIdBuilderFnType
Definition: Utils.h:65
GpuThreadIdBuilder(MLIRContext *ctx, bool useLinearMapping=false)
Definition: Utils.cpp:222
GpuWarpIdBuilder(MLIRContext *ctx, int64_t warpSize, bool useLinearMapping=false)
Definition: Utils.cpp:209
static constexpr int64_t kNumWarpsPerGroup
In the future this may be configured by the transformation.
Definition: Utils.h:97
GpuWarpgroupIdBuilder(MLIRContext *ctx, int64_t warpSize, bool useLinearMapping=false)
Definition: Utils.cpp:195
Helper type for functions that generate ids for the mapping of a scf.forall.
Definition: Utils.h:38