31#include "llvm/ADT/DenseSet.h"
32#include "llvm/Support/DebugLog.h"
35#define DEBUG_TYPE "loops-to-gpu"
69 llvm_unreachable(
"dim3 position out of bounds");
76 return forOp.getLowerBoundOperands();
81 return forOp.getUpperBoundOperands();
88 forOp.getStepAsInt());
111 Region &limit = forOp.getRegion();
112 for (
unsigned i = 0, e = numDims; i < e; ++i) {
113 Operation *nested = &forOp.getBody()->front();
116 return forOp.emitError(
117 "loops with bounds depending on other mapped loops "
118 "are not supported");
125 auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
126 if (forOp.getBody()->empty() || std::next(begin, 2) != end)
127 return forOp.emitError(
"expected perfectly nested loops in the body");
129 if (!(forOp = dyn_cast<AffineForOp>(nested)))
130 return nested->
emitError(
"expected a nested loop");
136 unsigned numBlockDims,
137 unsigned numThreadDims) {
138 if (numBlockDims < 1 || numThreadDims < 1) {
139 LDBG() <<
"nothing to map";
143 if (numBlockDims > 3) {
144 return forOp.emitError(
"cannot map to more than 3 block dimensions");
146 if (numThreadDims > 3) {
147 return forOp.emitError(
"cannot map to more than 3 thread dimensions");
155struct AffineLoopToGpuConverter {
156 std::optional<AffineForOp> collectBounds(AffineForOp forOp,
159 void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
160 unsigned numBlockDims,
unsigned numThreadDims);
163 SmallVector<Value, 6> dims;
165 SmallVector<Value, 6> lbs;
167 SmallVector<Value, 6> ivs;
169 SmallVector<Value, 6> steps;
178std::optional<AffineForOp>
179AffineLoopToGpuConverter::collectBounds(AffineForOp forOp,
unsigned numLoops) {
180 OpBuilder builder(forOp.getOperation());
181 dims.reserve(numLoops);
182 lbs.reserve(numLoops);
183 ivs.reserve(numLoops);
184 steps.reserve(numLoops);
185 AffineForOp currentLoop = forOp;
186 for (
unsigned i = 0; i < numLoops; ++i) {
189 if (!lowerBound || !upperBound) {
193 Value range = arith::SubIOp::create(builder, currentLoop.getLoc(),
194 upperBound, lowerBound);
197 range = arith::CeilDivSIOp::create(builder, currentLoop.getLoc(), range,
199 dims.push_back(range);
201 lbs.push_back(lowerBound);
202 ivs.push_back(currentLoop.getInductionVar());
203 steps.push_back(step);
205 if (i != numLoops - 1)
206 currentLoop = cast<AffineForOp>(¤tLoop.getBody()->front());
215void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
216 AffineForOp innermostForOp,
217 unsigned numBlockDims,
218 unsigned numThreadDims) {
219 OpBuilder builder(rootForOp.getOperation());
223 (numBlockDims < 3 || numThreadDims < 3)
226 Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
227 Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
228 Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
229 Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
230 Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
231 Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
236 gpu::LaunchOp::create(builder, rootForOp.getLoc(), gridSizeX, gridSizeY,
237 gridSizeZ, blockSizeX, blockSizeY, blockSizeZ);
243 Operation &terminator = innermostForOp.getBody()->back();
244 Location terminatorLoc = terminator.
getLoc();
246 builder.setInsertionPointToEnd(innermostForOp.getBody());
247 gpu::TerminatorOp::create(builder, terminatorLoc,
TypeRange());
248 launchOp.getBody().front().getOperations().splice(
249 launchOp.getBody().front().begin(),
250 innermostForOp.getBody()->getOperations());
256 builder.setInsertionPointToStart(&launchOp.getBody().front());
257 auto *lbArgumentIt = lbs.begin();
258 auto *stepArgumentIt = steps.begin();
259 for (
const auto &en : llvm::enumerate(ivs)) {
261 en.index() < numBlockDims
263 :
getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
264 Value step = steps[en.index()];
266 id = arith::MulIOp::create(builder, rootForOp.getLoc(), step,
id);
268 Value ivReplacement =
269 arith::AddIOp::create(builder, rootForOp.getLoc(), *lbArgumentIt,
id);
270 en.value().replaceAllUsesWith(ivReplacement);
271 std::advance(lbArgumentIt, 1);
272 std::advance(stepArgumentIt, 1);
281 unsigned numBlockDims,
282 unsigned numThreadDims) {
286 AffineLoopToGpuConverter converter;
287 auto maybeInnerLoop =
288 converter.collectBounds(forOp, numBlockDims + numThreadDims);
291 converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
297 unsigned numBlockDims,
298 unsigned numThreadDims) {
299 return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
303struct ParallelToGpuLaunchLowering :
public OpRewritePattern<ParallelOp> {
304 using OpRewritePattern<ParallelOp>::OpRewritePattern;
306 LogicalResult matchAndRewrite(ParallelOp parallelOp,
307 PatternRewriter &rewriter)
const override;
321 if (
auto constExpr = dyn_cast<AffineConstantExpr>(
result)) {
323 constExpr.getValue());
328 if (
auto minOp = upperBound.
getDefiningOp<arith::MinSIOp>()) {
329 for (
Value operand : {minOp.getLhs(), minOp.getRhs()}) {
335 if (
auto multiplyOp = upperBound.
getDefiningOp<arith::MulIOp>()) {
342 if ((
lhs.value() < 0) != (
rhs.value() < 0))
346 lhs.value() *
rhs.value());
354 return processor != gpu::Processor::Sequential;
359 case gpu::Processor::BlockX:
361 case gpu::Processor::BlockY:
363 case gpu::Processor::BlockZ:
365 case gpu::Processor::ThreadX:
367 case gpu::Processor::ThreadY:
369 case gpu::Processor::ThreadZ:
374 "invalid processor type while retrieving launch op argument number");
400 ParallelOp parallelOp, gpu::LaunchOp launchOp,
IRMapping &cloningMap,
409 if (!mapping || parallelOp.getNumResults() > 1)
414 auto launchIndependent = [&launchOp](
Value val) {
415 return val.getParentRegion()->isAncestor(launchOp->getParentRegion());
418 auto ensureLaunchIndependent = [&rewriter,
420 if (launchIndependent(val))
428 for (
auto config : llvm::zip(
429 mapping, parallelOp.getInductionVars(), parallelOp.getLowerBound(),
430 parallelOp.getUpperBound(), parallelOp.getStep())) {
432 Value iv, lowerBound, upperBound, step;
433 std::tie(mappingAttribute, iv, lowerBound, upperBound, step) =
config;
435 dyn_cast<gpu::ParallelLoopDimMappingAttr>(mappingAttribute);
437 return parallelOp.emitOpError()
438 <<
"expected mapping attribute for lowering to GPU";
440 gpu::Processor processor = annotation.getProcessor();
459 mappedStep = ensureLaunchIndependent(mappedStep);
460 mappedLowerBound = ensureLaunchIndependent(mappedLowerBound);
463 if (!mappedStep || !mappedLowerBound) {
465 parallelOp,
"lower bound / step must be constant or defined above "
469 newIndex = AffineApplyOp::create(
470 rewriter, loc, annotation.getMap().compose(lowerAndStep),
471 ValueRange{operand, mappedStep, mappedLowerBound});
474 if (annotation.getBound()) {
482 if (!launchIndependent(lowerBound) &&
490 bool boundIsPrecise = launchIndependent(upperBound) ||
495 if (!boundIsPrecise) {
500 "cannot derive loop-invariant upper bound for number of"
511 Value launchBound = AffineApplyOp::create(
512 rewriter, loc, annotation.getBound().compose(stepMap),
514 ensureLaunchIndependent(
515 cloningMap.lookupOrDefault(upperBound)),
516 ensureLaunchIndependent(
517 cloningMap.lookupOrDefault(lowerBound)),
518 ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
521 if (!bounds.try_emplace(processor, launchBound).second) {
523 parallelOp,
"cannot redefine the bound for processor " +
524 Twine(
static_cast<int64_t>(processor)));
527 if (!boundIsPrecise) {
530 arith::CmpIOp pred = arith::CmpIOp::create(
531 rewriter, loc, arith::CmpIPredicate::slt, newIndex,
533 scf::IfOp ifOp = scf::IfOp::create(rewriter, loc, pred,
false);
538 worklist.push_back(launchOp.getOperation());
543 auto loopOp = scf::ForOp::create(rewriter, loc,
547 newIndex = loopOp.getInductionVar();
552 worklist.push_back(launchOp.getOperation());
554 cloningMap.
map(iv, newIndex);
559 for (
const auto &namedAttr : parallelOp->getAttrs()) {
561 namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr())
563 launchOp->setAttr(namedAttr.getName(), namedAttr.getValue());
566 Block *body = parallelOp.getBody();
567 worklist.reserve(worklist.size() + body->
getOperations().size());
570 isa<scf::ReduceOp>(terminator) && terminator->
getOperands().size() == 1) {
571 worklist.push_back(terminator);
574 worklist.push_back(&op);
608ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
609 PatternRewriter &rewriter)
const {
615 if (
auto parentLoop = parallelOp->getParentOfType<ParallelOp>())
619 Location loc = parallelOp.getLoc();
621 gpu::LaunchOp launchOp =
622 gpu::LaunchOp::create(rewriter, loc, constantOne, constantOne,
623 constantOne, constantOne, constantOne, constantOne);
625 gpu::TerminatorOp::create(rewriter, loc);
628 IRMapping cloningMap;
629 llvm::DenseMap<gpu::Processor, Value> launchBounds;
630 SmallVector<Operation *, 16> worklist;
632 launchBounds, rewriter)))
636 bool seenSideeffects =
false;
638 bool leftNestingScope =
false;
639 LocalAliasAnalysis aliasAnalysis;
640 llvm::DenseSet<Value> writtenBuffer;
641 while (!worklist.empty()) {
642 Operation *op = worklist.pop_back_val();
648 if (
auto nestedParallel = dyn_cast<ParallelOp>(op)) {
652 if (seenSideeffects) {
653 WalkResult walkRes = nestedParallel.walk([&](Operation *nestedOp) {
657 auto memEffectInterface = dyn_cast<MemoryEffectOpInterface>(nestedOp);
658 if (!memEffectInterface)
661 SmallVector<MemoryEffects::EffectInstance> effects;
662 memEffectInterface.getEffects(effects);
664 if (isa<MemoryEffects::Read>(effect.getEffect()) ||
665 isa<MemoryEffects::Write>(effect.getEffect())) {
666 Value baseBuffer = effect.getValue();
669 for (Value val : writtenBuffer) {
670 if (aliasAnalysis.
alias(baseBuffer, val) !=
686 worklist, launchBounds, rewriter)))
688 }
else if (op == launchOp.getOperation()) {
693 leftNestingScope =
true;
694 seenSideeffects =
false;
695 writtenBuffer.clear();
696 }
else if (
auto reduceOp = dyn_cast<scf::ReduceOp>(op)) {
703 if (!newValue || !operand.getType().isSignlessIntOrFloat())
706 llvm::SetVector<Value> externalValues;
708 if (externalValues.size())
711 auto gpuRedOp = gpu::AllReduceOp::create(rewriter, loc, newValue);
712 cloningMap.
map(parentLoop->getResult(0), gpuRedOp.getResult());
715 gpuRedOp.getRegion().begin());
717 auto scfReturn = gpuRedOp.getRegion().front().getTerminator();
721 scfReturn, scfReturn->getOperands().front());
725 Operation *
clone = rewriter.
clone(*op, cloningMap);
730 if (
auto memEffectInterface =
731 dyn_cast<MemoryEffectOpInterface>(
clone)) {
732 SmallVector<MemoryEffects::EffectInstance> effects;
733 memEffectInterface.getEffects(effects);
735 if (isa<MemoryEffects::Write>(effect.getEffect())) {
736 Value writtenBase = effect.getValue();
741 writtenBuffer.insert(writtenBase);
750 if (seenSideeffects && leftNestingScope)
757 for (
auto bound : launchBounds)
770 target.addLegalDialect<memref::MemRefDialect>();
771 target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) {
778 op->
walk([](scf::ParallelOp parallelOp) {
static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp, unsigned numDims)
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder)
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos)
static LogicalResult processParallelLoop(ParallelOp parallelOp, gpu::LaunchOp launchOp, IRMapping &cloningMap, SmallVectorImpl< Operation * > &worklist, DenseMap< gpu::Processor, Value > &bounds, PatternRewriter &rewriter)
Modifies the current transformation state to capture the effect of the given scf.parallel operation o...
static bool isMappedToProcessor(gpu::Processor processor)
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp)
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder)
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder)
static Value deriveStaticUpperBound(Value upperBound, PatternRewriter &rewriter)
Tries to derive a static upper bound from the defining operation of upperBound.
static unsigned getLaunchOpArgumentNum(gpu::Processor processor)
static constexpr StringLiteral kVisitedAttrName
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp)
static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims)
Base type for affine expression.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
@ NoAlias
The two locations do not alias at all.
Attributes are known-constant values of operations.
Block represents an ordered list of Operations.
OpListType & getOperations()
Operation * getTerminator()
Get the terminator operation of this block.
iterator_range< iterator > without_terminator()
Return an iterator range over the operation within this block excluding the terminator operation at t...
AffineExpr getAffineSymbolExpr(unsigned position)
AffineExpr getAffineDimExpr(unsigned position)
This is a utility class for mapping one set of IR entities to another.
auto lookupOrDefault(T from) const
Lookup a mapped value within the map.
void map(Value from, Value to)
Inserts a new mapping for 'from' to 'to'.
auto lookupOrNull(T from) const
Lookup a mapped value within the map.
AliasResult alias(Value lhs, Value rhs)
Given two values, return their aliasing behavior.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
InsertPoint saveInsertionPoint() const
Return a saved insertion point.
Block::iterator getInsertionPoint() const
Returns the current insertion point of the builder.
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
void restoreInsertionPoint(InsertPoint ip)
Restore the insert point to a previously saved point.
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Operation is the basic unit of execution within MLIR.
unsigned getNumRegions()
Returns the number of regions held by this operation.
Location getLoc()
The source location the operation was defined or derived from.
OperandRange operand_range
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
OpTy getParentOfType()
Return the closest surrounding parent operation that is of type 'OpTy'.
operand_range getOperands()
Returns an iterator on the underlying Value's.
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
result_range getResults()
void erase()
Remove this operation from its parent block and delete it.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class contains a list of basic blocks and a link to the parent operation it is attached to.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
void inlineRegionBefore(Region ®ion, Region &parent, Region::iterator before)
Move the blocks that belong to "region" before the given position in another region "parent".
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
static WalkResult advance()
bool wasInterrupted() const
Returns true if the walk was interrupted.
static WalkResult interrupt()
Specialization of arith.constant op that returns an integer of index type.
static ConstantIndexOp create(OpBuilder &builder, Location location, int64_t value)
SideEffects::EffectInstance< Effect > EffectInstance
StringRef getMappingAttrName()
Name of the mapping attribute produced by loop mappers.
Value constantOne(OpBuilder &builder, Location loc, Type tp)
Generates a 1-valued constant of the given type.
Include the generated interface declarations.
void finalizeParallelLoopToGPUConversion(Operation *op)
Clean up after applyPartialConversion/applyFullConversion call.
void populateParallelLoopToGPUPatterns(RewritePatternSet &patterns)
Adds the conversion pattern from scf.parallel to gpu.launch to the provided pattern list.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
const FrozenRewritePatternSet GreedyRewriteConfig config
LogicalResult convertAffineLoopNestToGPULaunch(affine::AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims)
Convert a perfect affine loop nest with the outermost loop identified by forOp into a gpu::Launch ope...
bool isMemoryEffectFree(Operation *op)
Returns true if the given operation is free of memory effects.
Value lowerAffineUpperBound(affine::AffineForOp op, OpBuilder &builder)
Emit code that computes the upper bound of the given affine loop using standard arithmetic operations...
const FrozenRewritePatternSet & patterns
void getUsedValuesDefinedAbove(Region ®ion, Region &limit, SetVector< Value > &values)
Fill values with a list of values defined at the ancestors of the limit region and used within region...
Operation * clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands)
llvm::DenseMap< KeyT, ValueT, KeyInfoT, BucketT > DenseMap
bool areValuesDefinedAbove(Range values, Region &limit)
Check if all values in the provided range are defined above the limit region.
void configureParallelLoopToGPULegality(ConversionTarget &target)
Configures the rewrite target such that only scf.parallel operations that are not rewritten by the pr...
Value lowerAffineLowerBound(affine::AffineForOp op, OpBuilder &builder)
Emit code that computes the lower bound of the given affine loop using standard arithmetic operations...
Utility class for the GPU dialect to represent triples of Values accessible through ....