MLIR  20.0.0git
SCFToGPU.cpp
Go to the documentation of this file.
1 //===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a straightforward conversion of an loop nest into a GPU
10 // kernel. The caller is expected to guarantee that the conversion is correct
11 // or to further transform the kernel to ensure correctness.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/IRMapping.h"
28 #include "mlir/Pass/Pass.h"
30 #include "mlir/Transforms/Passes.h"
32 #include "llvm/ADT/Sequence.h"
33 #include "llvm/Support/Debug.h"
34 #include <optional>
35 
36 #define DEBUG_TYPE "loops-to-gpu"
37 
38 using namespace mlir;
39 using namespace mlir::affine;
40 using namespace mlir::scf;
41 
42 // Name of internal attribute to mark visited operations during conversion.
43 //
44 // NOTE: The conversion originally used the following legality criteria:
45 // `!parallelOp->hasAttr(gpu::getMappingAttrName())`
46 // But the provided pattern might reject some cases based on more detailed
47 // analysis of the `mapping` attribute.
48 // To avoid dialect conversion failure due to non-converted illegal operation
49 // we use this extra Unit attribute as a marker, that the operation was checked
50 // by the pattern and is should be considered as legal in the following legality
51 // checks. The `finalizeParallelLoopToGPUConversion` function performs clean up
52 // of this extra attributes ans is supposed to be called after the dialect
53 // conversion.
54 //
55 // TODO: Implement a cleaner solution, factoring out the "matching" logic
56 // from the pattern and its callees into a separate function that can be called
57 // from both the pattern and the op legality check.
58 static constexpr StringLiteral kVisitedAttrName = "SCFToGPU_visited";
59 
60 // Extract an indexed value from KernelDim3.
61 static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
62  switch (pos) {
63  case 0:
64  return dim3.x;
65  case 1:
66  return dim3.y;
67  case 2:
68  return dim3.z;
69  default:
70  llvm_unreachable("dim3 position out of bounds");
71  }
72  return nullptr;
73 }
74 
75 // Get the lower bound-related operands of a loop operation.
77  return forOp.getLowerBoundOperands();
78 }
79 
80 // Get the upper bound-related operands of a loop operation.
82  return forOp.getUpperBoundOperands();
83 }
84 
85 // Get a Value that corresponds to the loop step. If the step is an attribute,
86 // materialize a corresponding constant using builder.
87 static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
88  return builder.create<arith::ConstantIndexOp>(forOp.getLoc(),
89  forOp.getStepAsInt());
90 }
91 
92 // Get a Value for the loop lower bound. If the value requires computation,
93 // materialize the instructions using builder.
94 static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
95  return lowerAffineLowerBound(forOp, builder);
96 }
97 
98 // Get a Value for the loop upper bound. If the value requires computation,
99 // materialize the instructions using builder.
100 static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
101  return lowerAffineUpperBound(forOp, builder);
102 }
103 
104 // Check the structure of the loop nest:
105 // - there are enough loops to map to numDims;
106 // - the loops are perfectly nested;
107 // - the loop bounds can be computed above the outermost loop.
108 // This roughly corresponds to the "matcher" part of the pattern-based
109 // rewriting infrastructure.
110 static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp,
111  unsigned numDims) {
112  Region &limit = forOp.getRegion();
113  for (unsigned i = 0, e = numDims; i < e; ++i) {
114  Operation *nested = &forOp.getBody()->front();
115  if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
117  return forOp.emitError(
118  "loops with bounds depending on other mapped loops "
119  "are not supported");
120 
121  // The innermost loop can have an arbitrary body, skip the perfect nesting
122  // check for it.
123  if (i == e - 1)
124  break;
125 
126  auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
127  if (forOp.getBody()->empty() || std::next(begin, 2) != end)
128  return forOp.emitError("expected perfectly nested loops in the body");
129 
130  if (!(forOp = dyn_cast<AffineForOp>(nested)))
131  return nested->emitError("expected a nested loop");
132  }
133  return success();
134 }
135 
136 static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp,
137  unsigned numBlockDims,
138  unsigned numThreadDims) {
139  if (numBlockDims < 1 || numThreadDims < 1) {
140  LLVM_DEBUG(llvm::dbgs() << "nothing to map");
141  return success();
142  }
143 
144  if (numBlockDims > 3) {
145  return forOp.emitError("cannot map to more than 3 block dimensions");
146  }
147  if (numThreadDims > 3) {
148  return forOp.emitError("cannot map to more than 3 thread dimensions");
149  }
150  return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
151 }
152 
153 namespace {
154 // Helper structure that holds common state of the loop to GPU kernel
155 // conversion.
156 struct AffineLoopToGpuConverter {
157  std::optional<AffineForOp> collectBounds(AffineForOp forOp,
158  unsigned numLoops);
159 
160  void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
161  unsigned numBlockDims, unsigned numThreadDims);
162 
163  // Ranges of the loops mapped to blocks or threads.
165  // Lower bounds of the loops mapped to blocks or threads.
167  // Induction variables of the loops mapped to blocks or threads.
169  // Steps of the loops mapped to blocks or threads.
170  SmallVector<Value, 6> steps;
171 };
172 } // namespace
173 
174 // Collect ranges, bounds, steps and induction variables in preparation for
175 // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
176 // This may fail if the IR for computing loop bounds cannot be constructed, for
177 // example if an affine loop uses semi-affine maps. Return the last loop to be
178 // mapped on success, std::nullopt on failure.
179 std::optional<AffineForOp>
180 AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) {
181  OpBuilder builder(forOp.getOperation());
182  dims.reserve(numLoops);
183  lbs.reserve(numLoops);
184  ivs.reserve(numLoops);
185  steps.reserve(numLoops);
186  AffineForOp currentLoop = forOp;
187  for (unsigned i = 0; i < numLoops; ++i) {
188  Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
189  Value upperBound = getOrEmitUpperBound(currentLoop, builder);
190  if (!lowerBound || !upperBound) {
191  return std::nullopt;
192  }
193 
194  Value range = builder.create<arith::SubIOp>(currentLoop.getLoc(),
195  upperBound, lowerBound);
196  Value step = getOrCreateStep(currentLoop, builder);
197  if (getConstantIntValue(step) != static_cast<int64_t>(1))
198  range =
199  builder.create<arith::CeilDivSIOp>(currentLoop.getLoc(), range, step);
200  dims.push_back(range);
201 
202  lbs.push_back(lowerBound);
203  ivs.push_back(currentLoop.getInductionVar());
204  steps.push_back(step);
205 
206  if (i != numLoops - 1)
207  currentLoop = cast<AffineForOp>(&currentLoop.getBody()->front());
208  }
209  return currentLoop;
210 }
211 
212 // Replace the rooted at "rootForOp" with a GPU launch operation. This expects
213 // "innermostForOp" to point to the last loop to be transformed to the kernel,
214 // and to have (numBlockDims + numThreadDims) perfectly nested loops between
215 // "rootForOp" and "innermostForOp".
216 void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
217  AffineForOp innermostForOp,
218  unsigned numBlockDims,
219  unsigned numThreadDims) {
220  OpBuilder builder(rootForOp.getOperation());
221  // Prepare the grid and block sizes for the launch operation. If there is
222  // no loop mapped to a specific dimension, use constant "1" as its size.
223  Value constOne =
224  (numBlockDims < 3 || numThreadDims < 3)
225  ? builder.create<arith::ConstantIndexOp>(rootForOp.getLoc(), 1)
226  : nullptr;
227  Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
228  Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
229  Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
230  Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
231  Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
232  Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
233 
234  // Create a launch op and move the body region of the innermost loop to the
235  // launch op.
236  auto launchOp = builder.create<gpu::LaunchOp>(
237  rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
238  blockSizeY, blockSizeZ);
239 
240  // Replace the loop terminator (loops contain only a single block) with the
241  // gpu terminator and move the operations from the loop body block to the gpu
242  // launch body block. Do not move the entire block because of the difference
243  // in block arguments.
244  Operation &terminator = innermostForOp.getBody()->back();
245  Location terminatorLoc = terminator.getLoc();
246  terminator.erase();
247  builder.setInsertionPointToEnd(innermostForOp.getBody());
248  builder.create<gpu::TerminatorOp>(terminatorLoc, std::nullopt);
249  launchOp.getBody().front().getOperations().splice(
250  launchOp.getBody().front().begin(),
251  innermostForOp.getBody()->getOperations());
252 
253  // Remap the loop iterators to use block/thread identifiers instead. Loops
254  // may iterate from LB with step S whereas GPU thread/block ids always iterate
255  // from 0 to N with step 1. Therefore, loop induction variables are replaced
256  // with (gpu-thread/block-id * S) + LB.
257  builder.setInsertionPointToStart(&launchOp.getBody().front());
258  auto *lbArgumentIt = lbs.begin();
259  auto *stepArgumentIt = steps.begin();
260  for (const auto &en : llvm::enumerate(ivs)) {
261  Value id =
262  en.index() < numBlockDims
263  ? getDim3Value(launchOp.getBlockIds(), en.index())
264  : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
265  Value step = steps[en.index()];
266  if (getConstantIntValue(step) != static_cast<int64_t>(1))
267  id = builder.create<arith::MulIOp>(rootForOp.getLoc(), step, id);
268 
269  Value ivReplacement =
270  builder.create<arith::AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
271  en.value().replaceAllUsesWith(ivReplacement);
272  std::advance(lbArgumentIt, 1);
273  std::advance(stepArgumentIt, 1);
274  }
275 
276  // We are done and can erase the original outermost loop.
277  rootForOp.erase();
278 }
279 
280 // Generic loop to GPU kernel conversion function.
281 static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
282  unsigned numBlockDims,
283  unsigned numThreadDims) {
284  if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims)))
285  return failure();
286 
287  AffineLoopToGpuConverter converter;
288  auto maybeInnerLoop =
289  converter.collectBounds(forOp, numBlockDims + numThreadDims);
290  if (!maybeInnerLoop)
291  return failure();
292  converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
293 
294  return success();
295 }
296 
297 LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
298  unsigned numBlockDims,
299  unsigned numThreadDims) {
300  return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
301 }
302 
303 namespace {
304 struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> {
306 
307  LogicalResult matchAndRewrite(ParallelOp parallelOp,
308  PatternRewriter &rewriter) const override;
309 };
310 } // namespace
311 
312 /// Tries to derive a static upper bound from the defining operation of
313 /// `upperBound`.
315  PatternRewriter &rewriter) {
316  if (auto op = upperBound.getDefiningOp<arith::ConstantIndexOp>()) {
317  return op;
318  }
319 
320  if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) {
321  for (const AffineExpr &result : minOp.getMap().getResults()) {
322  if (auto constExpr = dyn_cast<AffineConstantExpr>(result)) {
323  return rewriter.create<arith::ConstantIndexOp>(minOp.getLoc(),
324  constExpr.getValue());
325  }
326  }
327  }
328 
329  if (auto minOp = upperBound.getDefiningOp<arith::MinSIOp>()) {
330  for (Value operand : {minOp.getLhs(), minOp.getRhs()}) {
331  if (auto staticBound = deriveStaticUpperBound(operand, rewriter))
332  return staticBound;
333  }
334  }
335 
336  if (auto multiplyOp = upperBound.getDefiningOp<arith::MulIOp>()) {
337  if (auto lhs = dyn_cast_or_null<arith::ConstantIndexOp>(
338  deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter)
339  .getDefiningOp()))
340  if (auto rhs = dyn_cast_or_null<arith::ConstantIndexOp>(
341  deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter)
342  .getDefiningOp())) {
343  // Assumptions about the upper bound of minimum computations no longer
344  // work if multiplied by mixed signs, so abort in this case.
345  if ((lhs.value() < 0) != (rhs.value() < 0))
346  return {};
347 
348  return rewriter.create<arith::ConstantIndexOp>(
349  multiplyOp.getLoc(), lhs.value() * rhs.value());
350  }
351  }
352 
353  return {};
354 }
355 
356 static bool isMappedToProcessor(gpu::Processor processor) {
357  return processor != gpu::Processor::Sequential;
358 }
359 
360 static unsigned getLaunchOpArgumentNum(gpu::Processor processor) {
361  switch (processor) {
362  case gpu::Processor::BlockX:
363  return 0;
364  case gpu::Processor::BlockY:
365  return 1;
366  case gpu::Processor::BlockZ:
367  return 2;
368  case gpu::Processor::ThreadX:
369  return 3;
370  case gpu::Processor::ThreadY:
371  return 4;
372  case gpu::Processor::ThreadZ:
373  return 5;
374  default:;
375  }
376  llvm_unreachable(
377  "invalid processor type while retrieving launch op argument number");
378 }
379 
380 /// Modifies the current transformation state to capture the effect of the given
381 /// `scf.parallel` operation on index substitutions and the operations to be
382 /// inserted.
383 /// Specifically, if a dimension of a parallel loop is mapped to a hardware id,
384 /// this function will
385 /// - compute the loop index based on the hardware id and affine map from the
386 /// mapping and update `cloningMap` to substitute all uses.
387 /// - derive a new upper bound for the hardware id and augment the provided
388 /// `gpu.launch operation` accordingly.
389 /// - if the upper bound is imprecise, insert a conditional in the `gpu.launch`
390 /// and update the rewriter to insert into the conditional's body.
391 /// If the dimension is mapped to sequential,
392 /// - insert a for loop into the body and update the rewriter to insert into
393 /// the for loop's body.
394 /// - update the `cloningMap` to replace uses of the index with the index of
395 /// the new for loop.
396 /// In either case,
397 /// - append the instructions from the loops body to worklist, in reverse order.
398 /// To note the end of the current scope in case a loop or conditional was
399 /// inserted, a sentinel (the `gpu.launch` operation) is inserted into the
400 /// worklist. This signals the processor of the worklist to pop the rewriter
401 /// one scope-level up.
402 static LogicalResult processParallelLoop(
403  ParallelOp parallelOp, gpu::LaunchOp launchOp, IRMapping &cloningMap,
406  // TODO: Verify that this is a valid GPU mapping.
407  // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
408  ArrayAttr mapping =
409  parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName());
410 
411  // TODO: Support reductions.
412  if (!mapping || parallelOp.getNumResults() != 0)
413  return failure();
414 
415  Location loc = parallelOp.getLoc();
416 
417  auto launchIndependent = [&launchOp](Value val) {
418  return val.getParentRegion()->isAncestor(launchOp->getParentRegion());
419  };
420 
421  auto ensureLaunchIndependent = [&rewriter,
422  launchIndependent](Value val) -> Value {
423  if (launchIndependent(val))
424  return val;
425  if (auto constOp = val.getDefiningOp<arith::ConstantOp>())
426  return rewriter.create<arith::ConstantOp>(constOp.getLoc(),
427  constOp.getValue());
428  return {};
429  };
430 
431  for (auto config : llvm::zip(
432  mapping, parallelOp.getInductionVars(), parallelOp.getLowerBound(),
433  parallelOp.getUpperBound(), parallelOp.getStep())) {
434  Attribute mappingAttribute;
435  Value iv, lowerBound, upperBound, step;
436  std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config;
437  auto annotation =
438  dyn_cast<gpu::ParallelLoopDimMappingAttr>(mappingAttribute);
439  if (!annotation)
440  return parallelOp.emitOpError()
441  << "expected mapping attribute for lowering to GPU";
442  Value newIndex;
443  gpu::Processor processor = annotation.getProcessor();
444 
445  if (isMappedToProcessor(processor)) {
446  // Use the corresponding thread/grid index as replacement for the loop iv.
447  Value operand =
448  launchOp.getBody().getArgument(getLaunchOpArgumentNum(processor));
449  // Take the indexmap and add the lower bound and step computations in.
450  // This computes operand * step + lowerBound.
451  // Use an affine map here so that it composes nicely with the provided
452  // annotation.
453  AffineMap lowerAndStep = AffineMap::get(
454  1, 2,
455  rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) +
456  rewriter.getAffineSymbolExpr(1));
457  newIndex = rewriter.create<AffineApplyOp>(
458  loc, annotation.getMap().compose(lowerAndStep),
459  ValueRange{operand, ensureLaunchIndependent(step),
460  ensureLaunchIndependent(lowerBound)});
461  // If there was also a bound, insert that, too.
462  // TODO: Check that we do not assign bounds twice.
463  if (annotation.getBound()) {
464  // We pass as the single operand to the bound-map the number of
465  // iterations, which is (upperBound - lowerBound) ceilDiv step. To
466  // support inner loops with dynamic upper bounds (as generated by e.g.
467  // tiling), try to derive a max for the bounds. If the used bound for
468  // the hardware id is imprecise, wrap the contained code into a
469  // conditional. If the lower-bound is constant or defined before the
470  // launch, we can use it in the launch bounds. Otherwise fail.
471  if (!launchIndependent(lowerBound) &&
472  !isa_and_nonnull<arith::ConstantOp>(lowerBound.getDefiningOp()))
473  return failure();
474  // The step must also be constant or defined outside of the loop nest.
475  if (!launchIndependent(step) &&
476  !isa_and_nonnull<arith::ConstantOp>(step.getDefiningOp()))
477  return failure();
478  // If the upper-bound is constant or defined before the launch, we can
479  // use it in the launch bounds directly. Otherwise try derive a bound.
480  bool boundIsPrecise =
481  launchIndependent(upperBound) ||
482  isa_and_nonnull<arith::ConstantOp>(upperBound.getDefiningOp());
483  {
484  PatternRewriter::InsertionGuard guard(rewriter);
485  rewriter.setInsertionPoint(launchOp);
486  if (!boundIsPrecise) {
487  upperBound = deriveStaticUpperBound(upperBound, rewriter);
488  if (!upperBound) {
489  return rewriter.notifyMatchFailure(
490  parallelOp,
491  "cannot derive loop-invariant upper bound for number of"
492  "iterations");
493  }
494  }
495  // Compute the number of iterations needed. We compute this as an
496  // affine expression ceilDiv (upperBound - lowerBound) step. We use
497  // affine.apply here so that it composes nicely with the provided map.
498  AffineMap stepMap = AffineMap::get(
499  1, 2,
500  ((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0))
501  .ceilDiv(rewriter.getAffineSymbolExpr(1))));
502  Value launchBound = rewriter.create<AffineApplyOp>(
503  loc, annotation.getBound().compose(stepMap),
504  ValueRange{
505  ensureLaunchIndependent(
506  cloningMap.lookupOrDefault(upperBound)),
507  ensureLaunchIndependent(
508  cloningMap.lookupOrDefault(lowerBound)),
509  ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
510  // todo(herhut,ravishankarm): Update the behavior of setMappingAttr
511  // when this condition is relaxed.
512  if (bounds.contains(processor)) {
513  return rewriter.notifyMatchFailure(
514  parallelOp, "cannot redefine the bound for processor " +
515  Twine(static_cast<int64_t>(processor)));
516  }
517  bounds[processor] = launchBound;
518  }
519  if (!boundIsPrecise) {
520  // We are using an approximation, create a surrounding conditional.
521  Value originalBound = std::get<3>(config);
522  arith::CmpIOp pred = rewriter.create<arith::CmpIOp>(
523  loc, arith::CmpIPredicate::slt, newIndex,
524  cloningMap.lookupOrDefault(originalBound));
525  scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false);
526  rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
527  // Put a sentinel into the worklist so we know when to pop out of the
528  // if body again. We use the launchOp here, as that cannot be part of
529  // the bodies instruction.
530  worklist.push_back(launchOp.getOperation());
531  }
532  }
533  } else {
534  // Create a sequential for loop.
535  auto loopOp = rewriter.create<scf::ForOp>(
536  loc, cloningMap.lookupOrDefault(lowerBound),
537  cloningMap.lookupOrDefault(upperBound),
538  cloningMap.lookupOrDefault(step));
539  newIndex = loopOp.getInductionVar();
540  rewriter.setInsertionPointToStart(loopOp.getBody());
541  // Put a sentinel into the worklist so we know when to pop out of the loop
542  // body again. We use the launchOp here, as that cannot be part of the
543  // bodies instruction.
544  worklist.push_back(launchOp.getOperation());
545  }
546  cloningMap.map(iv, newIndex);
547  }
548 
549  // Propagate custom user defined optional attributes, that can be used at
550  // later stage, such as extension data for GPU kernel dispatch
551  for (const auto &namedAttr : parallelOp->getAttrs()) {
552  if (namedAttr.getName() == gpu::getMappingAttrName() ||
553  namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr())
554  continue;
555  launchOp->setAttr(namedAttr.getName(), namedAttr.getValue());
556  }
557 
558  Block *body = parallelOp.getBody();
559  worklist.reserve(worklist.size() + body->getOperations().size());
560  for (Operation &op : llvm::reverse(body->without_terminator()))
561  worklist.push_back(&op);
562  return success();
563 }
564 
565 /// Lower a `scf.parallel` operation into a corresponding `gpu.launch`
566 /// operation.
567 ///
568 /// This essentially transforms a loop nest into a corresponding SIMT function.
569 /// The conversion is driven by mapping annotations on the `scf.parallel`
570 /// operations. The mapping is provided via a `DictionaryAttribute` named
571 /// `mapping`, which has three entries:
572 /// - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are
573 /// thread dimensions and 6 is sequential.
574 /// - map : An affine map that is used to pre-process hardware ids before
575 /// substitution.
576 /// - bound : An affine map that is used to compute the bound of the hardware
577 /// id based on an upper bound of the number of iterations.
578 /// If the `scf.parallel` contains nested `scf.parallel` operations, those
579 /// need to be annotated, as well. Structurally, the transformation works by
580 /// splicing all operations from nested `scf.parallel` operations into a single
581 /// sequence. Indices mapped to hardware ids are substituted with those ids,
582 /// wheras sequential mappings result in a sequential for-loop. To have more
583 /// flexibility when mapping code to hardware ids, the transform supports two
584 /// affine maps. The first `map` is used to compute the actual index for
585 /// substitution from the hardware id. The second `bound` is used to compute the
586 /// launch dimension for the hardware id from the number of iterations the
587 /// mapped loop is performing. Note that the number of iterations might be
588 /// imprecise if the corresponding loop-bounds are loop-dependent. In such case,
589 /// the hardware id might iterate over additional indices. The transformation
590 /// caters for this by predicating the created sequence of instructions on
591 /// the actual loop bound. This only works if an static upper bound for the
592 /// dynamic loop bound can be derived, currently via analyzing `affine.min`
593 /// operations.
594 LogicalResult
595 ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
596  PatternRewriter &rewriter) const {
597  // Mark the operation as visited for recursive legality check.
598  parallelOp->setAttr(kVisitedAttrName, rewriter.getUnitAttr());
599 
600  // We can only transform starting at the outer-most loop. Launches inside of
601  // parallel loops are not supported.
602  if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>())
603  return failure();
604  // Create a launch operation. We start with bound one for all grid/block
605  // sizes. Those will be refined later as we discover them from mappings.
606  Location loc = parallelOp.getLoc();
608  rewriter.create<arith::ConstantIndexOp>(parallelOp.getLoc(), 1);
609  gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>(
610  parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne,
612  rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
613  rewriter.create<gpu::TerminatorOp>(loc);
614  rewriter.setInsertionPointToStart(&launchOp.getBody().front());
615 
616  IRMapping cloningMap;
619  if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist,
620  launchBounds, rewriter)))
621  return failure();
622 
623  // Whether we have seen any side-effects. Reset when leaving an inner scope.
624  bool seenSideeffects = false;
625  // Whether we have left a nesting scope (and hence are no longer innermost).
626  bool leftNestingScope = false;
627  while (!worklist.empty()) {
628  Operation *op = worklist.pop_back_val();
629  // Now walk over the body and clone it.
630  // TODO: This is only correct if there either is no further scf.parallel
631  // nested or this code is side-effect free. Otherwise we might need
632  // predication. We are overly conservative for now and only allow
633  // side-effects in the innermost scope.
634  if (auto nestedParallel = dyn_cast<ParallelOp>(op)) {
635  // Before entering a nested scope, make sure there have been no
636  // sideeffects until now.
637  if (seenSideeffects)
638  return failure();
639  // A nested scf.parallel needs insertion of code to compute indices.
640  // Insert that now. This will also update the worklist with the loops
641  // body.
642  if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap,
643  worklist, launchBounds, rewriter)))
644  return failure();
645  } else if (op == launchOp.getOperation()) {
646  // Found our sentinel value. We have finished the operations from one
647  // nesting level, pop one level back up.
648  auto *parent = rewriter.getInsertionPoint()->getParentOp();
649  rewriter.setInsertionPointAfter(parent);
650  leftNestingScope = true;
651  seenSideeffects = false;
652  } else {
653  // Otherwise we copy it over.
654  Operation *clone = rewriter.clone(*op, cloningMap);
655  cloningMap.map(op->getResults(), clone->getResults());
656  // Check for side effects.
657  // TODO: Handle region side effects properly.
658  seenSideeffects |=
660  // If we are no longer in the innermost scope, sideeffects are disallowed.
661  if (seenSideeffects && leftNestingScope)
662  return failure();
663  }
664  }
665 
666  // Now that we succeeded creating the launch operation, also update the
667  // bounds.
668  for (auto bound : launchBounds)
669  launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)),
670  std::get<1>(bound));
671 
672  rewriter.eraseOp(parallelOp);
673  return success();
674 }
675 
677  patterns.add<ParallelToGpuLaunchLowering>(patterns.getContext());
678 }
679 
681  target.addLegalDialect<memref::MemRefDialect>();
682  target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) {
683  return !parallelOp->hasAttr(gpu::getMappingAttrName()) ||
684  parallelOp->hasAttr(kVisitedAttrName);
685  });
686 }
687 
689  op->walk([](scf::ParallelOp parallelOp) {
690  parallelOp->removeAttr(kVisitedAttrName);
691  });
692 }
static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims)
Definition: SCFToGPU.cpp:281
static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp, unsigned numDims)
Definition: SCFToGPU.cpp:110
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder)
Definition: SCFToGPU.cpp:100
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos)
Definition: SCFToGPU.cpp:61
static LogicalResult processParallelLoop(ParallelOp parallelOp, gpu::LaunchOp launchOp, IRMapping &cloningMap, SmallVectorImpl< Operation * > &worklist, DenseMap< gpu::Processor, Value > &bounds, PatternRewriter &rewriter)
Modifies the current transformation state to capture the effect of the given scf.parallel operation o...
Definition: SCFToGPU.cpp:402
static bool isMappedToProcessor(gpu::Processor processor)
Definition: SCFToGPU.cpp:356
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp)
Definition: SCFToGPU.cpp:76
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder)
Definition: SCFToGPU.cpp:87
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder)
Definition: SCFToGPU.cpp:94
static Value deriveStaticUpperBound(Value upperBound, PatternRewriter &rewriter)
Tries to derive a static upper bound from the defining operation of upperBound.
Definition: SCFToGPU.cpp:314
static unsigned getLaunchOpArgumentNum(gpu::Processor processor)
Definition: SCFToGPU.cpp:360
static constexpr StringLiteral kVisitedAttrName
Definition: SCFToGPU.cpp:58
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp)
Definition: SCFToGPU.cpp:81
static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims)
Definition: SCFToGPU.cpp:136
Base type for affine expression.
Definition: AffineExpr.h:68
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
Attributes are known-constant values of operations.
Definition: Attributes.h:25
Block represents an ordered list of Operations.
Definition: Block.h:31
OpListType & getOperations()
Definition: Block.h:135
iterator_range< iterator > without_terminator()
Return an iterator range over the operation within this block excluding the terminator operation at t...
Definition: Block.h:207
UnitAttr getUnitAttr()
Definition: Builders.cpp:126
AffineExpr getAffineSymbolExpr(unsigned position)
Definition: Builders.cpp:387
AffineExpr getAffineDimExpr(unsigned position)
Definition: Builders.cpp:383
This class describes a specific conversion target.
void addLegalDialect(StringRef name, Names... names)
Register the operations of the given dialects as legal.
void addDynamicallyLegalOp(OperationName op, const DynamicLegalityCallbackFn &callback)
Register the given operation as dynamically legal and set the dynamic legalization callback to the on...
This is a utility class for mapping one set of IR entities to another.
Definition: IRMapping.h:26
auto lookupOrDefault(T from) const
Lookup a mapped value within the map.
Definition: IRMapping.h:65
void map(Value from, Value to)
Inserts a new mapping for 'from' to 'to'.
Definition: IRMapping.h:30
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:63
This class helps build Operations.
Definition: Builders.h:212
Block::iterator getInsertionPoint() const
Returns the current insertion point of the builder.
Definition: Builders.h:450
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition: Builders.cpp:567
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:436
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Definition: Builders.h:403
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Definition: Builders.h:441
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:476
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:417
This class implements the operand iterators for the Operation class.
Definition: ValueRange.h:42
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Definition: Operation.h:793
unsigned getNumRegions()
Returns the number of regions held by this operation.
Definition: Operation.h:669
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
result_range getResults()
Definition: Operation.h:410
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:785
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Definition: Region.h:26
MLIRContext * getContext() const
Definition: PatternMatch.h:823
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
Definition: PatternMatch.h:847
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:718
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
void replaceAllUsesWith(Value newValue)
Replace all uses of 'this' value with the new value, updating anything in the IR that uses 'this' to ...
Definition: Value.h:173
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
StringRef getMappingAttrName()
Name of the mapping attribute produced by loop mappers.
Value constantOne(OpBuilder &builder, Location loc, Type tp)
Generates a 1-valued constant of the given type.
Definition: CodegenUtils.h:323
Include the generated interface declarations.
void finalizeParallelLoopToGPUConversion(Operation *op)
Clean up after applyPartialConversion/applyFullConversion call.
Definition: SCFToGPU.cpp:688
void populateParallelLoopToGPUPatterns(RewritePatternSet &patterns)
Adds the conversion pattern from scf.parallel to gpu.launch to the provided pattern list.
Definition: SCFToGPU.cpp:676
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
LogicalResult convertAffineLoopNestToGPULaunch(affine::AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims)
Convert a perfect affine loop nest with the outermost loop identified by forOp into a gpu::Launch ope...
bool isMemoryEffectFree(Operation *op)
Returns true if the given operation is free of memory effects.
Value lowerAffineUpperBound(affine::AffineForOp op, OpBuilder &builder)
Emit code that computes the upper bound of the given affine loop using standard arithmetic operations...
Operation * clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands)
bool areValuesDefinedAbove(Range values, Region &limit)
Check if all values in the provided range are defined above the limit region.
Definition: RegionUtils.h:24
void configureParallelLoopToGPULegality(ConversionTarget &target)
Configures the rewrite target such that only scf.parallel operations that are not rewritten by the pr...
Definition: SCFToGPU.cpp:680
Value lowerAffineLowerBound(affine::AffineForOp op, OpBuilder &builder)
Emit code that computes the lower bound of the given affine loop using standard arithmetic operations...
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:358
Utility class for the GPU dialect to represent triples of Values accessible through ....
Definition: GPUDialect.h:39