MLIR 22.0.0git
GPUToLLVMConversion.cpp
Go to the documentation of this file.
1//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a pass to convert gpu.launch_func op into a sequence of
10// GPU runtime calls. As most of GPU runtimes does not have a stable published
11// ABI, this pass uses a slim runtime layer that builds on top of the public
12// API from GPU runtime headers.
13//
14//===----------------------------------------------------------------------===//
15
17
34#include "mlir/IR/Attributes.h"
35#include "mlir/IR/Builders.h"
36#include "mlir/IR/BuiltinOps.h"
39
40#include "llvm/ADT/STLExtras.h"
41
42#define DEBUG_TYPE "gpu-to-llvm"
43
44namespace mlir {
45#define GEN_PASS_DEF_GPUTOLLVMCONVERSIONPASS
46#include "mlir/Conversion/Passes.h.inc"
47} // namespace mlir
48
49using namespace mlir;
50
51namespace {
52class GpuToLLVMConversionPass
53 : public impl::GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
54public:
55 using Base::Base;
56 void getDependentDialects(DialectRegistry &registry) const final {
57 Base::getDependentDialects(registry);
59 }
60 // Run the dialect converter on the module.
61 void runOnOperation() override;
62};
63
64template <typename OpTy>
65class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
66public:
67 explicit ConvertOpToGpuRuntimeCallPattern(
68 const LLVMTypeConverter &typeConverter)
69 : ConvertOpToLLVMPattern<OpTy>(typeConverter) {}
70
71protected:
72 Value getNumElements(ConversionPatternRewriter &rewriter, Location loc,
73 MemRefType type, MemRefDescriptor desc) const {
74 Type indexType = ConvertToLLVMPattern::getIndexType();
75 if (type.hasStaticShape())
77 rewriter, loc, indexType, type.getNumElements());
78 // Compute the number of elements by multiplying all the dim sizes.
79 uint64_t rank = type.getRank();
80 Value numElements = desc.size(rewriter, loc, /*pos=*/0);
81 for (unsigned i = 1; i < rank; i++)
82 numElements = LLVM::MulOp::create(rewriter, loc, numElements,
83 desc.size(rewriter, loc, /*pos=*/i));
84 return numElements;
85 }
86
87 MLIRContext *context = &this->getTypeConverter()->getContext();
88
89 Type llvmVoidType = LLVM::LLVMVoidType::get(context);
90 LLVM::LLVMPointerType llvmPointerType = LLVM::LLVMPointerType::get(context);
91 Type llvmInt8Type = IntegerType::get(context, 8);
92 Type llvmInt16Type = IntegerType::get(context, 16);
93 Type llvmInt32Type = IntegerType::get(context, 32);
94 Type llvmInt64Type = IntegerType::get(context, 64);
95 Type llvmFloat32Type = Float32Type::get(context);
96 Type llvmIntPtrType = IntegerType::get(
97 context, this->getTypeConverter()->getPointerBitwidth(0));
98
99 FunctionCallBuilder streamCreateCallBuilder = {
100 "mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
101 FunctionCallBuilder streamDestroyCallBuilder = {
102 "mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}};
103 FunctionCallBuilder streamSynchronizeCallBuilder = {
104 "mgpuStreamSynchronize",
105 llvmVoidType,
106 {llvmPointerType /* void *stream */}};
107 FunctionCallBuilder streamWaitEventCallBuilder = {
108 "mgpuStreamWaitEvent",
109 llvmVoidType,
110 {llvmPointerType /* void *stream */, llvmPointerType /* void *event */}};
111 FunctionCallBuilder eventCreateCallBuilder = {
112 "mgpuEventCreate", llvmPointerType /* void *event */, {}};
113 FunctionCallBuilder eventDestroyCallBuilder = {
114 "mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}};
115 FunctionCallBuilder eventSynchronizeCallBuilder = {
116 "mgpuEventSynchronize",
117 llvmVoidType,
118 {llvmPointerType /* void *event */}};
119 FunctionCallBuilder eventRecordCallBuilder = {
120 "mgpuEventRecord",
121 llvmVoidType,
122 {llvmPointerType /* void *event */, llvmPointerType /* void *stream */}};
123 FunctionCallBuilder hostRegisterCallBuilder = {
124 "mgpuMemHostRegisterMemRef",
125 llvmVoidType,
126 {llvmIntPtrType /* intptr_t rank */,
127 llvmPointerType /* void *memrefDesc */,
128 llvmIntPtrType /* intptr_t elementSizeBytes */}};
129 FunctionCallBuilder hostUnregisterCallBuilder = {
130 "mgpuMemHostUnregisterMemRef",
131 llvmVoidType,
132 {llvmIntPtrType /* intptr_t rank */,
133 llvmPointerType /* void *memrefDesc */,
134 llvmIntPtrType /* intptr_t elementSizeBytes */}};
135 FunctionCallBuilder allocCallBuilder = {
136 "mgpuMemAlloc",
137 llvmPointerType /* void * */,
138 {llvmIntPtrType /* intptr_t sizeBytes */,
139 llvmPointerType /* void *stream */,
140 llvmInt8Type /* bool isHostShared */}};
141 FunctionCallBuilder deallocCallBuilder = {
142 "mgpuMemFree",
143 llvmVoidType,
144 {llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}};
145 FunctionCallBuilder memcpyCallBuilder = {
146 "mgpuMemcpy",
147 llvmVoidType,
148 {llvmPointerType /* void *dst */, llvmPointerType /* void *src */,
149 llvmIntPtrType /* intptr_t sizeBytes */,
150 llvmPointerType /* void *stream */}};
151 FunctionCallBuilder memset16CallBuilder = {
152 "mgpuMemset16",
153 llvmVoidType,
154 {llvmPointerType /* void *dst */,
155 llvmInt16Type /* unsigned short value */,
156 llvmIntPtrType /* intptr_t sizeBytes */,
157 llvmPointerType /* void *stream */}};
158 FunctionCallBuilder memset32CallBuilder = {
159 "mgpuMemset32",
160 llvmVoidType,
161 {llvmPointerType /* void *dst */, llvmInt32Type /* unsigned int value */,
162 llvmIntPtrType /* intptr_t sizeBytes */,
163 llvmPointerType /* void *stream */}};
164 FunctionCallBuilder setDefaultDeviceCallBuilder = {
165 "mgpuSetDefaultDevice",
166 llvmVoidType,
167 {llvmInt32Type /* uint32_t devIndex */}};
168 FunctionCallBuilder createDnVecCallBuilder = {
169 "mgpuCreateDnVec",
170 llvmPointerType,
171 {llvmIntPtrType, llvmPointerType, llvmInt32Type,
172 llvmPointerType /* void *stream */}};
173 FunctionCallBuilder destroyDnVecCallBuilder = {
174 "mgpuDestroyDnVec",
175 llvmVoidType,
176 {llvmPointerType, llvmPointerType /* void *stream */}};
177 FunctionCallBuilder createDnMatCallBuilder = {
178 "mgpuCreateDnMat",
179 llvmPointerType,
180 {llvmIntPtrType, llvmIntPtrType, llvmPointerType, llvmInt32Type,
181 llvmPointerType /* void *stream */}};
182 FunctionCallBuilder destroyDnMatCallBuilder = {
183 "mgpuDestroyDnMat",
184 llvmVoidType,
185 {llvmPointerType, llvmPointerType /* void *stream */}};
186 FunctionCallBuilder createCooCallBuilder = {
187 "mgpuCreateCoo",
188 llvmPointerType,
189 {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
190 llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
191 llvmPointerType /* void *stream */}};
192 FunctionCallBuilder createCooAoSCallBuilder = {
193 "mgpuCreateCooAoS", // deprecated in cuSPARSE 11.2
194 llvmPointerType,
195 {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
196 llvmPointerType, llvmInt32Type, llvmInt32Type,
197 llvmPointerType /* void *stream */}};
198 FunctionCallBuilder createCsrCallBuilder = {
199 "mgpuCreateCsr",
200 llvmPointerType,
201 {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
202 llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
203 llvmInt32Type, llvmPointerType /* void *stream */}};
204 FunctionCallBuilder createCscCallBuilder = {
205 "mgpuCreateCsc",
206 llvmPointerType,
207 {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
208 llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
209 llvmInt32Type, llvmPointerType /* void *stream */}};
210 FunctionCallBuilder createBsrCallBuilder = {
211 "mgpuCreateBsr",
212 llvmPointerType,
213 {llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
214 llvmIntPtrType, llvmPointerType, llvmPointerType, llvmPointerType,
215 llvmInt32Type, llvmInt32Type, llvmInt32Type,
216 llvmPointerType /* void *stream */}};
217 FunctionCallBuilder destroySpMatCallBuilder = {
218 "mgpuDestroySpMat",
219 llvmVoidType,
220 {llvmPointerType, llvmPointerType /* void *stream */}};
221 FunctionCallBuilder spMVBufferSizeCallBuilder = {
222 "mgpuSpMVBufferSize",
223 llvmIntPtrType,
224 {llvmInt32Type, llvmPointerType, llvmPointerType, llvmPointerType,
225 llvmInt32Type, llvmPointerType /* void *stream */}};
226 FunctionCallBuilder spMVCallBuilder = {
227 "mgpuSpMV",
228 llvmVoidType,
229 {llvmInt32Type, llvmPointerType, llvmPointerType, llvmPointerType,
230 llvmInt32Type, llvmPointerType, llvmPointerType /* void *stream */}};
231 FunctionCallBuilder createSpMMBufferSizeCallBuilder = {
232 "mgpuSpMMBufferSize",
233 llvmIntPtrType,
234 {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
235 llvmPointerType, llvmInt32Type, llvmPointerType /* void *stream */}};
236 FunctionCallBuilder createSpMMCallBuilder = {
237 "mgpuSpMM",
238 llvmVoidType,
239 {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
240 llvmPointerType, llvmInt32Type, llvmPointerType,
241 llvmPointerType /* void *stream */}};
242 FunctionCallBuilder createSDDMMBufferSizeCallBuilder = {
243 "mgpuSDDMMBufferSize",
244 llvmIntPtrType,
245 {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
246 llvmPointerType, llvmInt32Type, llvmPointerType /* void *stream */}};
247 FunctionCallBuilder createSDDMMCallBuilder = {
248 "mgpuSDDMM",
249 llvmVoidType,
250 {llvmInt32Type, llvmInt32Type, llvmPointerType, llvmPointerType,
251 llvmPointerType, llvmInt32Type, llvmPointerType,
252 llvmPointerType /* void *stream */}};
253 FunctionCallBuilder createLtDnMatCallBuilder = {
254 "mgpuCreateCuSparseLtDnMat",
255 llvmVoidType,
256 {llvmPointerType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
257 llvmInt32Type, llvmPointerType /* void *stream */}};
258 FunctionCallBuilder destroyCuSparseLtSpMatBuilder = {
259 "mgpuDestroyCuSparseLtSpMat",
260 llvmVoidType,
261 {llvmPointerType, llvmPointerType /* void *stream */}};
262 FunctionCallBuilder destroyCuSparseLtDnMatBuilder = {
263 "mgpuDestroyCuSparseLtDnMat",
264 llvmVoidType,
265 {llvmPointerType, llvmPointerType /* void *stream */}};
266 FunctionCallBuilder create2To4SpMatCallBuilder = {
267 "mgpuCusparseLtCreate2To4SpMat",
268 llvmVoidType,
269 {llvmPointerType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
270 llvmInt32Type, llvmPointerType /* void *stream */}};
271 FunctionCallBuilder createCuSparseLtSpMMBufferSizeBuilder = {
272 "mgpuCuSparseLtSpMMBufferSize",
273 llvmVoidType,
274 {llvmPointerType, llvmInt32Type, llvmInt32Type, llvmPointerType,
275 llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
276 llvmPointerType /*void *stream*/}};
277 FunctionCallBuilder createCuSparseLtSpMMBuilder = {
278 "mgpuCuSparseLtSpMM",
279 llvmVoidType,
280 {llvmPointerType, llvmPointerType, llvmPointerType, llvmPointerType,
281 llvmPointerType, llvmPointerType, llvmPointerType /*void *stream*/}};
282 FunctionCallBuilder createSpGEMMCreateDescrBuilder = {
283 "mgpuSpGEMMCreateDescr",
284 llvmPointerType,
285 {llvmPointerType /*void *stream*/}};
286 FunctionCallBuilder createSpGEMMDestroyDescrBuilder = {
287 "mgpuSpGEMMDestroyDescr",
288 llvmVoidType,
289 {llvmPointerType /*s*/, llvmPointerType /*void *stream*/}};
290 FunctionCallBuilder createSpGEMMWorkEstimationBuilder = {
291 "mgpuSpGEMMWorkEstimation",
292 llvmIntPtrType,
293 {llvmPointerType /*s*/, llvmInt32Type /*ma*/, llvmInt32Type /*mb*/,
294 llvmPointerType /*a*/, llvmPointerType /*b*/, llvmPointerType /*c*/,
295 llvmInt32Type /*ctp*/, llvmIntPtrType /*bs*/, llvmPointerType /*buf*/,
296 llvmPointerType /*void *stream*/}};
297 FunctionCallBuilder createSpGEMMComputeBuilder = {
298 "mgpuSpGEMMCompute",
299 llvmIntPtrType,
300 {llvmPointerType /*s*/, llvmInt32Type /*ma*/, llvmInt32Type /*mb*/,
301 llvmPointerType /*a*/, llvmPointerType /*b*/, llvmPointerType /*c*/,
302 llvmInt32Type /*ctp*/, llvmIntPtrType /*bs*/, llvmPointerType /*buf*/,
303 llvmPointerType /*void *stream*/}};
304 FunctionCallBuilder createSpGEMMCopyBuilder = {
305 "mgpuSpGEMMCopy",
306 llvmVoidType,
307 {llvmPointerType /*s*/, llvmInt32Type /*ma*/, llvmInt32Type /*mb*/,
308 llvmPointerType /*a*/, llvmPointerType /*b*/, llvmPointerType /*c*/,
309 llvmInt32Type /*ctp*/, llvmPointerType /*void *stream*/}};
310 FunctionCallBuilder createSpMatGetSizeBuilder = {
311 "mgpuSpMatGetSize",
312 llvmVoidType,
313 {llvmPointerType /*mc*/, llvmPointerType /*rc*/, llvmPointerType /*cc*/,
314 llvmPointerType /*nc*/, llvmPointerType /*void *stream*/}};
315 FunctionCallBuilder createSetCsrPointersBuilder = {
316 "mgpuSetCsrPointers",
317 llvmVoidType,
318 {llvmPointerType /*spmat*/, llvmPointerType /*pos*/,
319 llvmPointerType /*crd*/, llvmPointerType /*val*/,
320 llvmPointerType /*void *stream*/}};
321};
322
323/// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
324/// call. Currently it supports CUDA and ROCm (HIP).
325class ConvertHostRegisterOpToGpuRuntimeCallPattern
326 : public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
327public:
328 ConvertHostRegisterOpToGpuRuntimeCallPattern(
329 const LLVMTypeConverter &typeConverter)
330 : ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}
331
332private:
333 LogicalResult
334 matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
335 ConversionPatternRewriter &rewriter) const override;
336};
337
338class ConvertHostUnregisterOpToGpuRuntimeCallPattern
339 : public ConvertOpToGpuRuntimeCallPattern<gpu::HostUnregisterOp> {
340public:
341 ConvertHostUnregisterOpToGpuRuntimeCallPattern(
342 const LLVMTypeConverter &typeConverter)
343 : ConvertOpToGpuRuntimeCallPattern<gpu::HostUnregisterOp>(typeConverter) {
344 }
345
346private:
347 LogicalResult
348 matchAndRewrite(gpu::HostUnregisterOp hostUnregisterOp, OpAdaptor adaptor,
349 ConversionPatternRewriter &rewriter) const override;
350};
351
352/// A rewrite pattern to convert gpu.alloc operations into a GPU runtime
353/// call. Currently it supports CUDA and ROCm (HIP).
354class ConvertAllocOpToGpuRuntimeCallPattern
355 : public ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp> {
356public:
357 ConvertAllocOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
358 : ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp>(typeConverter) {}
359
360private:
361 LogicalResult
362 matchAndRewrite(gpu::AllocOp allocOp, OpAdaptor adaptor,
363 ConversionPatternRewriter &rewriter) const override;
364};
365
366/// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime
367/// call. Currently it supports CUDA and ROCm (HIP).
368class ConvertDeallocOpToGpuRuntimeCallPattern
369 : public ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp> {
370public:
371 ConvertDeallocOpToGpuRuntimeCallPattern(
372 const LLVMTypeConverter &typeConverter)
373 : ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp>(typeConverter) {}
374
375private:
376 LogicalResult
377 matchAndRewrite(gpu::DeallocOp deallocOp, OpAdaptor adaptor,
378 ConversionPatternRewriter &rewriter) const override;
379};
380
381class ConvertAsyncYieldToGpuRuntimeCallPattern
382 : public ConvertOpToGpuRuntimeCallPattern<async::YieldOp> {
383public:
384 ConvertAsyncYieldToGpuRuntimeCallPattern(
385 const LLVMTypeConverter &typeConverter)
386 : ConvertOpToGpuRuntimeCallPattern<async::YieldOp>(typeConverter) {}
387
388private:
389 LogicalResult
390 matchAndRewrite(async::YieldOp yieldOp, OpAdaptor adaptor,
391 ConversionPatternRewriter &rewriter) const override;
392};
393
394/// A rewrite pattern to convert gpu.wait operations into a GPU runtime
395/// call. Currently it supports CUDA and ROCm (HIP).
396class ConvertWaitOpToGpuRuntimeCallPattern
397 : public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
398public:
399 ConvertWaitOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
400 : ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
401
402private:
403 LogicalResult
404 matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
405 ConversionPatternRewriter &rewriter) const override;
406};
407
408/// A rewrite pattern to convert gpu.wait async operations into a GPU runtime
409/// call. Currently it supports CUDA and ROCm (HIP).
410class ConvertWaitAsyncOpToGpuRuntimeCallPattern
411 : public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
412public:
413 ConvertWaitAsyncOpToGpuRuntimeCallPattern(
414 const LLVMTypeConverter &typeConverter)
415 : ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
416
417private:
418 LogicalResult
419 matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
420 ConversionPatternRewriter &rewriter) const override;
421};
422
423/// A rewrite patter to legalize gpu.launch_func with LLVM types.
424class LegalizeLaunchFuncOpPattern
425 : public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
426public:
427 LegalizeLaunchFuncOpPattern(const LLVMTypeConverter &typeConverter,
428 bool kernelBarePtrCallConv,
429 bool kernelIntersperseSizeCallConv)
430 : ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
431 kernelBarePtrCallConv(kernelBarePtrCallConv),
432 kernelIntersperseSizeCallConv(kernelIntersperseSizeCallConv) {}
433
434private:
435 LogicalResult
436 matchAndRewrite(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
437 ConversionPatternRewriter &rewriter) const override;
438
439 bool kernelBarePtrCallConv;
440 bool kernelIntersperseSizeCallConv;
441};
442
443/// A rewrite pattern to convert gpu.memcpy operations into a GPU runtime
444/// call. Currently it supports CUDA and ROCm (HIP).
445class ConvertMemcpyOpToGpuRuntimeCallPattern
446 : public ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp> {
447public:
448 ConvertMemcpyOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
449 : ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp>(typeConverter) {}
450
451private:
452 LogicalResult
453 matchAndRewrite(gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
454 ConversionPatternRewriter &rewriter) const override;
455};
456
457/// A rewrite pattern to convert gpu.memset operations into a GPU runtime
458/// call. Currently it supports CUDA and ROCm (HIP).
459class ConvertMemsetOpToGpuRuntimeCallPattern
460 : public ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp> {
461public:
462 ConvertMemsetOpToGpuRuntimeCallPattern(const LLVMTypeConverter &typeConverter)
463 : ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp>(typeConverter) {}
464
465private:
466 LogicalResult
467 matchAndRewrite(gpu::MemsetOp memsetOp, OpAdaptor adaptor,
468 ConversionPatternRewriter &rewriter) const override;
469};
470
471/// A rewrite pattern to convert gpu.set_default_device to a GPU runtime call.
472/// Currently supports CUDA and ROCm (HIP)
473class ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern
474 : public ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp> {
475public:
476 ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern(
477 const LLVMTypeConverter &typeConverter)
478 : ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp>(
479 typeConverter) {}
480
481 LogicalResult
482 matchAndRewrite(gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
483 ConversionPatternRewriter &rewriter) const override;
484};
485
486/// Generic rewriting rule for operation on sparse matrices.
487/// Currently supports CUDA (by means of cuSparse and cuSparseLt).
488#define DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(op_name) \
489 class Convert##op_name##ToGpuRuntimeCallPattern \
490 : public ConvertOpToGpuRuntimeCallPattern<gpu::op_name> { \
491 public: \
492 Convert##op_name##ToGpuRuntimeCallPattern( \
493 const LLVMTypeConverter &typeConverter) \
494 : ConvertOpToGpuRuntimeCallPattern<gpu::op_name>(typeConverter) {} \
495 \
496 private: \
497 LogicalResult \
498 matchAndRewrite(gpu::op_name op, OpAdaptor adaptor, \
499 ConversionPatternRewriter &rewriter) const override; \
500 };
501
519DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(SpGEMMWorkEstimationOrComputeOp)
523
524} // namespace
525
526void GpuToLLVMConversionPass::runOnOperation() {
527 MLIRContext *context = &getContext();
528
529 // Perform progressive lowering of vector transfer operations.
530 {
531 RewritePatternSet patterns(&getContext());
532 // Vector transfer ops with rank > 1 should be lowered with VectorToSCF.
534 /*maxTransferRank=*/1);
535 // Transform N-D vector.from_elements to 1-D vector.from_elements before
536 // conversion.
537 vector::populateVectorFromElementsUnrollPatterns(patterns);
538 if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
539 return signalPassFailure();
540 }
541
542 LowerToLLVMOptions options(context);
543 options.useBarePtrCallConv = hostBarePtrCallConv;
544 RewritePatternSet patterns(context);
545 ConversionTarget target(*context);
546 target.addLegalDialect<LLVM::LLVMDialect>();
547 LLVMTypeConverter converter(context, options);
548
549 // Populate all patterns from all dialects that implement the
550 // `ConvertToLLVMPatternInterface` interface.
551 for (Dialect *dialect : context->getLoadedDialects()) {
552 auto iface = dyn_cast<ConvertToLLVMPatternInterface>(dialect);
553 if (!iface)
554 continue;
555 iface->populateConvertToLLVMConversionPatterns(target, converter, patterns);
556 }
557
558 // Preserve GPU modules and binaries. Modules are preserved as they can be
559 // converted later by `gpu-module-to-binary`.
560 target.addLegalOp<gpu::GPUModuleOp, gpu::BinaryOp>();
561 // Accept as legal LaunchFuncOps if the operands have been lowered.
562 target.addDynamicallyLegalOp<gpu::LaunchFuncOp>(
563 [&](gpu::LaunchFuncOp op) -> bool { return converter.isLegal(op); });
564
565 // These aren't covered by the ConvertToLLVMPatternInterface right now.
569 target);
571 kernelBarePtrCallConv,
572 kernelIntersperseSizeCallConv);
573
574 if (failed(
575 applyPartialConversion(getOperation(), target, std::move(patterns))))
576 signalPassFailure();
577}
578
580 ArrayRef<Value> arguments) const {
581 auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
582 auto function = [&] {
583 if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
584 return function;
585 auto builder = OpBuilder::atBlockEnd(module.getBody());
586 return LLVM::LLVMFuncOp::create(builder, loc, functionName, functionType);
587 }();
588 return LLVM::CallOp::create(builder, loc, function, arguments);
589}
590
591// Corresponding to cusparseIndexType_t defined in cusparse.h.
592static int32_t getCuSparseIndexTypeFrom(Type type) {
593 if (type.isInteger(16))
594 return 1; // CUSPARSE_INDEX_16U
595 if (type.isInteger(32))
596 return 2; // CUSPARSE_INDEX_32I
597 return 3; // CUSPARSE_INDEX_64I
598}
599
600static int32_t getCuSparseLtDataTypeFrom(Type type) {
601 if (type.isF16())
602 return 0; // CUSPARSE_COMPUTE_16F,
603 if (type.isInteger(32))
604 return 1; // CUSPARSE_COMPUTE_32I
605 llvm_unreachable("unsupported type");
606 // TODO: add support to TF32
607}
608
609// Corresponding to cudaDataType_t defined in CUDA library_types.h.
610static int32_t getCuSparseDataTypeFrom(Type type) {
611 if (llvm::isa<ComplexType>(type)) {
612 // get the element type
613 auto elementType = cast<ComplexType>(type).getElementType();
614 if (elementType.isBF16())
615 return 15; // CUDA_C_16BF
616 if (elementType.isF16())
617 return 6; // CUDA_C_16F
618 if (elementType.isF32())
619 return 4; // CUDA_C_32F
620 if (elementType.isF64())
621 return 5; // CUDA_C_64F
622 if (elementType.isInteger(8))
623 return 7; // CUDA_C_8I
624 if (elementType.isInteger(16))
625 return 21; // CUDA_C_16I
626 if (elementType.isInteger(32))
627 return 11; // CUDA_C_32I
628 }
629 if (type.isBF16())
630 return 14; // CUDA_R_16BF
631 if (type.isF16())
632 return 2; // CUDA_R_16F
633 if (type.isF32())
634 return 0; // CUDA_R_32F
635 if (type.isF64())
636 return 1; // CUDA_R_64F
637 if (type.isInteger(8))
638 return 3; // CUDA_R_8I
639 if (type.isInteger(16))
640 return 20; // CUDA_R_16I
641 if (type.isInteger(32))
642 return 10; // CUDA_R_32I
643
644 llvm_unreachable("unsupported element type");
645}
646
647static gpu::Prune2To4SpMatFlag get2To4PruneFlag(Value spMat) {
648 return spMat.getDefiningOp<gpu::Create2To4SpMatOp>().getPruneFlag();
649}
650
651// TODO: We may want a run-time (of the mlir compiler) disablement/warning:
652// cusparseLt currently won't work for cuda architecture <8.0 and will trigger a
653// runtime (of the CUDA program) error , but it might be great if we could at
654// least output a warning when we found the target architecture is <8.0 and the
655// user still wants to use cusparseLt. to make sure when lowering gpu sparse
656// dialect to llvm calls, the cusparselt calls are disabled for cuda
657// architecture <8.0
658static bool is2To4Sparsity(Value spMat) {
659 if (auto op = spMat.getDefiningOp<gpu::Create2To4SpMatOp>())
660 return true;
661 if (auto op = spMat.getDefiningOp<gpu::CreateCooOp>())
662 return false;
663 if (auto op = spMat.getDefiningOp<gpu::CreateCooAoSOp>())
664 return false;
665 if (auto op = spMat.getDefiningOp<gpu::CreateCsrOp>())
666 return false;
667 if (auto op = spMat.getDefiningOp<gpu::CreateCscOp>())
668 return false;
669 if (auto op = spMat.getDefiningOp<gpu::CreateBsrOp>())
670 return false;
671 // Print the spMat defining op
672 spMat.getDefiningOp()->print(llvm::errs());
673 llvm_unreachable("cannot find spmat def");
674}
675
676static bool isSpMMCusparseLtOp(Value op) {
677 for (Operation *user : op.getUsers()) {
678 auto spmmOp = dyn_cast<gpu::SpMMOp>(user);
679 // If the other operator is 50% sparsity then we should use cusparseLt
680 if (!spmmOp)
681 continue;
682 if (is2To4Sparsity(spmmOp.getSpmatA()))
683 return true;
684 }
685 return false;
686}
687
688// Returns whether all operands are of LLVM type.
689static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
690 ConversionPatternRewriter &rewriter) {
691 if (!llvm::all_of(operands, [](Value value) {
692 return LLVM::isCompatibleType(value.getType());
693 }))
694 return rewriter.notifyMatchFailure(
695 op, "Cannot convert if operands aren't of LLVM type.");
696 return success();
697}
698
699static LogicalResult
700isAsyncWithOneDependency(ConversionPatternRewriter &rewriter,
701 gpu::AsyncOpInterface op) {
702 if (op.getAsyncDependencies().size() != 1)
703 return rewriter.notifyMatchFailure(
704 op, "Can only convert with exactly one async dependency.");
705
706 if (!op.getAsyncToken())
707 return rewriter.notifyMatchFailure(op, "Can convert only async version.");
708
709 return success();
710}
711
712LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
713 gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
714 ConversionPatternRewriter &rewriter) const {
715 auto *op = hostRegisterOp.getOperation();
716 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
717 return failure();
718
719 Location loc = op->getLoc();
720
721 auto memRefType = hostRegisterOp.getValue().getType();
722 auto elementType = cast<UnrankedMemRefType>(memRefType).getElementType();
723 auto elementSize = getSizeInBytes(loc, elementType, rewriter);
724
725 auto arguments = getTypeConverter()->promoteOperands(
726 loc, op->getOperands(), adaptor.getOperands(), rewriter);
727 arguments.push_back(elementSize);
728 hostRegisterCallBuilder.create(loc, rewriter, arguments);
729
730 rewriter.eraseOp(op);
731 return success();
732}
733
734LogicalResult ConvertHostUnregisterOpToGpuRuntimeCallPattern::matchAndRewrite(
735 gpu::HostUnregisterOp hostUnregisterOp, OpAdaptor adaptor,
736 ConversionPatternRewriter &rewriter) const {
737 Operation *op = hostUnregisterOp.getOperation();
738 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
739 return failure();
740
741 Location loc = op->getLoc();
742
743 auto memRefType = hostUnregisterOp.getValue().getType();
744 auto elementType = cast<UnrankedMemRefType>(memRefType).getElementType();
745 auto elementSize = getSizeInBytes(loc, elementType, rewriter);
746
747 auto arguments = getTypeConverter()->promoteOperands(
748 loc, op->getOperands(), adaptor.getOperands(), rewriter);
749 arguments.push_back(elementSize);
750 hostUnregisterCallBuilder.create(loc, rewriter, arguments);
751
752 rewriter.eraseOp(op);
753 return success();
754}
755
756LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite(
757 gpu::AllocOp allocOp, OpAdaptor adaptor,
758 ConversionPatternRewriter &rewriter) const {
759
760 MemRefType memRefType = allocOp.getType();
761
762 if (failed(areAllLLVMTypes(allocOp, adaptor.getOperands(), rewriter)) ||
763 !isConvertibleAndHasIdentityMaps(memRefType))
764 return failure();
765
766 auto loc = allocOp.getLoc();
767
768 bool isShared = allocOp.getHostShared();
769
770 if (isShared && allocOp.getAsyncToken())
771 return rewriter.notifyMatchFailure(
772 allocOp, "Host Shared allocation cannot be done async");
773 if (!isShared && failed(isAsyncWithOneDependency(rewriter, allocOp)))
774 return failure();
775
776 // Get shape of the memref as values: static sizes are constant
777 // values and dynamic sizes are passed to 'alloc' as operands.
778 SmallVector<Value, 4> shape;
779 SmallVector<Value, 4> strides;
780 Value sizeBytes;
781 getMemRefDescriptorSizes(loc, memRefType, adaptor.getDynamicSizes(), rewriter,
782 shape, strides, sizeBytes);
783
784 // Allocate the underlying buffer and store a pointer to it in the MemRef
785 // descriptor.
786 auto nullPtr = mlir::LLVM::ZeroOp::create(rewriter, loc, llvmPointerType);
787 Value stream = adaptor.getAsyncDependencies().empty()
788 ? nullPtr
789 : adaptor.getAsyncDependencies().front();
790
791 auto isHostShared = mlir::LLVM::ConstantOp::create(
792 rewriter, loc, llvmInt8Type, rewriter.getI8IntegerAttr(isShared));
793
794 Value allocatedPtr =
795 allocCallBuilder.create(loc, rewriter, {sizeBytes, stream, isHostShared})
796 .getResult();
797
798 // No alignment.
799 Value alignedPtr = allocatedPtr;
800
801 // Create the MemRef descriptor.
802 auto memRefDescriptor = this->createMemRefDescriptor(
803 loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter);
804
805 if (allocOp.getAsyncToken()) {
806 // Async alloc: make dependent ops use the same stream.
807 rewriter.replaceOp(allocOp, {memRefDescriptor, stream});
808 } else {
809 rewriter.replaceOp(allocOp, {memRefDescriptor});
810 }
811
812 return success();
813}
814
815LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite(
816 gpu::DeallocOp deallocOp, OpAdaptor adaptor,
817 ConversionPatternRewriter &rewriter) const {
818 if (failed(areAllLLVMTypes(deallocOp, adaptor.getOperands(), rewriter)) ||
819 failed(isAsyncWithOneDependency(rewriter, deallocOp)))
820 return failure();
821
822 Location loc = deallocOp.getLoc();
823
824 Value pointer =
825 MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
826 Value stream = adaptor.getAsyncDependencies().front();
827 deallocCallBuilder.create(loc, rewriter, {pointer, stream});
828
829 rewriter.replaceOp(deallocOp, {stream});
830 return success();
831}
832
833static bool isGpuAsyncTokenType(Value value) {
834 return isa<gpu::AsyncTokenType>(value.getType());
835}
836
837// Converts !gpu.async.token operands of `async.yield` to runtime calls. The
838// !gpu.async.token are lowered to stream within the async.execute region, but
839// are passed as events between them. For each !gpu.async.token operand, we
840// create an event and record it on the stream.
841LogicalResult ConvertAsyncYieldToGpuRuntimeCallPattern::matchAndRewrite(
842 async::YieldOp yieldOp, OpAdaptor adaptor,
843 ConversionPatternRewriter &rewriter) const {
844 if (llvm::none_of(yieldOp.getOperands(), isGpuAsyncTokenType))
845 return rewriter.notifyMatchFailure(yieldOp, "no gpu async token operand");
846
847 Location loc = yieldOp.getLoc();
848 SmallVector<Value, 4> newOperands(adaptor.getOperands());
849 llvm::SmallDenseSet<Value> streams;
850 for (auto &operand : yieldOp->getOpOperands()) {
851 if (!isGpuAsyncTokenType(operand.get()))
852 continue;
853 auto idx = operand.getOperandNumber();
854 auto stream = adaptor.getOperands()[idx];
855 auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
856 eventRecordCallBuilder.create(loc, rewriter, {event, stream});
857 newOperands[idx] = event;
858 streams.insert(stream);
859 }
860 for (auto stream : streams)
861 streamDestroyCallBuilder.create(loc, rewriter, {stream});
862
863 rewriter.modifyOpInPlace(yieldOp, [&] { yieldOp->setOperands(newOperands); });
864 return success();
865}
866
867// Returns whether `value` is the result of an LLVM::CallOp to `functionName`.
868static bool isDefinedByCallTo(Value value, StringRef functionName) {
869 assert(isa<LLVM::LLVMPointerType>(value.getType()));
870 if (auto defOp = value.getDefiningOp<LLVM::CallOp>())
871 return *defOp.getCallee() == functionName;
872 return false;
873}
874
875// Converts `gpu.wait` to runtime calls. The converted op synchronizes the host
876// with the stream/event operands. The operands are destroyed. That is, it
877// assumes that it is not used afterwards or elsewhere. Otherwise we will get a
878// runtime error. Eventually, we should guarantee this property.
879LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite(
880 gpu::WaitOp waitOp, OpAdaptor adaptor,
881 ConversionPatternRewriter &rewriter) const {
882 if (waitOp.getAsyncToken())
883 return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op.");
884
885 Location loc = waitOp.getLoc();
886
887 for (auto operand : adaptor.getOperands()) {
888 if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
889 // The converted operand's definition created a stream.
890 streamSynchronizeCallBuilder.create(loc, rewriter, {operand});
891 streamDestroyCallBuilder.create(loc, rewriter, {operand});
892 } else {
893 // Otherwise the converted operand is an event. This assumes that we use
894 // events in control flow code as well.
895 eventSynchronizeCallBuilder.create(loc, rewriter, {operand});
896 eventDestroyCallBuilder.create(loc, rewriter, {operand});
897 }
898 }
899
900 rewriter.eraseOp(waitOp);
901 return success();
902}
903
904// Converts `gpu.wait async` to runtime calls. The converted op creates a new
905// stream that is synchronized with stream/event operands. The operands are
906// destroyed. That is, it assumes that it is not used afterwards or elsewhere.
907// Otherwise we will get a runtime error. Eventually, we should guarantee this
908// property.
909LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite(
910 gpu::WaitOp waitOp, OpAdaptor adaptor,
911 ConversionPatternRewriter &rewriter) const {
912 if (!waitOp.getAsyncToken())
913 return rewriter.notifyMatchFailure(waitOp, "Can only convert async op.");
914
915 Location loc = waitOp.getLoc();
916
917 auto insertionPoint = rewriter.saveInsertionPoint();
918 SmallVector<Value, 1> events;
919 for (auto pair :
920 llvm::zip(waitOp.getAsyncDependencies(), adaptor.getOperands())) {
921 auto operand = std::get<1>(pair);
922 if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
923 // The converted operand's definition created a stream. Insert an event
924 // into the stream just after the last use of the original token operand.
925 auto *defOp = std::get<0>(pair).getDefiningOp();
926 rewriter.setInsertionPointAfter(defOp);
927 auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
928 eventRecordCallBuilder.create(loc, rewriter, {event, operand});
929 events.push_back(event);
930 } else {
931 // Otherwise the converted operand is an event. This assumes that we use
932 // events in control flow code as well.
933 events.push_back(operand);
934 }
935 }
936 rewriter.restoreInsertionPoint(insertionPoint);
937 auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult();
938 for (auto event : events)
939 streamWaitEventCallBuilder.create(loc, rewriter, {stream, event});
940 for (auto event : events)
941 eventDestroyCallBuilder.create(loc, rewriter, {event});
942 rewriter.replaceOp(waitOp, {stream});
943
944 return success();
945}
946
947// Legalize the op's operands.
948LogicalResult LegalizeLaunchFuncOpPattern::matchAndRewrite(
949 gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
950 ConversionPatternRewriter &rewriter) const {
951 if (failed(areAllLLVMTypes(launchOp, adaptor.getOperands(), rewriter)))
952 return failure();
953
954 if (launchOp.getAsyncDependencies().size() > 1)
955 return rewriter.notifyMatchFailure(
956 launchOp, "Cannot convert with more than one async dependency.");
957
958 // Fail when the synchronous version of the op has async dependencies. The
959 // lowering destroys the stream, and we do not want to check that there is no
960 // use of the stream after this op.
961 if (!launchOp.getAsyncToken() && !launchOp.getAsyncDependencies().empty())
962 return rewriter.notifyMatchFailure(
963 launchOp, "Cannot convert non-async op with async dependencies.");
964
965 Location loc = launchOp.getLoc();
966
967 Value stream = Value();
968 if (!adaptor.getAsyncDependencies().empty())
969 stream = adaptor.getAsyncDependencies().front();
970 // If the async keyword is present and there are no dependencies, then a
971 // stream must be created to pass to subsequent operations.
972 else if (launchOp.getAsyncToken())
973 stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult();
974
975 // Lower the kernel operands to match kernel parameters.
976 // Note: If `useBarePtrCallConv` is set in the type converter's options,
977 // the value of `kernelBarePtrCallConv` will be ignored.
978 OperandRange origArguments = launchOp.getKernelOperands();
979 SmallVector<Value, 8> llvmArguments = getTypeConverter()->promoteOperands(
980 loc, origArguments, adaptor.getKernelOperands(), rewriter,
981 /*useBarePtrCallConv=*/kernelBarePtrCallConv);
982 SmallVector<Value, 8> llvmArgumentsWithSizes;
983
984 // Intersperse size information if requested.
985 if (kernelIntersperseSizeCallConv) {
986 if (origArguments.size() != llvmArguments.size()) {
987 // This shouldn't happen if the bare-pointer calling convention is used.
988 return rewriter.notifyMatchFailure(
989 launchOp,
990 "Cannot add sizes to arguments with one-to-many LLVM IR expansion.");
991 }
992
993 llvmArgumentsWithSizes.reserve(llvmArguments.size() * 2);
994 for (auto [llvmArg, origArg] : zip_equal(llvmArguments, origArguments)) {
995 auto memrefTy = dyn_cast<MemRefType>(origArg.getType());
996 if (!memrefTy) {
997 return rewriter.notifyMatchFailure(
998 launchOp, "Operand to launch op is not a memref.");
999 }
1000
1001 if (!memrefTy.hasStaticShape() ||
1002 !memrefTy.getElementType().isIntOrFloat()) {
1003 return rewriter.notifyMatchFailure(
1004 launchOp, "Operand to launch op is not a memref with a static "
1005 "shape and an integer or float element type.");
1006 }
1007
1008 unsigned bitwidth = memrefTy.getElementTypeBitWidth();
1009 if (bitwidth % 8 != 0) {
1010 return rewriter.notifyMatchFailure(
1011 launchOp, "Operand to launch op is not a memref with a "
1012 "byte-aligned element type.");
1013 }
1014
1015 uint64_t staticSize = static_cast<uint64_t>(bitwidth / 8) *
1016 static_cast<uint64_t>(memrefTy.getNumElements());
1017
1018 Value sizeArg = LLVM::ConstantOp::create(
1019 rewriter, loc, getIndexType(), rewriter.getIndexAttr(staticSize));
1020 llvmArgumentsWithSizes.push_back(llvmArg); // Presumably a bare pointer.
1021 llvmArgumentsWithSizes.push_back(sizeArg);
1022 }
1023 }
1024
1025 std::optional<gpu::KernelDim3> clusterSize = std::nullopt;
1026 if (launchOp.hasClusterSize()) {
1027 clusterSize =
1028 gpu::KernelDim3{adaptor.getClusterSizeX(), adaptor.getClusterSizeY(),
1029 adaptor.getClusterSizeZ()};
1030 }
1031 gpu::LaunchFuncOp::create(
1032 rewriter, launchOp.getLoc(), launchOp.getKernelAttr(),
1033 gpu::KernelDim3{adaptor.getGridSizeX(), adaptor.getGridSizeY(),
1034 adaptor.getGridSizeZ()},
1035 gpu::KernelDim3{adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
1036 adaptor.getBlockSizeZ()},
1037 adaptor.getDynamicSharedMemorySize(),
1038 llvmArgumentsWithSizes.empty() ? llvmArguments : llvmArgumentsWithSizes,
1039 stream, clusterSize);
1040 if (launchOp.getAsyncToken())
1041 rewriter.replaceOp(launchOp, {stream});
1042 else
1043 rewriter.eraseOp(launchOp);
1044 return success();
1045}
1046
1048 ConversionPatternRewriter &rewriter,
1049 LLVM::LLVMPointerType destinationType,
1050 Value sourcePtr,
1051 const LLVMTypeConverter &typeConverter) {
1052 auto sourceTy = cast<LLVM::LLVMPointerType>(sourcePtr.getType());
1053 if (destinationType.getAddressSpace() != sourceTy.getAddressSpace())
1054 sourcePtr = LLVM::AddrSpaceCastOp::create(
1055 rewriter, loc,
1056 LLVM::LLVMPointerType::get(rewriter.getContext(),
1057 destinationType.getAddressSpace()),
1058 sourcePtr);
1059 return sourcePtr;
1060}
1061
1062LogicalResult ConvertMemcpyOpToGpuRuntimeCallPattern::matchAndRewrite(
1063 gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
1064 ConversionPatternRewriter &rewriter) const {
1065 auto memRefType = cast<MemRefType>(memcpyOp.getSrc().getType());
1066
1067 if (failed(areAllLLVMTypes(memcpyOp, adaptor.getOperands(), rewriter)) ||
1068 !isConvertibleAndHasIdentityMaps(memRefType) ||
1069 failed(isAsyncWithOneDependency(rewriter, memcpyOp)))
1070 return failure();
1071
1072 auto loc = memcpyOp.getLoc();
1073
1074 MemRefDescriptor srcDesc(adaptor.getSrc());
1075 Value numElements = getNumElements(rewriter, loc, memRefType, srcDesc);
1076
1077 Type elementPtrType = getElementPtrType(memRefType);
1078 Value nullPtr = LLVM::ZeroOp::create(rewriter, loc, elementPtrType);
1079 Value gepPtr = LLVM::GEPOp::create(
1080 rewriter, loc, elementPtrType,
1081 typeConverter->convertType(memRefType.getElementType()), nullPtr,
1082 numElements);
1083 auto sizeBytes =
1084 LLVM::PtrToIntOp::create(rewriter, loc, getIndexType(), gepPtr);
1085
1086 auto src = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
1087 srcDesc.alignedPtr(rewriter, loc),
1088 *getTypeConverter());
1089 auto dst = bitAndAddrspaceCast(
1090 loc, rewriter, llvmPointerType,
1091 MemRefDescriptor(adaptor.getDst()).alignedPtr(rewriter, loc),
1092 *getTypeConverter());
1093
1094 auto stream = adaptor.getAsyncDependencies().front();
1095 memcpyCallBuilder.create(loc, rewriter, {dst, src, sizeBytes, stream});
1096
1097 rewriter.replaceOp(memcpyOp, {stream});
1098
1099 return success();
1100}
1101
1102LogicalResult ConvertMemsetOpToGpuRuntimeCallPattern::matchAndRewrite(
1103 gpu::MemsetOp memsetOp, OpAdaptor adaptor,
1104 ConversionPatternRewriter &rewriter) const {
1105 auto memRefType = cast<MemRefType>(memsetOp.getDst().getType());
1106
1107 if (failed(areAllLLVMTypes(memsetOp, adaptor.getOperands(), rewriter)) ||
1108 !isConvertibleAndHasIdentityMaps(memRefType) ||
1109 failed(isAsyncWithOneDependency(rewriter, memsetOp)))
1110 return failure();
1111
1112 auto loc = memsetOp.getLoc();
1113
1114 Type valueType = adaptor.getValue().getType();
1115 unsigned bitWidth = valueType.getIntOrFloatBitWidth();
1116 // Ints and floats of 16 or 32 bit width are allowed.
1117 if (!valueType.isIntOrFloat() || (bitWidth != 16 && bitWidth != 32)) {
1118 return rewriter.notifyMatchFailure(
1119 memsetOp, "value must be a 16 or 32 bit int or float");
1120 }
1121
1122 unsigned valueTypeWidth = valueType.getIntOrFloatBitWidth();
1123 Type bitCastType = valueTypeWidth == 32 ? llvmInt32Type : llvmInt16Type;
1124
1125 MemRefDescriptor dstDesc(adaptor.getDst());
1126 Value numElements = getNumElements(rewriter, loc, memRefType, dstDesc);
1127
1128 auto value =
1129 LLVM::BitcastOp::create(rewriter, loc, bitCastType, adaptor.getValue());
1130 auto dst = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
1131 dstDesc.alignedPtr(rewriter, loc),
1132 *getTypeConverter());
1133
1134 auto stream = adaptor.getAsyncDependencies().front();
1135 FunctionCallBuilder builder =
1136 valueTypeWidth == 32 ? memset32CallBuilder : memset16CallBuilder;
1137 builder.create(loc, rewriter, {dst, value, numElements, stream});
1138
1139 rewriter.replaceOp(memsetOp, {stream});
1140 return success();
1141}
1142
1143LogicalResult ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern::matchAndRewrite(
1144 gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
1145 ConversionPatternRewriter &rewriter) const {
1146 Location loc = op.getLoc();
1147 auto call = setDefaultDeviceCallBuilder.create(loc, rewriter,
1148 {adaptor.getDevIndex()});
1149 rewriter.replaceOp(op, call);
1150 return success();
1151}
1152
1153template <typename T>
1154static Value genConstInt32From(OpBuilder &builder, Location loc, T tValue) {
1155 Type llvmInt32Type = builder.getIntegerType(32);
1156 return LLVM::ConstantOp::create(builder, loc, llvmInt32Type,
1157 static_cast<int32_t>(tValue));
1158}
1159
1160template <typename T>
1161static Value genConstFloat32From(OpBuilder &builder, Location loc, T tValue) {
1162 Type llvmFloat32Type = builder.getF32Type();
1163 return LLVM::ConstantOp::create(
1164 builder, loc, llvmFloat32Type,
1165 builder.getF32FloatAttr(static_cast<float>(tValue)));
1166}
1167
1168LogicalResult ConvertCreateDnTensorOpToGpuRuntimeCallPattern::matchAndRewrite(
1169 gpu::CreateDnTensorOp op, OpAdaptor adaptor,
1170 ConversionPatternRewriter &rewriter) const {
1171 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1172 failed(isAsyncWithOneDependency(rewriter, op)))
1173 return failure();
1174 Location loc = op.getLoc();
1175 auto stream = adaptor.getAsyncDependencies().front();
1176 Value pTensor =
1177 MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
1178 Type dType = op.getMemref().getType().getElementType();
1179 auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
1180
1181 SmallVector<Value, 4> dims;
1182 for (Value dim : adaptor.getDims()) {
1183 dims.push_back(dim);
1184 }
1185
1186 Value handle;
1187 // TODO: For now, we track the use of the handle and lower it to cusparse /
1188 // cusparseLt accordingly. If in a block, both cusparse and cusparseLt are
1189 // used, we require two separate Creation ops to be the correct logic. In
1190 // future, we may add support to using one handle in sparse tensor / GPU
1191 // dialect in both cusparse and cusparseLt. use the cusparseLt create call if
1192 // the dnmat is used with spmat with 2:4 sparsity
1193 if (dims.size() == 2) {
1194 if (isSpMMCusparseLtOp(op.getDnTensor())) {
1195 auto handleSz = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1196 rewriter.getIndexAttr(11032));
1197 handle = LLVM::AllocaOp::create(rewriter, loc, llvmPointerType,
1198 llvmInt8Type, handleSz, /*alignment=*/16);
1199 handle = LLVM::BitcastOp::create(rewriter, loc, llvmPointerType, handle);
1200
1201 createLtDnMatCallBuilder
1202 .create(loc, rewriter,
1203 {handle, dims[0], dims[1], pTensor, dtp, stream})
1204 .getResult();
1205 } else {
1206 handle =
1207 createDnMatCallBuilder
1208 .create(loc, rewriter, {dims[0], dims[1], pTensor, dtp, stream})
1209 .getResult();
1210 }
1211 } else {
1212 assert(dims.size() == 1 && "Only 1D and 2D tensors are supported");
1213 handle = createDnVecCallBuilder
1214 .create(loc, rewriter, {dims[0], pTensor, dtp, stream})
1215 .getResult();
1216 }
1217 rewriter.replaceOp(op, {handle, stream});
1218 return success();
1219}
1220
1221LogicalResult ConvertDestroyDnTensorOpToGpuRuntimeCallPattern::matchAndRewrite(
1222 gpu::DestroyDnTensorOp op, OpAdaptor adaptor,
1223 ConversionPatternRewriter &rewriter) const {
1224 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1225 failed(isAsyncWithOneDependency(rewriter, op)))
1226 return failure();
1227 Location loc = op.getLoc();
1228 auto stream = adaptor.getAsyncDependencies().front();
1229 auto definingOp = op.getDnTensor().getDefiningOp<gpu::CreateDnTensorOp>();
1230 SmallVector<Value, 4> dims;
1231 for (Value dim : definingOp.getDims()) {
1232 dims.push_back(dim);
1233 }
1234 if (dims.size() == 2) {
1235 // Use the cusparseLt destroy call if the dnmat is used with spmat with
1236 // 2:4 sparsity
1237 if (isSpMMCusparseLtOp(op.getDnTensor())) {
1238 destroyCuSparseLtDnMatBuilder.create(loc, rewriter,
1239 {adaptor.getDnTensor(), stream});
1240 } else {
1241 destroyDnMatCallBuilder.create(loc, rewriter,
1242 {adaptor.getDnTensor(), stream});
1243 }
1244 } else {
1245 assert(dims.size() == 1 && "Only 1D and 2D tensors are supported");
1246 destroyDnVecCallBuilder.create(loc, rewriter,
1247 {adaptor.getDnTensor(), stream});
1248 }
1249 rewriter.replaceOp(op, {stream});
1250 return success();
1251}
1252
1253LogicalResult ConvertCreateCooOpToGpuRuntimeCallPattern::matchAndRewrite(
1254 gpu::CreateCooOp op, OpAdaptor adaptor,
1255 ConversionPatternRewriter &rewriter) const {
1256 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1257 failed(isAsyncWithOneDependency(rewriter, op)))
1258 return failure();
1259 Location loc = op.getLoc();
1260 auto stream = adaptor.getAsyncDependencies().front();
1261 Value pRowIdxs =
1262 MemRefDescriptor(adaptor.getRowIdxs()).allocatedPtr(rewriter, loc);
1263 Value pColIdxs =
1264 MemRefDescriptor(adaptor.getColIdxs()).allocatedPtr(rewriter, loc);
1265 Value pValues =
1266 MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
1267 Type iType =
1268 llvm::cast<MemRefType>(op.getColIdxs().getType()).getElementType();
1269 Type dType =
1270 llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
1271 auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
1272 auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
1273 auto handle =
1274 createCooCallBuilder
1275 .create(loc, rewriter,
1276 {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
1277 pRowIdxs, pColIdxs, pValues, itp, dtp, stream})
1278 .getResult();
1279 rewriter.replaceOp(op, {handle, stream});
1280 return success();
1281}
1282
1283LogicalResult ConvertCreateCooAoSOpToGpuRuntimeCallPattern::matchAndRewrite(
1284 gpu::CreateCooAoSOp op, OpAdaptor adaptor,
1285 ConversionPatternRewriter &rewriter) const {
1286 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1287 failed(isAsyncWithOneDependency(rewriter, op)))
1288 return failure();
1289 Location loc = op.getLoc();
1290 auto stream = adaptor.getAsyncDependencies().front();
1291 Value pIdxs = MemRefDescriptor(adaptor.getIdxs()).allocatedPtr(rewriter, loc);
1292 Value pValues =
1293 MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
1294 Type iType = llvm::cast<MemRefType>(op.getIdxs().getType()).getElementType();
1295 Type dType =
1296 llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
1297 auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
1298 auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
1299 auto handle =
1300 createCooAoSCallBuilder
1301 .create(loc, rewriter,
1302 {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
1303 pIdxs, pValues, itp, dtp, stream})
1304 .getResult();
1305 rewriter.replaceOp(op, {handle, stream});
1306 return success();
1307}
1308
1309LogicalResult ConvertCreateCsrOpToGpuRuntimeCallPattern::matchAndRewrite(
1310 gpu::CreateCsrOp op, OpAdaptor adaptor,
1311 ConversionPatternRewriter &rewriter) const {
1312 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1313 failed(isAsyncWithOneDependency(rewriter, op)))
1314 return failure();
1315 Location loc = op.getLoc();
1316 auto stream = adaptor.getAsyncDependencies().front();
1317 Value pRowPos =
1318 MemRefDescriptor(adaptor.getRowPos()).allocatedPtr(rewriter, loc);
1319 Value pColIdxs =
1320 MemRefDescriptor(adaptor.getColIdxs()).allocatedPtr(rewriter, loc);
1321 Value pValues =
1322 MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
1323 Type pType =
1324 llvm::cast<MemRefType>(op.getRowPos().getType()).getElementType();
1325 Type iType =
1326 llvm::cast<MemRefType>(op.getColIdxs().getType()).getElementType();
1327 Type dType =
1328 llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
1329 auto ptp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(pType));
1330 auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
1331 auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
1332 auto handle =
1333 createCsrCallBuilder
1334 .create(loc, rewriter,
1335 {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
1336 pRowPos, pColIdxs, pValues, ptp, itp, dtp, stream})
1337 .getResult();
1338 rewriter.replaceOp(op, {handle, stream});
1339 return success();
1340}
1341
1342LogicalResult ConvertCreate2To4SpMatOpToGpuRuntimeCallPattern::matchAndRewrite(
1343 gpu::Create2To4SpMatOp op, OpAdaptor adaptor,
1344 ConversionPatternRewriter &rewriter) const {
1345 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1346 failed(isAsyncWithOneDependency(rewriter, op)))
1347 return failure();
1348 Location loc = op.getLoc();
1349 auto stream = adaptor.getAsyncDependencies().front();
1350 Value pMat =
1351 MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
1352 Type dType =
1353 llvm::cast<MemRefType>(op.getMemref().getType()).getElementType();
1354 auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
1355
1356 // CUDA runner asserts the size is 44104 bytes.
1357 auto handleSz = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1358 rewriter.getIndexAttr(44104));
1359 Value handle = LLVM::AllocaOp::create(
1360 rewriter, loc, llvmPointerType, llvmInt8Type, handleSz, /*alignment=*/16);
1361 handle = LLVM::BitcastOp::create(rewriter, loc, llvmPointerType, handle);
1362
1363 create2To4SpMatCallBuilder
1364 .create(loc, rewriter,
1365 {handle, adaptor.getRows(), adaptor.getCols(), pMat, dtp, stream})
1366 .getResult();
1367 rewriter.replaceOp(op, {handle, stream});
1368 return success();
1369}
1370
1371LogicalResult ConvertDestroySpMatOpToGpuRuntimeCallPattern::matchAndRewrite(
1372 gpu::DestroySpMatOp op, OpAdaptor adaptor,
1373 ConversionPatternRewriter &rewriter) const {
1374 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1375 failed(isAsyncWithOneDependency(rewriter, op)))
1376 return failure();
1377 Location loc = op.getLoc();
1378 auto stream = adaptor.getAsyncDependencies().front();
1379 // Use the cusparseLt destroy call if the spmat is 2:4 sparsity
1380 if (is2To4Sparsity(op.getSpmat())) {
1381 destroyCuSparseLtSpMatBuilder.create(loc, rewriter,
1382 {adaptor.getSpmat(), stream});
1383
1384 } else {
1385 destroySpMatCallBuilder.create(loc, rewriter, {adaptor.getSpmat(), stream});
1386 }
1387 rewriter.replaceOp(op, {stream});
1388 return success();
1389}
1390
1391LogicalResult ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
1392 gpu::SpMVBufferSizeOp op, OpAdaptor adaptor,
1393 ConversionPatternRewriter &rewriter) const {
1394 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1395 failed(isAsyncWithOneDependency(rewriter, op)))
1396 return failure();
1397 Location loc = op.getLoc();
1398 auto modeA = genConstInt32From(rewriter, loc, op.getModeA());
1399 auto computeType = genConstInt32From(
1400 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1401 auto stream = adaptor.getAsyncDependencies().front();
1402 auto bufferSize = spMVBufferSizeCallBuilder
1403 .create(loc, rewriter,
1404 {modeA, adaptor.getSpmatA(), adaptor.getDnX(),
1405 adaptor.getDnY(), computeType, stream})
1406 .getResult();
1407 rewriter.replaceOp(op, {bufferSize, stream});
1408 return success();
1409}
1410
1411LogicalResult ConvertSpMVOpToGpuRuntimeCallPattern::matchAndRewrite(
1412 gpu::SpMVOp op, OpAdaptor adaptor,
1413 ConversionPatternRewriter &rewriter) const {
1414 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1415 failed(isAsyncWithOneDependency(rewriter, op)))
1416 return failure();
1417 Location loc = op.getLoc();
1418 auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
1419 auto computeType = genConstInt32From(
1420 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1421 auto stream = adaptor.getAsyncDependencies().front();
1422 Value pBuf =
1423 MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
1424 spMVCallBuilder.create(loc, rewriter,
1425 {modeA, adaptor.getSpmatA(), adaptor.getDnX(),
1426 adaptor.getDnY(), computeType, pBuf, stream});
1427 rewriter.replaceOp(op, {stream});
1428 return success();
1429}
1430
1431LogicalResult ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
1432 gpu::SpMMBufferSizeOp op, OpAdaptor adaptor,
1433 ConversionPatternRewriter &rewriter) const {
1434 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1435 failed(isAsyncWithOneDependency(rewriter, op)))
1436 return failure();
1437 Location loc = op.getLoc();
1438 auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
1439 auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
1440 auto stream = adaptor.getAsyncDependencies().front();
1441 Value bufferSize;
1442 if (is2To4Sparsity(op.getSpmatA())) {
1443 auto pruneFlag =
1444 genConstInt32From(rewriter, loc, get2To4PruneFlag(op.getSpmatA()));
1445 auto computeType = genConstInt32From(
1446 rewriter, loc, getCuSparseLtDataTypeFrom(adaptor.getComputeType()));
1447 auto three = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1448 rewriter.getIndexAttr(3));
1449 auto bufferSize =
1450 LLVM::AllocaOp::create(rewriter, loc, llvmPointerType, llvmPointerType,
1451 three, /*alignment=*/16);
1452 createCuSparseLtSpMMBufferSizeBuilder
1453 .create(loc, rewriter,
1454 {bufferSize, modeA, modeB, adaptor.getSpmatA(),
1455 adaptor.getDnmatB(), adaptor.getDnmatC(), computeType,
1456 pruneFlag, stream})
1457 .getResult();
1458
1459 auto bufferSizePtr1 = LLVM::GEPOp::create(
1460 rewriter, loc, llvmPointerType, llvmPointerType, bufferSize,
1461 ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1462 rewriter.getIndexAttr(1))});
1463 auto bufferSizePtr2 = LLVM::GEPOp::create(
1464 rewriter, loc, llvmPointerType, llvmPointerType, bufferSize,
1465 ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1466 rewriter.getIndexAttr(2))});
1467 auto bufferSize0 =
1468 LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, bufferSize);
1469 auto bufferSize1 =
1470 LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, bufferSizePtr1);
1471 auto bufferSize2 =
1472 LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, bufferSizePtr2);
1473
1474 rewriter.replaceOp(op, {bufferSize0, bufferSize1, bufferSize2, stream});
1475 } else {
1476 auto computeType = genConstInt32From(
1477 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1478 bufferSize =
1479 createSpMMBufferSizeCallBuilder
1480 .create(loc, rewriter,
1481 {modeA, modeB, adaptor.getSpmatA(), adaptor.getDnmatB(),
1482 adaptor.getDnmatC(), computeType, stream})
1483 .getResult();
1484 rewriter.replaceOp(op, {bufferSize, stream});
1485 }
1486 return success();
1487}
1488
1489LogicalResult ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
1490 gpu::SDDMMBufferSizeOp op, OpAdaptor adaptor,
1491 ConversionPatternRewriter &rewriter) const {
1492 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1493 failed(isAsyncWithOneDependency(rewriter, op)))
1494 return failure();
1495 Location loc = op.getLoc();
1496 auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
1497 auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
1498 auto computeType = genConstInt32From(
1499 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1500 auto stream = adaptor.getAsyncDependencies().front();
1501 auto bufferSize =
1502 createSDDMMBufferSizeCallBuilder
1503 .create(loc, rewriter,
1504 {modeA, modeB, adaptor.getDnmatA(), adaptor.getDnmatB(),
1505 adaptor.getSpmatC(), computeType, stream})
1506 .getResult();
1507 rewriter.replaceOp(op, {bufferSize, stream});
1508 return success();
1509}
1510
1511LogicalResult ConvertSpMMOpToGpuRuntimeCallPattern::matchAndRewrite(
1512 gpu::SpMMOp op, OpAdaptor adaptor,
1513 ConversionPatternRewriter &rewriter) const {
1514 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1515 failed(isAsyncWithOneDependency(rewriter, op)))
1516 return failure();
1517 Location loc = op.getLoc();
1518 auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
1519 auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
1520 auto computeType = genConstInt32From(
1521 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1522
1523 auto stream = adaptor.getAsyncDependencies().front();
1524
1525 // Lower to cusparseLt if applicable
1526 if (is2To4Sparsity(op.getSpmatA())) {
1527 SmallVector<Value> pBufs;
1528 for (Value buffer : adaptor.getBuffers()) {
1529 Value pBuf = MemRefDescriptor(buffer).allocatedPtr(rewriter, loc);
1530 pBufs.push_back(pBuf);
1531 }
1532 createCuSparseLtSpMMBuilder.create(
1533 loc, rewriter,
1534 {adaptor.getSpmatA(), adaptor.getDnmatB(), adaptor.getDnmatC(),
1535 pBufs[0], pBufs[1], pBufs[2], stream});
1536 } else {
1537 Value pBuf = MemRefDescriptor(adaptor.getBuffers().front())
1538 .allocatedPtr(rewriter, loc);
1539 createSpMMCallBuilder.create(loc, rewriter,
1540 {modeA, modeB, adaptor.getSpmatA(),
1541 adaptor.getDnmatB(), adaptor.getDnmatC(),
1542 computeType, pBuf, stream});
1543 }
1544 rewriter.replaceOp(op, {stream});
1545 return success();
1546}
1547
1548template <typename T>
1550 converter.addConversion([&converter](T) -> Type {
1551 return LLVM::LLVMPointerType::get(&converter.getContext());
1552 });
1553}
1554
1555LogicalResult ConvertSDDMMOpToGpuRuntimeCallPattern::matchAndRewrite(
1556 gpu::SDDMMOp op, OpAdaptor adaptor,
1557 ConversionPatternRewriter &rewriter) const {
1558 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1559 failed(isAsyncWithOneDependency(rewriter, op)))
1560 return failure();
1561 Location loc = op.getLoc();
1562 auto computeType = genConstInt32From(
1563 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1564 auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
1565 auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
1566 auto stream = adaptor.getAsyncDependencies().front();
1567 Value pBuf =
1568 MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
1569 createSDDMMCallBuilder.create(loc, rewriter,
1570 {modeA, modeB, adaptor.getDnmatA(),
1571 adaptor.getDnmatB(), adaptor.getSpmatC(),
1572 computeType, pBuf, stream});
1573 rewriter.replaceOp(op, {stream});
1574 return success();
1575}
1576
1577LogicalResult
1578ConvertSpGEMMCreateDescrOpToGpuRuntimeCallPattern::matchAndRewrite(
1579 gpu::SpGEMMCreateDescrOp op, OpAdaptor adaptor,
1580 ConversionPatternRewriter &rewriter) const {
1581 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1582 failed(isAsyncWithOneDependency(rewriter, op)))
1583 return failure();
1584 Location loc = op.getLoc();
1585 auto stream = adaptor.getAsyncDependencies().front();
1586 Value descr = createSpGEMMCreateDescrBuilder.create(loc, rewriter, {stream})
1587 .getResult();
1588 rewriter.replaceOp(op, {descr, stream});
1589 return success();
1590}
1591
1592LogicalResult
1593ConvertSpGEMMDestroyDescrOpToGpuRuntimeCallPattern::matchAndRewrite(
1594 gpu::SpGEMMDestroyDescrOp op, OpAdaptor adaptor,
1595 ConversionPatternRewriter &rewriter) const {
1596 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1597 failed(isAsyncWithOneDependency(rewriter, op)))
1598 return failure();
1599 Location loc = op.getLoc();
1600 auto stream = adaptor.getAsyncDependencies().front();
1601 createSpGEMMDestroyDescrBuilder.create(loc, rewriter,
1602 {adaptor.getDesc(), stream});
1603 rewriter.replaceOp(op, {stream});
1604 return success();
1605}
1606
1607LogicalResult
1608ConvertSpGEMMWorkEstimationOrComputeOpToGpuRuntimeCallPattern::matchAndRewrite(
1609 gpu::SpGEMMWorkEstimationOrComputeOp op, OpAdaptor adaptor,
1610 ConversionPatternRewriter &rewriter) const {
1611 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1612 failed(isAsyncWithOneDependency(rewriter, op)))
1613 return failure();
1614 Location loc = op.getLoc();
1615 auto computeType = genConstInt32From(
1616 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1617 auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
1618 auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
1619 auto stream = adaptor.getAsyncDependencies().front();
1620
1621 Value pBuf =
1622 MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
1623 Value bufferSizeNew;
1624
1625 if (adaptor.getKind() ==
1626 gpu::SpGEMMWorkEstimationOrComputeKind::WORK_ESTIMATION) {
1627 bufferSizeNew =
1628 createSpGEMMWorkEstimationBuilder
1629 .create(loc, rewriter,
1630 {adaptor.getDesc(), modeA, modeB, adaptor.getSpmatA(),
1631 adaptor.getSpmatB(), adaptor.getSpmatC(), computeType,
1632 adaptor.getBufferSz(), pBuf, stream})
1633 .getResult();
1634 } else {
1635 bufferSizeNew =
1636 createSpGEMMComputeBuilder
1637 .create(loc, rewriter,
1638 {adaptor.getDesc(), modeA, modeB, adaptor.getSpmatA(),
1639 adaptor.getSpmatB(), adaptor.getSpmatC(), computeType,
1640 adaptor.getBufferSz(), pBuf, stream})
1641 .getResult();
1642 }
1643 rewriter.replaceOp(op, {bufferSizeNew, stream});
1644 return success();
1645}
1646
1647LogicalResult ConvertSpGEMMCopyOpToGpuRuntimeCallPattern::matchAndRewrite(
1648 gpu::SpGEMMCopyOp op, OpAdaptor adaptor,
1649 ConversionPatternRewriter &rewriter) const {
1650 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1651 failed(isAsyncWithOneDependency(rewriter, op)))
1652 return failure();
1653 Location loc = op.getLoc();
1654 auto computeType = genConstInt32From(
1655 rewriter, loc, getCuSparseDataTypeFrom(adaptor.getComputeType()));
1656 auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
1657 auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
1658 auto stream = adaptor.getAsyncDependencies().front();
1659 createSpGEMMCopyBuilder.create(loc, rewriter,
1660 {adaptor.getDesc(), modeA, modeB,
1661 adaptor.getSpmatA(), adaptor.getSpmatB(),
1662 adaptor.getSpmatC(), computeType, stream});
1663 rewriter.replaceOp(op, {stream});
1664 return success();
1665}
1666
1667LogicalResult ConvertSpMatGetSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
1668 gpu::SpMatGetSizeOp op, OpAdaptor adaptor,
1669 ConversionPatternRewriter &rewriter) const {
1670 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1671 failed(isAsyncWithOneDependency(rewriter, op)))
1672 return failure();
1673 Location loc = op.getLoc();
1674 auto stream = adaptor.getAsyncDependencies().front();
1675
1676 auto three = LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1677 rewriter.getIndexAttr(3));
1678 auto buffer = LLVM::AllocaOp::create(rewriter, loc, llvmPointerType,
1679 llvmInt64Type, three, /*alignment=*/16);
1680
1681 auto rowsPtr = LLVM::GEPOp::create(
1682 rewriter, loc, llvmPointerType, llvmPointerType, buffer,
1683 ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1684 rewriter.getIndexAttr(0))});
1685 auto colsPtr = LLVM::GEPOp::create(
1686 rewriter, loc, llvmPointerType, llvmPointerType, buffer,
1687 ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1688 rewriter.getIndexAttr(1))});
1689 auto nnzsPtr = LLVM::GEPOp::create(
1690 rewriter, loc, llvmPointerType, llvmPointerType, buffer,
1691 ValueRange{LLVM::ConstantOp::create(rewriter, loc, getIndexType(),
1692 rewriter.getIndexAttr(2))});
1693 createSpMatGetSizeBuilder.create(
1694 loc, rewriter, {adaptor.getSpmat(), rowsPtr, colsPtr, nnzsPtr, stream});
1695 auto rows = LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, rowsPtr);
1696 auto cols = LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, colsPtr);
1697 auto nnzs = LLVM::LoadOp::create(rewriter, loc, llvmInt64Type, nnzsPtr);
1698
1699 rewriter.replaceOp(op, {rows, cols, nnzs, stream});
1700 return success();
1701}
1702
1703LogicalResult ConvertSetCsrPointersOpToGpuRuntimeCallPattern::matchAndRewrite(
1704 gpu::SetCsrPointersOp op, OpAdaptor adaptor,
1705 ConversionPatternRewriter &rewriter) const {
1706 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1707 failed(isAsyncWithOneDependency(rewriter, op)))
1708 return failure();
1709 Location loc = op.getLoc();
1710 auto stream = adaptor.getAsyncDependencies().front();
1711 Value pPos =
1712 MemRefDescriptor(adaptor.getPositions()).allocatedPtr(rewriter, loc);
1713 Value pCrd =
1714 MemRefDescriptor(adaptor.getCoordinates()).allocatedPtr(rewriter, loc);
1715 Value pVal =
1716 MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
1717 createSetCsrPointersBuilder.create(
1718 loc, rewriter, {adaptor.getSpmat(), pPos, pCrd, pVal, stream});
1719 rewriter.replaceOp(op, {stream});
1720 return success();
1721}
1722
1723LogicalResult ConvertCreateCscOpToGpuRuntimeCallPattern::matchAndRewrite(
1724 gpu::CreateCscOp op, OpAdaptor adaptor,
1725 ConversionPatternRewriter &rewriter) const {
1726 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1727 failed(isAsyncWithOneDependency(rewriter, op)))
1728 return failure();
1729 Location loc = op.getLoc();
1730 auto stream = adaptor.getAsyncDependencies().front();
1731 Value pColPos =
1732 MemRefDescriptor(adaptor.getColPos()).allocatedPtr(rewriter, loc);
1733 Value pRowIdxs =
1734 MemRefDescriptor(adaptor.getRowIdxs()).allocatedPtr(rewriter, loc);
1735 Value pValues =
1736 MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
1737 Type pType =
1738 llvm::cast<MemRefType>(op.getColPos().getType()).getElementType();
1739 Type iType =
1740 llvm::cast<MemRefType>(op.getRowIdxs().getType()).getElementType();
1741 Type dType =
1742 llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
1743 auto ptp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(pType));
1744 auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
1745 auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
1746 auto handle =
1747 createCscCallBuilder
1748 .create(loc, rewriter,
1749 {adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
1750 pColPos, pRowIdxs, pValues, ptp, itp, dtp, stream})
1751 .getResult();
1752 rewriter.replaceOp(op, {handle, stream});
1753 return success();
1754}
1755
1756LogicalResult ConvertCreateBsrOpToGpuRuntimeCallPattern::matchAndRewrite(
1757 gpu::CreateBsrOp op, OpAdaptor adaptor,
1758 ConversionPatternRewriter &rewriter) const {
1759 if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
1760 failed(isAsyncWithOneDependency(rewriter, op)))
1761 return failure();
1762 Location loc = op.getLoc();
1763 auto stream = adaptor.getAsyncDependencies().front();
1764 Value pRowPos =
1765 MemRefDescriptor(adaptor.getBRowPos()).allocatedPtr(rewriter, loc);
1766 Value pColIdxs =
1767 MemRefDescriptor(adaptor.getBColIdxs()).allocatedPtr(rewriter, loc);
1768 Value pValues =
1769 MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
1770 Type pType =
1771 llvm::cast<MemRefType>(op.getBRowPos().getType()).getElementType();
1772 Type iType =
1773 llvm::cast<MemRefType>(op.getBColIdxs().getType()).getElementType();
1774 Type dType =
1775 llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
1776 auto ptp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(pType));
1777 auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
1778 auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
1779 auto handle =
1780 createBsrCallBuilder
1781 .create(loc, rewriter,
1782 {adaptor.getBrows(), adaptor.getBcols(), adaptor.getBnnz(),
1783 adaptor.getRBlockSize(), adaptor.getCBlockSize(), pRowPos,
1784 pColIdxs, pValues, ptp, itp, dtp, stream})
1785 .getResult();
1786 rewriter.replaceOp(op, {handle, stream});
1787 return success();
1788}
1789
1792 bool kernelBarePtrCallConv, bool kernelIntersperseSizeCallConv) {
1797
1798 patterns.add<ConvertAllocOpToGpuRuntimeCallPattern,
1799 ConvertDeallocOpToGpuRuntimeCallPattern,
1800 ConvertHostRegisterOpToGpuRuntimeCallPattern,
1801 ConvertHostUnregisterOpToGpuRuntimeCallPattern,
1802 ConvertMemcpyOpToGpuRuntimeCallPattern,
1803 ConvertMemsetOpToGpuRuntimeCallPattern,
1804 ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern,
1805 ConvertWaitAsyncOpToGpuRuntimeCallPattern,
1806 ConvertWaitOpToGpuRuntimeCallPattern,
1807 ConvertAsyncYieldToGpuRuntimeCallPattern,
1808 ConvertCreateDnTensorOpToGpuRuntimeCallPattern,
1809 ConvertDestroyDnTensorOpToGpuRuntimeCallPattern,
1810 ConvertCreateCooOpToGpuRuntimeCallPattern,
1811 ConvertCreateCooAoSOpToGpuRuntimeCallPattern,
1812 ConvertCreateCsrOpToGpuRuntimeCallPattern,
1813 ConvertCreateCscOpToGpuRuntimeCallPattern,
1814 ConvertCreateBsrOpToGpuRuntimeCallPattern,
1815 ConvertCreate2To4SpMatOpToGpuRuntimeCallPattern,
1816 ConvertDestroySpMatOpToGpuRuntimeCallPattern,
1817 ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern,
1818 ConvertSpMVOpToGpuRuntimeCallPattern,
1819 ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern,
1820 ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern,
1821 ConvertSpMMOpToGpuRuntimeCallPattern,
1822 ConvertSDDMMOpToGpuRuntimeCallPattern,
1823 ConvertSpGEMMCreateDescrOpToGpuRuntimeCallPattern,
1824 ConvertSpGEMMDestroyDescrOpToGpuRuntimeCallPattern,
1825 ConvertSpGEMMWorkEstimationOrComputeOpToGpuRuntimeCallPattern,
1826 ConvertSpGEMMCopyOpToGpuRuntimeCallPattern,
1827 ConvertSpMatGetSizeOpToGpuRuntimeCallPattern,
1828 ConvertSetCsrPointersOpToGpuRuntimeCallPattern>(converter);
1829 patterns.add<LegalizeLaunchFuncOpPattern>(converter, kernelBarePtrCallConv,
1830 kernelIntersperseSizeCallConv);
1831}
1832
1833//===----------------------------------------------------------------------===//
1834// GPUModuleOp convert to LLVM op interface
1835//===----------------------------------------------------------------------===//
1836
1837namespace {
1838struct GPUModuleOpConvertToLLVMInterface
1839 : public ConvertToLLVMOpInterface::ExternalModel<
1840 GPUModuleOpConvertToLLVMInterface, gpu::GPUModuleOp> {
1841 /// Get the conversion patterns from the target attribute.
1842 void getConvertToLLVMConversionAttrs(
1844};
1845} // namespace
1846
1847void GPUModuleOpConvertToLLVMInterface::getConvertToLLVMConversionAttrs(
1848 Operation *op, SmallVectorImpl<ConvertToLLVMAttrInterface> &attrs) const {
1849 auto module = cast<gpu::GPUModuleOp>(op);
1850 ArrayAttr targetsAttr = module.getTargetsAttr();
1851 // Fail if there are no target attributes or there is more than one target.
1852 if (!targetsAttr || targetsAttr.size() != 1)
1853 return;
1854 if (auto patternAttr = dyn_cast<ConvertToLLVMAttrInterface>(targetsAttr[0]))
1855 attrs.push_back(patternAttr);
1856}
1857
1859 registry.addExtension(+[](MLIRContext *ctx, gpu::GPUDialect *dialect) {
1860 gpu::GPUModuleOp::attachInterface<GPUModuleOpConvertToLLVMInterface>(*ctx);
1861 });
1862}
return success()
static void addOpaquePointerConversion(LLVMTypeConverter &converter)
static Value genConstFloat32From(OpBuilder &builder, Location loc, T tValue)
static int32_t getCuSparseDataTypeFrom(Type type)
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands, ConversionPatternRewriter &rewriter)
static Value genConstInt32From(OpBuilder &builder, Location loc, T tValue)
static gpu::Prune2To4SpMatFlag get2To4PruneFlag(Value spMat)
static bool isGpuAsyncTokenType(Value value)
#define DECLARE_CONVERT_OP_TO_GPU_RUNTIME_CALL_PATTERN(op_name)
Generic rewriting rule for operation on sparse matrices.
static int32_t getCuSparseLtDataTypeFrom(Type type)
static bool isDefinedByCallTo(Value value, StringRef functionName)
static Value bitAndAddrspaceCast(Location loc, ConversionPatternRewriter &rewriter, LLVM::LLVMPointerType destinationType, Value sourcePtr, const LLVMTypeConverter &typeConverter)
static bool isSpMMCusparseLtOp(Value op)
static int32_t getCuSparseIndexTypeFrom(Type type)
static bool is2To4Sparsity(Value spMat)
static LogicalResult isAsyncWithOneDependency(ConversionPatternRewriter &rewriter, gpu::AsyncOpInterface op)
static int64_t getNumElements(Type t)
Compute the total number of elements in the given type, also taking into account nested types.
ArrayAttr()
b getContext())
static llvm::Value * getSizeInBytes(DataLayout &dl, const mlir::Type &type, Operation *clauseOp, llvm::Value *basePointer, llvm::Type *baseType, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation)
static llvm::ManagedStatic< PassManagerOptions > options
FloatType getF32Type()
Definition Builders.cpp:43
IntegerType getIntegerType(unsigned width)
Definition Builders.cpp:67
FloatAttr getF32FloatAttr(float value)
Definition Builders.cpp:246
Utility class for operation conversions targeting the LLVM dialect that match exactly one source oper...
Definition Pattern.h:207
Type getIndexType() const
Gets the MLIR type wrapping the LLVM integer type whose bit width is defined by the used type convert...
Definition Pattern.cpp:36
static Value createIndexAttrConstant(OpBuilder &builder, Location loc, Type resultType, int64_t value)
Create a constant Op producing a value of resultType from an index-typed integer attribute.
Definition Pattern.cpp:56
The DialectRegistry maps a dialect namespace to a constructor for the matching dialect.
bool addExtension(TypeID extensionID, std::unique_ptr< DialectExtensionBase > extension)
Add the given extension to the registry.
Conversion from types to the LLVM IR dialect.
MLIRContext & getContext() const
Returns the MLIR context.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition Location.h:76
MLIRContext is the top-level object for a collection of MLIR operations.
Definition MLIRContext.h:63
std::vector< Dialect * > getLoadedDialects()
Return information about all IR dialects loaded in the context.
Value size(OpBuilder &builder, Location loc, unsigned pos)
Builds IR extracting the pos-th size from the descriptor.
This class helps build Operations.
Definition Builders.h:207
static OpBuilder atBlockEnd(Block *block, Listener *listener=nullptr)
Create a builder and set the insertion point to after the last operation in the block but still insid...
Definition Builders.h:246
Operation is the basic unit of execution within MLIR.
Definition Operation.h:88
Location getLoc()
The source location the operation was defined or derived from.
Definition Operation.h:223
void print(raw_ostream &os, const OpPrintingFlags &flags={})
operand_range getOperands()
Returns an iterator on the underlying Value's.
Definition Operation.h:378
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition Types.h:74
bool isF64() const
Definition Types.cpp:41
bool isF32() const
Definition Types.cpp:40
bool isInteger() const
Return true if this is an integer type (with the specified width).
Definition Types.cpp:56
bool isIntOrFloat() const
Return true if this is an integer (of any signedness) or a float type.
Definition Types.cpp:116
bool isF16() const
Definition Types.cpp:38
unsigned getIntOrFloatBitWidth() const
Return the bit width of an integer or a float type, assert failure on other types.
Definition Types.cpp:122
bool isBF16() const
Definition Types.cpp:37
This class provides an abstraction over the different types of ranges over Values.
Definition ValueRange.h:387
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
MLIRContext * getContext() const
Utility to get the associated MLIRContext that this value is defined in.
Definition Value.h:108
Type getType() const
Return the type of this value.
Definition Value.h:105
user_range getUsers() const
Definition Value.h:218
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition Value.cpp:18
bool isCompatibleType(Type type)
Returns true if the given type is compatible with the LLVM dialect.
void registerConvertGpuToLLVMInterface(DialectRegistry &registry)
Registers the ConvertToLLVMOpInterface interface on the gpu::GPUModuleOP operation.
detail::InFlightRemark failed(Location loc, RemarkOpts opts)
Report an optimization remark that failed.
Definition Remarks.h:561
void populateVectorTransferLoweringPatterns(RewritePatternSet &patterns, std::optional< unsigned > maxTransferRank=std::nullopt, PatternBenefit benefit=1)
Populate the pattern set with the following patterns:
Include the generated interface declarations.
LogicalResult applyPatternsGreedily(Region &region, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
void populateFinalizeMemRefToLLVMConversionPatterns(const LLVMTypeConverter &converter, RewritePatternSet &patterns, SymbolTableCollection *symbolTables=nullptr)
Collect a set of patterns to convert memory-related operations from the MemRef dialect to the LLVM di...
void populateGpuToLLVMConversionPatterns(LLVMTypeConverter &converter, RewritePatternSet &patterns, bool kernelBarePtrCallConv=false, bool kernelIntersperseSizeCallConv=false)
Collect a set of patterns to convert from the GPU dialect to LLVM and populate converter for gpu type...
const FrozenRewritePatternSet & patterns
void registerConvertToLLVMDependentDialectLoading(DialectRegistry &registry)
Register the extension that will load dependent dialects for LLVM conversion.
void populateAsyncStructuralTypeConversionsAndLegality(TypeConverter &typeConverter, RewritePatternSet &patterns, ConversionTarget &target)
Populates patterns for async structural type conversions.
void populateVectorToLLVMConversionPatterns(const LLVMTypeConverter &converter, RewritePatternSet &patterns, bool reassociateFPReductions=false, bool force32BitVectorIndices=false, bool useVectorAlignment=false)
Collect a set of patterns to convert from the Vector dialect to LLVM.
LLVM::LLVMFunctionType functionType
LLVM::CallOp create(Location loc, OpBuilder &builder, ArrayRef< Value > arguments) const