MLIR  20.0.0git
SparseGPUCodegen.cpp
Go to the documentation of this file.
1 //===- SparseGPUCodegen.cpp - Generates GPU code --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is a prototype GPU codegenerator for the sparsifier.
10 // The objective is to eventually use the right combination of
11 // direct code generation and libary calls into vendor-specific
12 // highly optimized sparse libraries (e.g. cuSparse for CUDA).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "Utils/CodegenUtils.h"
17 #include "Utils/LoopEmitter.h"
18 
28 #include "mlir/IR/IRMapping.h"
29 #include "mlir/IR/Matchers.h"
30 
31 using namespace mlir;
32 using namespace mlir::sparse_tensor;
33 
34 namespace {
35 
36 // Sparse formats supported by cuSparse.
37 enum class CuSparseFormat {
38  kNone,
39  kCOO,
40  kCSR,
41  kCSC,
42  kBSR,
43 };
44 
45 //===----------------------------------------------------------------------===//
46 // Helper methods.
47 //===----------------------------------------------------------------------===//
48 
49 /// Marks the given top module as a GPU container module.
50 static void markAsGPUContainer(ModuleOp topModule) {
51  topModule->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
52  UnitAttr::get(topModule->getContext()));
53 }
54 
55 /// Constructs a new GPU module (for GPU kernels) inside the given top module,
56 /// or returns an existing GPU module if one was built previously.
57 static gpu::GPUModuleOp genGPUModule(OpBuilder &builder, ModuleOp topModule) {
58  for (auto op : topModule.getBodyRegion().getOps<gpu::GPUModuleOp>())
59  return op; // existing
60  markAsGPUContainer(topModule);
61  builder.setInsertionPointToStart(topModule.getBody());
62  return builder.create<gpu::GPUModuleOp>(topModule->getLoc(),
63  "sparse_kernels");
64 }
65 
66 /// Constructs a new GPU kernel in the given GPU module.
67 static gpu::GPUFuncOp genGPUFunc(OpBuilder &builder, gpu::GPUModuleOp gpuModule,
68  SmallVectorImpl<Value> &args) {
69  // Get a unique kernel name. Not very creative,
70  // but we simply try kernel0, kernel1, etc.
71  unsigned kernelNumber = 0;
72  SmallString<16> kernelName;
73  do {
74  kernelName.clear();
75  ("kernel" + Twine(kernelNumber++)).toStringRef(kernelName);
76  } while (gpuModule.lookupSymbol(kernelName));
77  // Then we insert a new kernel with given arguments into the module.
78  builder.setInsertionPointToStart(gpuModule.getBody());
79  SmallVector<Type> argsTp;
80  for (auto arg : args)
81  argsTp.push_back(arg.getType());
82  FunctionType type = FunctionType::get(gpuModule->getContext(), argsTp, {});
83  auto gpuFunc =
84  builder.create<gpu::GPUFuncOp>(gpuModule->getLoc(), kernelName, type);
85  gpuFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
86  builder.getUnitAttr());
87  return gpuFunc;
88 }
89 
90 /// Constructs code to launch GPU kernel.
91 static Value genLaunchGPUFunc(OpBuilder &builder, gpu::GPUFuncOp gpuFunc,
93  SmallVectorImpl<Value> &tokens,
94  unsigned numThreads) {
95  Location loc = gpuFunc->getLoc();
97  Value one = constantIndex(builder, loc, 1);
98  Value numT = constantIndex(builder, loc, numThreads);
99  gpu::KernelDim3 gridSize = {one, one, one};
100  gpu::KernelDim3 blckSize = {numT, one, one};
101  return builder
102  .create<gpu::LaunchFuncOp>(loc, gpuFunc, gridSize, blckSize,
103  /*dynSharedMemSz*/ none, args,
104  builder.getType<gpu::AsyncTokenType>(), tokens)
105  .getAsyncToken();
106 }
107 
108 /// Maps the provided ranked host buffer into the device address space.
109 /// Writes from the host are guaranteed to be visible to device kernels
110 /// that are launched afterwards. Writes from the device are guaranteed
111 /// to be visible on the host after synchronizing with the device kernel
112 /// completion. Needs to cast the buffer to a unranked buffer.
113 static Value genHostRegisterMemref(OpBuilder &builder, Location loc,
114  Value mem) {
115  MemRefType memTp = cast<MemRefType>(mem.getType());
116  UnrankedMemRefType resTp =
117  UnrankedMemRefType::get(memTp.getElementType(), /*memorySpace=*/0);
118  Value cast = builder.create<memref::CastOp>(loc, resTp, mem);
119  builder.create<gpu::HostRegisterOp>(loc, cast);
120  return cast;
121 }
122 
123 /// Unmaps the provided buffer, expecting the casted buffer.
124 static void genHostUnregisterMemref(OpBuilder &builder, Location loc,
125  Value cast) {
126  builder.create<gpu::HostUnregisterOp>(loc, cast);
127 }
128 
129 /// Generates first wait in an asynchronous chain.
130 static Value genFirstWait(OpBuilder &builder, Location loc) {
131  Type tokenType = builder.getType<gpu::AsyncTokenType>();
132  return builder.create<gpu::WaitOp>(loc, tokenType, ValueRange())
133  .getAsyncToken();
134 }
135 
136 /// Generates last, blocking wait in an asynchronous chain.
137 static void genBlockingWait(OpBuilder &builder, Location loc,
138  ValueRange operands) {
139  builder.create<gpu::WaitOp>(loc, Type(), operands);
140 }
141 
142 /// Allocates memory on the device.
143 /// TODO: A `host_shared` attribute could be used to indicate that
144 /// the buffer is visible by both host and device, but lowering
145 /// that feature does not seem to be fully supported yet.
146 static gpu::AllocOp genAllocMemRef(OpBuilder &builder, Location loc, Value mem,
147  Value token) {
148  auto tp = cast<ShapedType>(mem.getType());
149  auto elemTp = tp.getElementType();
150  auto shape = tp.getShape();
151  auto memTp = MemRefType::get(shape, elemTp);
152  SmallVector<Value> dynamicSizes;
153  for (unsigned r = 0, rank = tp.getRank(); r < rank; r++) {
154  if (shape[r] == ShapedType::kDynamic) {
155  Value dimOp = linalg::createOrFoldDimOp(builder, loc, mem, r);
156  dynamicSizes.push_back(dimOp);
157  }
158  }
159  return builder.create<gpu::AllocOp>(loc, TypeRange({memTp, token.getType()}),
160  token, dynamicSizes, ValueRange());
161 }
162 
163 // Allocates a typed buffer on the host with given size.
164 static Value genHostBuffer(OpBuilder &builder, Location loc, Type type,
165  Value size) {
166  const auto memTp = MemRefType::get({ShapedType::kDynamic}, type);
167  return builder.create<memref::AllocOp>(loc, memTp, size).getResult();
168 }
169 
170 // Allocates a typed buffer on the device with given size.
171 static gpu::AllocOp genAllocBuffer(OpBuilder &builder, Location loc, Type type,
172  Value size, Value token) {
173  const auto memTp = MemRefType::get({ShapedType::kDynamic}, type);
174  return builder.create<gpu::AllocOp>(loc, TypeRange({memTp, token.getType()}),
175  token, size, ValueRange());
176 }
177 
178 // Allocates a void buffer on the device with given size.
179 static gpu::AllocOp genAllocBuffer(OpBuilder &builder, Location loc, Value size,
180  Value token) {
181  return genAllocBuffer(builder, loc, builder.getI8Type(), size, token);
182 }
183 
184 /// Deallocates memory from the device.
185 static Value genDeallocMemRef(OpBuilder &builder, Location loc, Value mem,
186  Value token) {
187  return builder.create<gpu::DeallocOp>(loc, token.getType(), token, mem)
188  .getAsyncToken();
189 }
190 
191 /// Copies memory between host and device (direction is implicit).
192 static Value genCopyMemRef(OpBuilder &builder, Location loc, Value dst,
193  Value src, Value token) {
194  return builder.create<gpu::MemcpyOp>(loc, token.getType(), token, dst, src)
195  .getAsyncToken();
196 }
197 
198 /// Generates an alloc/copy pair.
199 static Value genAllocCopy(OpBuilder &builder, Location loc, Value b,
200  SmallVectorImpl<Value> &tokens) {
201  Value firstToken = genFirstWait(builder, loc);
202  auto alloc = genAllocMemRef(builder, loc, b, firstToken);
203  Value devMem = alloc.getResult(0);
204  Value depToken = alloc.getAsyncToken(); // copy-after-alloc
205  tokens.push_back(genCopyMemRef(builder, loc, devMem, b, depToken));
206  return devMem;
207 }
208 
209 /// Generates a memref from tensor operation.
210 static Value genTensorToMemref(PatternRewriter &rewriter, Location loc,
211  Value tensor) {
212  auto tensorType = llvm::cast<ShapedType>(tensor.getType());
213  auto memrefType =
214  MemRefType::get(tensorType.getShape(), tensorType.getElementType());
215  return rewriter.create<bufferization::ToMemrefOp>(loc, memrefType, tensor);
216 }
217 
218 /// Prepares the outlined arguments, passing scalars and buffers in. Here we
219 /// assume that the first buffer is the one allocated for output. We create
220 /// a set of properly chained asynchronous allocation/copy pairs to increase
221 /// overlap before launching the kernel.
222 static Value genParametersIn(OpBuilder &builder, Location loc,
223  SmallVectorImpl<Value> &scalars,
224  SmallVectorImpl<Value> &buffers,
226  SmallVectorImpl<Value> &tokens,
227  bool useHostRegistrationForOut) {
228  Value out;
229  // Scalars are passed by value.
230  for (Value s : scalars)
231  args.push_back(s);
232  // Buffers are need to be made visible on device.
233  for (Value b : buffers) {
234  if (useHostRegistrationForOut) {
235  out = genHostRegisterMemref(builder, loc, b);
236  args.push_back(b);
237  useHostRegistrationForOut = false;
238  continue;
239  }
240  args.push_back(genAllocCopy(builder, loc, b, tokens));
241  }
242  return out;
243 }
244 
245 /// Finalizes the outlined arguments. The output buffer is copied depending
246 /// on the kernel token and then deallocated. All other buffers are simply
247 /// deallocated. Then we wait for all operations to complete.
248 static void genParametersOut(OpBuilder &builder, Location loc, Value out,
249  Value kernelToken, SmallVectorImpl<Value> &scalars,
250  SmallVectorImpl<Value> &buffers,
252  SmallVectorImpl<Value> &tokens) {
253  unsigned base = scalars.size();
254  for (unsigned i = base, e = args.size(); i < e; i++) {
255  Value firstToken;
256  if (i == base) {
257  // Assumed output parameter: unregister or copy-out.
258  if (out) {
259  genHostUnregisterMemref(builder, loc, out);
260  out = Value();
261  continue;
262  }
263  firstToken =
264  genCopyMemRef(builder, loc, buffers[0], args[i], kernelToken);
265  } else {
266  firstToken = genFirstWait(builder, loc);
267  }
268  tokens.push_back(genDeallocMemRef(builder, loc, args[i], firstToken));
269  }
270 }
271 
272 /// Constructs code for new GPU kernel.
273 static void genGPUCode(PatternRewriter &rewriter, gpu::GPUFuncOp gpuFunc,
274  scf::ParallelOp forallOp,
275  SmallVectorImpl<Value> &constants,
276  SmallVectorImpl<Value> &scalars,
277  SmallVectorImpl<Value> &buffers) {
278  Location loc = gpuFunc->getLoc();
279  Block &block = gpuFunc.getBody().front();
280  rewriter.setInsertionPointToStart(&block);
281 
282  // Re-generate the constants, recapture all arguments.
283  unsigned arg = 0;
284  IRMapping irMap;
285  for (Value c : constants)
286  irMap.map(c, rewriter.clone(*c.getDefiningOp())->getResult(0));
287  for (Value s : scalars)
288  irMap.map(s, block.getArgument(arg++));
289  for (Value b : buffers)
290  irMap.map(b, block.getArgument(arg++));
291 
292  // Assume 1-dimensional grid/block configuration (only x dimension),
293  // so that:
294  // row = blockIdx.x * blockDim.x + threadIdx.x
295  // inc = blockDim.x * gridDim.x
296  Value bid = rewriter.create<gpu::BlockIdOp>(loc, gpu::Dimension::x);
297  Value bsz = rewriter.create<gpu::BlockDimOp>(loc, gpu::Dimension::x);
298  Value tid = rewriter.create<gpu::ThreadIdOp>(loc, gpu::Dimension::x);
299  Value gsz = rewriter.create<gpu::GridDimOp>(loc, gpu::Dimension::x);
300  Value mul = rewriter.create<arith::MulIOp>(loc, bid, bsz);
301  Value row = rewriter.create<arith::AddIOp>(loc, mul, tid);
302  Value inc = rewriter.create<arith::MulIOp>(loc, bsz, gsz);
303 
304  // Construct the iteration over the computational space that
305  // accounts for the fact that the total number of threads and
306  // the amount of work to be done usually do not match precisely.
307  // for (r = row; r < N; r += inc) {
308  // <loop-body>
309  // }
310  Value upper = irMap.lookup(forallOp.getUpperBound()[0]);
311  scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, row, upper, inc);
312  // The scf.for builder creates an empty block. scf.for does not allow multiple
313  // blocks in its region, so delete the block before `cloneRegionBefore` adds
314  // an additional block.
315  rewriter.eraseBlock(forOp.getBody());
316  rewriter.cloneRegionBefore(forallOp.getRegion(), forOp.getRegion(),
317  forOp.getRegion().begin(), irMap);
318  // Replace the scf.reduce terminator.
319  rewriter.setInsertionPoint(forOp.getBody()->getTerminator());
320  rewriter.replaceOpWithNewOp<scf::YieldOp>(forOp.getBody()->getTerminator());
321 
322  // Done.
323  rewriter.setInsertionPointAfter(forOp);
324  rewriter.create<gpu::ReturnOp>(gpuFunc->getLoc());
325 }
326 
327 //===----------------------------------------------------------------------===//
328 // Library helper methods.
329 //===----------------------------------------------------------------------===//
330 
331 /// Helper to detect a + b with arguments taken from given block.
332 static bool matchAddOfArgs(Block *block, Value val) {
333  if (auto *def = val.getDefiningOp()) {
334  if (isa<arith::AddFOp, arith::AddIOp>(def)) {
335  Value a = block->getArguments()[0];
336  Value b = block->getArguments()[1];
337  return (def->getOperand(0) == a && def->getOperand(1) == b) ||
338  (def->getOperand(0) == b && def->getOperand(1) == a);
339  }
340  }
341  return false;
342 }
343 
344 /// Helper to detect a * b with arguments taken from given block.
345 static bool matchMulOfArgs(Block *block, Value val) {
346  if (auto *def = val.getDefiningOp()) {
347  if (isa<arith::MulFOp, arith::MulIOp>(def)) {
348  Value a = block->getArguments()[0];
349  Value b = block->getArguments()[1];
350  return (def->getOperand(0) == a && def->getOperand(1) == b) ||
351  (def->getOperand(0) == b && def->getOperand(1) == a);
352  }
353  }
354  return false;
355 }
356 
357 /// Helper to detect x = x + a * b
358 static bool matchSumOfMultOfArgs(linalg::GenericOp op) {
359  auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
360  if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
361  if (isa<arith::AddFOp, arith::AddIOp>(def)) {
362  Value x = op.getBlock()->getArguments()[2];
363  return (def->getOperand(0) == x &&
364  matchMulOfArgs(op.getBlock(), def->getOperand(1))) ||
365  (def->getOperand(1) == x &&
366  matchMulOfArgs(op.getBlock(), def->getOperand(0)));
367  }
368  }
369  return false;
370 }
371 
372 // Helper to detect c += spy(s) x (a * b)
373 static bool matchSumReductionOfMulUnary(linalg::GenericOp op) {
374  auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
375  // The linalg yields a custom reduce result.
376  Value s_out = op.getBlock()->getArguments()[2];
377  if (auto redOp =
378  yieldOp.getOperand(0).getDefiningOp<sparse_tensor::ReduceOp>()) {
379  // The reduce consumes the output.
380  Value other;
381  if (s_out == redOp->getOperand(0))
382  other = redOp->getOperand(1);
383  else if (s_out == redOp->getOperand(1))
384  other = redOp->getOperand(0);
385  else
386  return false;
387  // The reduce op also consumes an unary which also consumes the output
388  // and does not define an absent value.
389  if (auto unOp = other.getDefiningOp<sparse_tensor::UnaryOp>()) {
390  if (s_out != unOp->getOperand(0) || !unOp.getAbsentRegion().empty())
391  return false;
392  // And the bodies are as expected.
393  auto yieldUn = cast<sparse_tensor::YieldOp>(
394  unOp.getRegion(0).front().getTerminator());
395  auto yieldRed = cast<sparse_tensor::YieldOp>(
396  redOp.getRegion().front().getTerminator());
397  return matchMulOfArgs(op.getBlock(), yieldUn.getOperand(0)) &&
398  matchAddOfArgs(&redOp.getRegion().front(), yieldRed.getOperand(0));
399  }
400  }
401  return false;
402 }
403 
404 /// Test for dense tensor.
405 static bool isDenseTensor(Value v) {
406  auto sTp = getSparseTensorType(v);
407  return sTp.getDimRank() == sTp.getLvlRank() && sTp.isAllDense();
408 }
409 
410 /// Test for suitable positions/coordinates width.
411 static bool isAdmissibleMetaData(SparseTensorType &aTp) {
412  return (aTp.getPosWidth() == 0 || aTp.getPosWidth() >= 16) &&
413  (aTp.getCrdWidth() == 0 || aTp.getCrdWidth() >= 16);
414 }
415 
416 /// Test for sorted COO matrix with suitable metadata.
417 static bool isAdmissibleCOO(SparseTensorType &aTp) {
418  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 2 && aTp.isIdentity() &&
419  aTp.isCompressedLvl(0) && aTp.isOrderedLvl(0) && !aTp.isUniqueLvl(0) &&
420  aTp.isSingletonLvl(1) && aTp.isOrderedLvl(1) && aTp.isUniqueLvl(1) &&
421  isAdmissibleMetaData(aTp);
422 }
423 
424 /// Test for CSR matrix with suitable metadata.
425 static bool isAdmissibleCSR(SparseTensorType &aTp) {
426  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 2 && aTp.isIdentity() &&
427  aTp.isDenseLvl(0) && aTp.isCompressedLvl(1) && aTp.isOrderedLvl(1) &&
428  aTp.isUniqueLvl(1) && isAdmissibleMetaData(aTp);
429 }
430 
431 /// Test for CSC matrix with suitable metadata.
432 static bool isAdmissibleCSC(SparseTensorType &aTp) {
433  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 2 && !aTp.isIdentity() &&
434  aTp.isPermutation() && aTp.isDenseLvl(0) && aTp.isCompressedLvl(1) &&
435  aTp.isOrderedLvl(1) && aTp.isUniqueLvl(1) && isAdmissibleMetaData(aTp);
436 }
437 
438 /// Test for BSR matrix with suitable metadata.
439 static bool isAdmissibleBSR(SparseTensorType &aTp) {
440  if (aTp.getDimRank() == 2 && aTp.getLvlRank() == 4 && aTp.isDenseLvl(0) &&
441  aTp.isCompressedLvl(1) && aTp.isOrderedLvl(1) && aTp.isUniqueLvl(1) &&
442  aTp.isDenseLvl(2) && aTp.isDenseLvl(3) && isAdmissibleMetaData(aTp)) {
443  // CuSparse only supports "square" blocks currently.
445  assert(dims.size() == 2);
446  return dims[0] == dims[1] && dims[0] > 1;
447  }
448  return false;
449 }
450 
451 /// Test for 2:4 matrix with suitable metadata.
452 static bool isAdmissible24(SparseTensorType &aTp) {
453  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 3 && aTp.isDenseLvl(0) &&
454  aTp.isDenseLvl(1) && aTp.isNOutOfMLvl(2) && isAdmissibleMetaData(aTp);
455 }
456 
457 /// Test for conversion into 2:4 matrix.
458 static bool isConversionInto24(Value v) {
459  if (auto cnv = v.getDefiningOp<ConvertOp>()) {
460  Value a = cnv.getResult();
461  Value d = cnv.getSource();
463  return isDenseTensor(d) && isAdmissible24(aTp);
464  }
465  return false;
466 }
467 
468 /// Returns a suitable sparse format for the operation and given operand
469 /// types with cuSparse, or kNone if none is available.
470 static CuSparseFormat getCuSparseFormat(SparseTensorType aTp,
471  SparseTensorType bTp,
472  SparseTensorType cTp, bool enableRT,
473  bool isMatVec) {
474  // The other operands have a dense type.
475  if (bTp.hasEncoding() || cTp.hasEncoding())
476  return CuSparseFormat::kNone;
477  // Now check for suitable operand type for the main operand.
478  if (isAdmissibleCOO(aTp))
479 #ifdef CUSPARSE_COO_AOS
480  return isMatVec ? CuSparseFormat::kCOO : CuSparseFormat::kNone;
481 #else
482  return enableRT ? CuSparseFormat::kCOO : CuSparseFormat::kNone;
483 #endif
484  if (isAdmissibleCSR(aTp))
485  return CuSparseFormat::kCSR;
486  if (isAdmissibleCSC(aTp))
487  return CuSparseFormat::kCSC;
488  if (isAdmissibleBSR(aTp))
489  return CuSparseFormat::kBSR;
490  return CuSparseFormat::kNone;
491 }
492 
493 /// Generates the first positions/coordinates of a sparse matrix.
494 static Value genFirstPosOrCrds(OpBuilder &builder, Location loc, Value a,
495  CuSparseFormat format, bool enableRT) {
496  if (format == CuSparseFormat::kCOO) {
497  // Library uses SoA COO, direct IR uses AoS COO.
498  if (enableRT)
499  return builder.create<ToCoordinatesOp>(loc, a, 0);
500  return builder.create<ToCoordinatesBufferOp>(loc, a);
501  }
502  // Formats CSR/CSC and BSR use positions at 1.
503  return builder.create<ToPositionsOp>(loc, a, 1);
504 }
505 
506 /// Generates the second coordinates of a sparse matrix.
507 static Value genSecondCrds(OpBuilder &builder, Location loc, Value a,
508  CuSparseFormat format, bool enableRT) {
509  bool isCOO = format == CuSparseFormat::kCOO;
510  if (isCOO && !enableRT)
511  return Value(); // nothing needed
512  // Formats CSR/CSC and BSR use coordinates at 1.
513  return builder.create<ToCoordinatesOp>(loc, a, 1);
514 }
515 
516 /// Generates the sparse matrix handle.
517 static Operation *genSpMat(OpBuilder &builder, Location loc,
518  SparseTensorType &aTp, Type handleTp, Type tokenTp,
519  Value token, Value sz1, Value sz2, Value nseA,
520  Value rowA, Value colA, Value valA,
521  CuSparseFormat format, bool enableRT) {
522  if (format == CuSparseFormat::kCOO) {
523  // Library uses SoA COO, direct IR uses AoS COO.
524  if (enableRT) {
525  assert(colA);
526  return builder.create<gpu::CreateCooOp>(loc, handleTp, tokenTp, token,
527  sz1, sz2, nseA, rowA, colA, valA);
528  }
529 #ifdef CUSPARSE_COO_AOS
530  assert(!colA);
531  return builder.create<gpu::CreateCooAoSOp>(loc, handleTp, tokenTp, token,
532  sz1, sz2, nseA, rowA, valA);
533 #else
534  llvm_unreachable("gpu::CreateCooAoSOp is deprecated");
535 #endif
536  }
537  assert(colA);
538  if (format == CuSparseFormat::kCSR)
539  return builder.create<gpu::CreateCsrOp>(loc, handleTp, tokenTp, token, sz1,
540  sz2, nseA, rowA, colA, valA);
541  if (format == CuSparseFormat::kCSC)
542  return builder.create<gpu::CreateCscOp>(loc, handleTp, tokenTp, token, sz1,
543  sz2, nseA, rowA, colA, valA);
544  // BSR requires a bit more work since we need to pass in the block size
545  // and all others sizes in terms of blocks (#block-rows, #block-cols,
546  // #nonzero-blocks).
547  assert(format == CuSparseFormat::kBSR);
549  assert(dims.size() == 2 && dims[0] == dims[1]);
550  uint64_t b = dims[0];
551  Value bSz = constantIndex(builder, loc, b);
552  Value bRows = builder.create<arith::DivUIOp>(loc, sz1, bSz);
553  Value bCols = builder.create<arith::DivUIOp>(loc, sz2, bSz);
554  Value bNum = builder.create<arith::DivUIOp>(
555  loc, nseA, constantIndex(builder, loc, b * b));
556  return builder.create<gpu::CreateBsrOp>(loc, handleTp, tokenTp, token, bRows,
557  bCols, bNum, bSz, bSz, rowA, colA,
558  valA);
559 }
560 
561 /// Match and rewrite SpMV kernel.
562 static LogicalResult rewriteSpMV(PatternRewriter &rewriter,
563  linalg::GenericOp op, bool enableRT) {
564  Location loc = op.getLoc();
565  Value a = op.getOperand(0);
566  Value x = op.getOperand(1);
567  Value y = op.getOperand(2); // we have y = Ax
568  SmallVector<Value> tokens;
569 
570  // Only admissible sparse matrix format and dense vectors (no BSR).
574  auto format = getCuSparseFormat(aTp, xTp, yTp, enableRT, /*isMatVec=*/true);
575  if (format == CuSparseFormat::kNone || format == CuSparseFormat::kBSR)
576  return failure();
577 
578  // Start sparse kernel and copy data from host to device.
579  // a : memR/memC/memV -> rowA,colA,valA
580  // x : memX -> vecX
581  // y : memY -> vecY
582  Value nseA = rewriter.create<NumberOfEntriesOp>(loc, a);
583  Value szY = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
584  Value szX = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
585  Value memR = genFirstPosOrCrds(rewriter, loc, a, format, enableRT);
586  Value memC = genSecondCrds(rewriter, loc, a, format, enableRT); // or empty
587  Value memV = rewriter.create<ToValuesOp>(loc, a);
588  Value rowA = genAllocCopy(rewriter, loc, memR, tokens);
589  Value colA = memC ? genAllocCopy(rewriter, loc, memC, tokens) : Value();
590  Value valA = genAllocCopy(rewriter, loc, memV, tokens);
591  Value memX = genTensorToMemref(rewriter, loc, x);
592  Value vecX = genAllocCopy(rewriter, loc, memX, tokens);
593  Value memY = genTensorToMemref(rewriter, loc, y);
594  Value vecY = genAllocCopy(rewriter, loc, memY, tokens);
595  genBlockingWait(rewriter, loc, tokens);
596  tokens.clear();
597 
598  // Create sparse environment and sparse matrix/dense vector handles.
599  Type indexTp = rewriter.getIndexType();
600  Type dnTensorHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
601  Type spmatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
602  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
603  Value token = genFirstWait(rewriter, loc);
604  Operation *spGenA =
605  genSpMat(rewriter, loc, aTp, spmatHandleTp, tokenTp, token, szY, szX,
606  nseA, rowA, colA, valA, format, enableRT);
607  Value spMatA = spGenA->getResult(0);
608  token = spGenA->getResult(1);
609  auto dvecX = rewriter.create<gpu::CreateDnTensorOp>(
610  loc, dnTensorHandleTp, tokenTp, token, vecX, szX);
611  Value dnX = dvecX.getResult(0);
612  token = dvecX.getAsyncToken();
613  auto dvecY = rewriter.create<gpu::CreateDnTensorOp>(
614  loc, dnTensorHandleTp, tokenTp, token, vecY, szY);
615  Value dnY = dvecY.getResult(0);
616  token = dvecY.getAsyncToken();
617  auto dnYType = llvm::cast<ShapedType>(y.getType()).getElementType();
618 
619  // Precompute buffersize for SpMV.
620  auto bufferComp = rewriter.create<gpu::SpMVBufferSizeOp>(
621  loc, indexTp, tokenTp, token, spMatA, dnX, dnY,
622  /*computeType=*/dnYType);
623  Value bufferSz = bufferComp.getResult(0);
624  token = bufferComp.getAsyncToken();
625  auto buf = genAllocBuffer(rewriter, loc, bufferSz, token);
626  Value buffer = buf.getResult(0);
627  token = buf.getAsyncToken();
628 
629  // Perform the SpMV.
630  auto spmvComp = rewriter.create<gpu::SpMVOp>(
631  loc, tokenTp, token, spMatA, dnX, dnY, /*computeType=*/dnYType, buffer);
632  token = spmvComp.getAsyncToken();
633 
634  // Copy data back to host and free all the resoures.
635  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
636  .getAsyncToken();
637  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnX)
638  .getAsyncToken();
639  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnY)
640  .getAsyncToken();
641  token = genDeallocMemRef(rewriter, loc, rowA, token);
642  if (colA)
643  token = genDeallocMemRef(rewriter, loc, colA, token);
644  token = genDeallocMemRef(rewriter, loc, valA, token);
645  token = genDeallocMemRef(rewriter, loc, buffer, token);
646  token = genDeallocMemRef(rewriter, loc, vecX, token);
647  token = genCopyMemRef(rewriter, loc, memY, vecY, token);
648  token = genDeallocMemRef(rewriter, loc, vecY, token);
649  tokens.push_back(token);
650  genBlockingWait(rewriter, loc, tokens);
651  tokens.clear();
652 
653  // Done.
654  rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, memY);
655  return success();
656 }
657 
658 /// Match and rewrite SpMM kernel.
659 static LogicalResult rewriteSpMM(PatternRewriter &rewriter,
660  linalg::GenericOp op, bool enableRT) {
661  Location loc = op.getLoc();
662  Value a = op.getOperand(0);
663  Value b = op.getOperand(1);
664  Value c = op.getOperand(2); // we have C = AB
665  SmallVector<Value> tokens;
666 
667  // Only admissible sparse matrix format and dense matrices (no BSR).
671  auto format = getCuSparseFormat(aTp, bTp, cTp, enableRT, /*isMatVec=*/false);
672  if (format == CuSparseFormat::kNone || format == CuSparseFormat::kBSR)
673  return failure();
674 
675  // Start sparse kernel and copy data from host to device.
676  // a : memR/memC/memV -> rowA,colA,valA
677  // b : bufB -> matB
678  // c : bufC -> matC
679  Value nseA = rewriter.create<NumberOfEntriesOp>(loc, a);
680  Value szm = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
681  Value szk = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
682  Value szn = linalg::createOrFoldDimOp(rewriter, loc, b, 1);
683  Value memR = genFirstPosOrCrds(rewriter, loc, a, format, enableRT);
684  Value memC = genSecondCrds(rewriter, loc, a, format, enableRT); // or empty
685  Value memV = rewriter.create<ToValuesOp>(loc, a);
686  Value rowA = genAllocCopy(rewriter, loc, memR, tokens);
687  Value colA = memC ? genAllocCopy(rewriter, loc, memC, tokens) : Value();
688  Value valA = genAllocCopy(rewriter, loc, memV, tokens);
689  Value bufB = genTensorToMemref(rewriter, loc, b);
690  Value matB = genAllocCopy(rewriter, loc, bufB, tokens);
691  Value bufC = genTensorToMemref(rewriter, loc, c);
692  Value matC = genAllocCopy(rewriter, loc, bufC, tokens);
693  genBlockingWait(rewriter, loc, tokens);
694  tokens.clear();
695 
696  // Create sparse environment and sparse matrix/dense matrix handles.
697  Type indexTp = rewriter.getIndexType();
698  Type dnTensorHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
699  Type spMatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
700  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
701  Value token = genFirstWait(rewriter, loc);
702  Operation *spGenA =
703  genSpMat(rewriter, loc, aTp, spMatHandleTp, tokenTp, token, szm, szk,
704  nseA, rowA, colA, valA, format, enableRT);
705  Value spMatA = spGenA->getResult(0);
706  token = spGenA->getResult(1);
707  auto dmatB = rewriter.create<gpu::CreateDnTensorOp>(
708  loc, dnTensorHandleTp, tokenTp, token, matB,
709  SmallVector<Value>{szk, szn});
710  Value dnB = dmatB.getResult(0);
711  token = dmatB.getAsyncToken();
712  auto dmatC = rewriter.create<gpu::CreateDnTensorOp>(
713  loc, dnTensorHandleTp, tokenTp, token, matC,
714  SmallVector<Value>{szm, szn});
715  Value dnC = dmatC.getResult(0);
716  token = dmatC.getAsyncToken();
717  auto dmatCType = llvm::cast<ShapedType>(c.getType()).getElementType();
718 
719  // Precompute buffersize for SpMM.
720  auto bufferComp = rewriter.create<gpu::SpMMBufferSizeOp>(
721  loc, indexTp, tokenTp, token, spMatA, dnB, dnC,
722  /*computeType=*/dmatCType);
723  Value bufferSz = bufferComp.getResult(0);
724  token = bufferComp.getAsyncToken();
725  auto buf = genAllocBuffer(rewriter, loc, bufferSz, token);
726  Value buffer = buf.getResult(0);
727  token = buf.getAsyncToken();
728  auto dnCType = llvm::cast<ShapedType>(c.getType()).getElementType();
729 
730  // Perform the SpMM.
731  auto spmmComp = rewriter.create<gpu::SpMMOp>(
732  loc, tokenTp, token, spMatA, dnB, dnC, /*computeType=*/dnCType, buffer);
733  token = spmmComp.getAsyncToken();
734 
735  // Copy data back to host and free all the resoures.
736  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
737  .getAsyncToken();
738  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnB)
739  .getAsyncToken();
740  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnC)
741  .getAsyncToken();
742  token = genDeallocMemRef(rewriter, loc, rowA, token);
743  if (colA)
744  token = genDeallocMemRef(rewriter, loc, colA, token);
745  token = genDeallocMemRef(rewriter, loc, valA, token);
746  token = genDeallocMemRef(rewriter, loc, buffer, token);
747  token = genDeallocMemRef(rewriter, loc, matB, token);
748  token = genCopyMemRef(rewriter, loc, bufC, matC, token);
749  token = genDeallocMemRef(rewriter, loc, matC, token);
750  tokens.push_back(token);
751  genBlockingWait(rewriter, loc, tokens);
752  tokens.clear();
753 
754  // Done.
755  rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, bufC);
756  return success();
757 }
758 
759 // Match and rewrite SpGEMM kernel.
760 static LogicalResult rewriteSpGEMM(PatternRewriter &rewriter,
761  linalg::GenericOp op, bool enableRT) {
762  Location loc = op.getLoc();
763  Value a = op.getOperand(0);
764  Value b = op.getOperand(1);
765  Value c = op.getOperand(2); // we have C = AB
766  SmallVector<Value> tokens;
767 
768  // Only CSR <- CSR x CSR supported.
769  auto format = CuSparseFormat::kCSR;
773  if (!isAdmissibleCSR(aTp) || !isAdmissibleCSR(bTp) || !isAdmissibleCSR(cTp))
774  return failure();
775 
776  // Start sparse kernel and copy data from host to device.
777  // a : amemR/amemC/amemV -> rowA,colA,valA
778  // b : bmemR/bmemC/bmemV -> rowB,colB,valB
779  // c : materializes
780  auto dnCType = cTp.getElementType();
781  Value nseA = rewriter.create<NumberOfEntriesOp>(loc, a);
782  Value nseB = rewriter.create<NumberOfEntriesOp>(loc, b);
783  Value szm = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
784  Value szk = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
785  Value szn = linalg::createOrFoldDimOp(rewriter, loc, b, 1);
786  Value amemR = genFirstPosOrCrds(rewriter, loc, a, format, enableRT);
787  Value amemC = genSecondCrds(rewriter, loc, a, format, enableRT); // not empty
788  Value amemV = rewriter.create<ToValuesOp>(loc, a);
789  Value bmemR = genFirstPosOrCrds(rewriter, loc, b, format, enableRT);
790  Value bmemC = genSecondCrds(rewriter, loc, b, format, enableRT); // not empty
791  Value bmemV = rewriter.create<ToValuesOp>(loc, b);
792  Value rowA = genAllocCopy(rewriter, loc, amemR, tokens);
793  Value colA = genAllocCopy(rewriter, loc, amemC, tokens);
794  Value valA = genAllocCopy(rewriter, loc, amemV, tokens);
795  Value rowB = genAllocCopy(rewriter, loc, bmemR, tokens);
796  Value colB = genAllocCopy(rewriter, loc, bmemC, tokens);
797  Value valB = genAllocCopy(rewriter, loc, bmemV, tokens);
798  genBlockingWait(rewriter, loc, tokens);
799  tokens.clear();
800 
801  // Create sparse environment and sparse matrix/dense vector handles.
802  Type indexTp = rewriter.getIndexType();
803  Type spmatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
804  Type descTp = rewriter.getType<gpu::SparseSpGEMMOpHandleType>();
805  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
806  Value token = genFirstWait(rewriter, loc);
807  Operation *spGenA =
808  genSpMat(rewriter, loc, aTp, spmatHandleTp, tokenTp, token, szm, szk,
809  nseA, rowA, colA, valA, format, enableRT);
810  Value spMatA = spGenA->getResult(0);
811  token = spGenA->getResult(1);
812  Operation *spGenB =
813  genSpMat(rewriter, loc, bTp, spmatHandleTp, tokenTp, token, szk, szn,
814  nseB, rowB, colB, valB, format, enableRT);
815  Value spMatB = spGenB->getResult(0);
816  token = spGenB->getResult(1);
817 
818  // Sparse matrix C materializes (also assumes beta == 0).
819  Value zero = constantIndex(rewriter, loc, 0);
820  Value one = constantIndex(rewriter, loc, 1);
821  Value mplus1 = rewriter.create<arith::AddIOp>(loc, szm, one);
822  auto e1 = genAllocBuffer(rewriter, loc, cTp.getPosType(), mplus1, token);
823  Value rowC = e1.getResult(0);
824  token = e1.getAsyncToken();
825  auto e2 = genAllocBuffer(rewriter, loc, cTp.getCrdType(), zero, token);
826  Value colC = e2.getResult(0); // no free needed
827  token = e2.getAsyncToken();
828  auto e3 = genAllocBuffer(rewriter, loc, dnCType, zero, token);
829  Value valC = e3.getResult(0); // no free needed
830  token = e3.getAsyncToken();
831  Operation *spGenC =
832  genSpMat(rewriter, loc, cTp, spmatHandleTp, tokenTp, token, szm, szn,
833  zero, rowC, colC, valC, format, enableRT);
834  Value spMatC = spGenC->getResult(0);
835  token = spGenC->getResult(1);
836 
837  // Precompute buffersizes for SpGEMM.
838  Operation *descOp =
839  rewriter.create<gpu::SpGEMMCreateDescrOp>(loc, descTp, tokenTp, token);
840  Value desc = descOp->getResult(0);
841  token = descOp->getResult(1);
842  Operation *work1 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
843  loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
844  gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType, zero,
845  valC, gpu::SpGEMMWorkEstimationOrComputeKind::WORK_ESTIMATION);
846  Value bufferSz1 = work1->getResult(0);
847  token = work1->getResult(1);
848  auto buf1 = genAllocBuffer(rewriter, loc, bufferSz1, token);
849  Value buffer1 = buf1.getResult(0);
850  token = buf1.getAsyncToken();
851  Operation *work2 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
852  loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
853  gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType,
854  bufferSz1, buffer1,
855  gpu::SpGEMMWorkEstimationOrComputeKind::WORK_ESTIMATION);
856  token = work2->getResult(1);
857 
858  // Compute step.
859  Operation *compute1 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
860  loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
861  gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType, zero,
862  valC, gpu::SpGEMMWorkEstimationOrComputeKind::COMPUTE);
863  Value bufferSz2 = compute1->getResult(0);
864  token = compute1->getResult(1);
865  auto buf2 = genAllocBuffer(rewriter, loc, bufferSz2, token);
866  Value buffer2 = buf2.getResult(0);
867  token = buf2.getAsyncToken();
868  Operation *compute2 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
869  loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
870  gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType,
871  bufferSz2, buffer2, gpu::SpGEMMWorkEstimationOrComputeKind::COMPUTE);
872  token = compute2->getResult(1);
873 
874  // Get sizes.
875  Operation *sizes = rewriter.create<gpu::SpMatGetSizeOp>(
876  loc, indexTp, indexTp, indexTp, tokenTp, token, spMatC);
877  Value nnz = sizes->getResult(2);
878  token = sizes->getResult(3);
879  auto a2 = genAllocBuffer(rewriter, loc, cTp.getCrdType(), nnz, token);
880  colC = a2.getResult(0);
881  token = a2.getAsyncToken();
882  auto a3 = genAllocBuffer(rewriter, loc, dnCType, nnz, token);
883  valC = a3.getResult(0);
884  token = a3.getAsyncToken();
885 
886  // Update C with new pointers and copy final product back into C.
887  Operation *update = rewriter.create<gpu::SetCsrPointersOp>(
888  loc, tokenTp, token, spMatC, rowC, colC, valC);
889  token = update->getResult(0);
890  Operation *copy = rewriter.create<gpu::SpGEMMCopyOp>(
891  loc, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
892  gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType);
893  token = copy->getResult(0);
894 
895  // Allocate buffers on host.
896  Value rowH = genHostBuffer(rewriter, loc, cTp.getPosType(), mplus1);
897  Value colH = genHostBuffer(rewriter, loc, cTp.getCrdType(), nnz);
898  Value valH = genHostBuffer(rewriter, loc, dnCType, nnz);
899 
900  // Copy data back to host and free all the resoures.
901  token = rewriter.create<gpu::SpGEMMDestroyDescrOp>(loc, tokenTp, token, desc)
902  .getAsyncToken();
903  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
904  .getAsyncToken();
905  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatB)
906  .getAsyncToken();
907  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatC)
908  .getAsyncToken();
909  token = genCopyMemRef(rewriter, loc, rowH, rowC, token);
910  token = genCopyMemRef(rewriter, loc, colH, colC, token);
911  token = genCopyMemRef(rewriter, loc, valH, valC, token);
912  token = genDeallocMemRef(rewriter, loc, rowA, token);
913  token = genDeallocMemRef(rewriter, loc, colA, token);
914  token = genDeallocMemRef(rewriter, loc, valA, token);
915  token = genDeallocMemRef(rewriter, loc, rowB, token);
916  token = genDeallocMemRef(rewriter, loc, colB, token);
917  token = genDeallocMemRef(rewriter, loc, valB, token);
918  token = genDeallocMemRef(rewriter, loc, rowC, token);
919  token = genDeallocMemRef(rewriter, loc, colC, token);
920  token = genDeallocMemRef(rewriter, loc, valC, token);
921  token = genDeallocMemRef(rewriter, loc, buffer1, token);
922  token = genDeallocMemRef(rewriter, loc, buffer2, token);
923  tokens.push_back(token);
924  genBlockingWait(rewriter, loc, tokens);
925  tokens.clear();
926 
927  // Done.
928  Value vt = rewriter.create<bufferization::ToTensorOp>(loc, valH);
929  Value rt = rewriter.create<bufferization::ToTensorOp>(loc, rowH);
930  Value ct = rewriter.create<bufferization::ToTensorOp>(loc, colH);
931  rewriter.replaceOpWithNewOp<AssembleOp>(op, c.getType(), ValueRange{rt, ct},
932  vt);
933  return success();
934 }
935 
936 // Match and rewrite 2:4 SpMM kernel.
937 static LogicalResult rewrite2To4SpMM(PatternRewriter &rewriter,
938  linalg::GenericOp op) {
939  Location loc = op.getLoc();
940  Value A = op.getOperand(0);
941  Value B = op.getOperand(1);
942  Value C = op.getOperand(2); // we have C = AB
943  SmallVector<Value> tokens;
944 
945  // The cuSparselt API currently only allows pruning and compression
946  // to occur on the device. So we recognize the pattern
947  // A' = convert A ; dense to 2:4
948  // C = A'B ; 2:4 matrix mult
949  // and then perform compression and matrix multiplication on device.
950  auto cnv = A.getDefiningOp<ConvertOp>();
951  assert(cnv);
952  A = cnv.getSource();
953 
954  // All input should be dense tensors.
955  if (!isDenseTensor(A) || !isDenseTensor(B) || !isDenseTensor(C))
956  return failure();
957 
958  // Start sparse kernel and copy data from host to device.
959  // a : bufA -> matA
960  // b : bufB -> matB
961  // c : bufC -> matC
962  Value bufA = genTensorToMemref(rewriter, loc, A);
963  Value matA = genAllocCopy(rewriter, loc, bufA, tokens);
964  Value bufB = genTensorToMemref(rewriter, loc, B);
965  Value matB = genAllocCopy(rewriter, loc, bufB, tokens);
966  Value bufC = genTensorToMemref(rewriter, loc, C);
967  Value matC = genAllocCopy(rewriter, loc, bufC, tokens);
968  genBlockingWait(rewriter, loc, tokens);
969  tokens.clear();
970 
971  // Create sparse environment and sparse matrix/dense vector handles.
972  Value szm = linalg::createOrFoldDimOp(rewriter, loc, matA, 0);
973  Value szk = linalg::createOrFoldDimOp(rewriter, loc, matB, 0);
974  Value szn = linalg::createOrFoldDimOp(rewriter, loc, matC, 1);
975  Type indexTp = rewriter.getIndexType();
976  Type dnTensorHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
977  Type spMatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
978  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
979  Value token = genFirstWait(rewriter, loc);
980  Operation *spGenA = rewriter.create<gpu::Create2To4SpMatOp>(
981  loc, spMatHandleTp, tokenTp, token, szm, szk,
982  gpu::Prune2To4SpMatFlag::PRUNE_AND_CHECK, matA);
983  Value spMatA = spGenA->getResult(0);
984  token = spGenA->getResult(1);
985  auto dmatB = rewriter.create<gpu::CreateDnTensorOp>(
986  loc, dnTensorHandleTp, tokenTp, token, matB,
987  SmallVector<Value>{szk, szn});
988  Value dnB = dmatB.getResult(0);
989  token = dmatB.getAsyncToken();
990  auto dmatC = rewriter.create<gpu::CreateDnTensorOp>(
991  loc, dnTensorHandleTp, tokenTp, token, matC,
992  SmallVector<Value>{szm, szn});
993  Value dnC = dmatC.getResult(0);
994  token = dmatC.getAsyncToken();
995  auto dmatCType = llvm::cast<ShapedType>(matC.getType()).getElementType();
996 
997  // Precompute buffersize for SpMM.
998  SmallVector<Type> bufferTypes_{indexTp, indexTp, indexTp};
999  TypeRange bufferTypes(bufferTypes_);
1000  auto bufferComp = rewriter.create<gpu::SpMMBufferSizeOp>(
1001  loc, bufferTypes, tokenTp, token, gpu::TransposeMode::NON_TRANSPOSE,
1002  gpu::TransposeMode::NON_TRANSPOSE, spMatA, dnB, dnC,
1003  /*computeType=*/dmatCType);
1004  token = bufferComp.getAsyncToken();
1005 
1006  // Allocate buffers on host.
1007  Value bufferSz1 = bufferComp.getResult(0);
1008  auto buf1 = genAllocBuffer(rewriter, loc, bufferSz1, token);
1009  Value buffer1 = buf1.getResult(0);
1010  token = buf1.getAsyncToken();
1011  Value bufferSz2 = bufferComp.getResult(1);
1012  auto buf2 = genAllocBuffer(rewriter, loc, bufferSz2, token);
1013  Value buffer2 = buf2.getResult(0);
1014  token = buf2.getAsyncToken();
1015  Value bufferSz3 = bufferComp.getResult(2);
1016  auto buf3 = genAllocBuffer(rewriter, loc, bufferSz3, token);
1017  Value buffer3 = buf3.getResult(0);
1018  token = buf3.getAsyncToken();
1019 
1020  // Perform the SpMM.
1021  auto dnCType = llvm::cast<ShapedType>(matC.getType()).getElementType();
1022  auto spmmComp = rewriter.create<gpu::SpMMOp>(
1023  loc, tokenTp, token, spMatA, dnB, dnC, /*computeType=*/dnCType,
1024  SmallVector<Value>{buffer1, buffer2, buffer3});
1025  token = spmmComp.getAsyncToken();
1026 
1027  // Copy data back to host and free all the resources.
1028  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
1029  .getAsyncToken();
1030  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnB)
1031  .getAsyncToken();
1032  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnC)
1033  .getAsyncToken();
1034  SmallVector<Value> newDynamicSizes;
1035  token = genDeallocMemRef(rewriter, loc, buffer1, token);
1036  token = genDeallocMemRef(rewriter, loc, buffer2, token);
1037  token = genDeallocMemRef(rewriter, loc, buffer3, token);
1038  token = genDeallocMemRef(rewriter, loc, matA, token);
1039  token = genDeallocMemRef(rewriter, loc, matB, token);
1040  token = genCopyMemRef(rewriter, loc, bufC, matC, token);
1041  token = genDeallocMemRef(rewriter, loc, matC, token);
1042  tokens.push_back(token);
1043  genBlockingWait(rewriter, loc, tokens);
1044  tokens.clear();
1045 
1046  // Done.
1047  rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, bufC);
1048  return success();
1049 }
1050 
1051 /// Match and rewrite SDDMM kernel.
1052 static LogicalResult rewriteSDDMM(PatternRewriter &rewriter,
1053  linalg::GenericOp op, bool enableRT) {
1054  Location loc = op.getLoc();
1055  Value a = op.getOperand(0);
1056  Value b = op.getOperand(1);
1057  Value c = op.getOperand(2);
1058  SmallVector<Value> tokens;
1059 
1060  // Only admissible sparse matrix format (no COO/CSC) and dense matrices.
1064  auto format = getCuSparseFormat(cTp, bTp, aTp, enableRT, /*isMatVec=*/false);
1065  if (format == CuSparseFormat::kNone || format == CuSparseFormat::kCOO ||
1066  format == CuSparseFormat::kCSC)
1067  return failure();
1068 
1069  // The SDDMM does the in-place operation.
1070  // Start sparse kernel and copy data from host to device.
1071  // a : bufA -> matA
1072  // b : bufB -> matB
1073  // c : memR/memC/memV -> rowC,colC,valC
1074  Value nseC = rewriter.create<NumberOfEntriesOp>(loc, c);
1075  Value szm = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
1076  Value szk = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
1077  Value szn = linalg::createOrFoldDimOp(rewriter, loc, b, 1);
1078  Value bufA = genTensorToMemref(rewriter, loc, a);
1079  Value matA = genAllocCopy(rewriter, loc, bufA, tokens);
1080  Value bufB = genTensorToMemref(rewriter, loc, b);
1081  Value matB = genAllocCopy(rewriter, loc, bufB, tokens);
1082  Value memR = genFirstPosOrCrds(rewriter, loc, c, format, enableRT);
1083  Value memC = genSecondCrds(rewriter, loc, c, format, enableRT); // or empty
1084  Value memV = rewriter.create<ToValuesOp>(loc, c);
1085  Value rowC = genAllocCopy(rewriter, loc, memR, tokens);
1086  Value colC = memC ? genAllocCopy(rewriter, loc, memC, tokens) : Value();
1087  Value valC = genAllocCopy(rewriter, loc, memV, tokens);
1088  genBlockingWait(rewriter, loc, tokens);
1089  tokens.clear();
1090 
1091  // Create sparse environment and sparse matrix/dense matrix handles.
1092  Type indexTp = rewriter.getIndexType();
1093  Type dnMatHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
1094  Type spMatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
1095  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
1096  Value token = genFirstWait(rewriter, loc);
1097  auto dmatA = rewriter.create<gpu::CreateDnTensorOp>(
1098  loc, dnMatHandleTp, tokenTp, token, matA, SmallVector<Value>{szm, szk});
1099  Value dnA = dmatA.getResult(0);
1100  token = dmatA.getAsyncToken();
1101  auto dmatB = rewriter.create<gpu::CreateDnTensorOp>(
1102  loc, dnMatHandleTp, tokenTp, token, matB, SmallVector<Value>{szk, szn});
1103  Value dnB = dmatB.getResult(0);
1104  token = dmatB.getAsyncToken();
1105  Operation *spGenC =
1106  genSpMat(rewriter, loc, cTp, spMatHandleTp, tokenTp, token, szm, szn,
1107  nseC, rowC, colC, valC, format, enableRT);
1108  Value spMatC = spGenC->getResult(0);
1109  token = spGenC->getResult(1);
1110  auto dnCType = llvm::cast<ShapedType>(c.getType()).getElementType();
1111 
1112  // Precompute buffersize for SDDMM.
1113  auto bufferComp = rewriter.create<gpu::SDDMMBufferSizeOp>(
1114  loc, indexTp, tokenTp, token, dnA, dnB, spMatC, dnCType);
1115  Value bufferSz = bufferComp.getResult(0);
1116  token = bufferComp.getAsyncToken();
1117  auto buf = genAllocBuffer(rewriter, loc, bufferSz, token);
1118  Value buffer = buf.getResult(0);
1119  token = buf.getAsyncToken();
1120 
1121  // Perform the SDDMM.
1122  auto sddmmComp = rewriter.create<gpu::SDDMMOp>(loc, tokenTp, token, dnA, dnB,
1123  spMatC, dnCType, buffer);
1124  token = sddmmComp.getAsyncToken();
1125 
1126  // Copy data back to host and free all the resoures.
1127  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnA)
1128  .getAsyncToken();
1129  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnB)
1130  .getAsyncToken();
1131  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatC)
1132  .getAsyncToken();
1133  token = genDeallocMemRef(rewriter, loc, buffer, token);
1134  token = genDeallocMemRef(rewriter, loc, matA, token);
1135  token = genDeallocMemRef(rewriter, loc, matB, token);
1136  token = genDeallocMemRef(rewriter, loc, rowC, token);
1137  if (colC)
1138  token = genDeallocMemRef(rewriter, loc, colC, token);
1139  token = genCopyMemRef(rewriter, loc, memV, valC, token);
1140  token = genDeallocMemRef(rewriter, loc, valC, token);
1141  tokens.push_back(token);
1142  genBlockingWait(rewriter, loc, tokens);
1143  tokens.clear();
1144 
1145  // Done.
1146  rewriter.replaceOpWithNewOp<sparse_tensor::LoadOp>(op, c);
1147  return success();
1148 }
1149 
1150 //===----------------------------------------------------------------------===//
1151 // Rewriting rules for direct code generation.
1152 //===----------------------------------------------------------------------===//
1153 
1154 /// Proof-of-concept rewriter. This rule generates a GPU implementation
1155 /// for each outermost forall loop generated by the sparsifier.
1156 /// TODO: right now works with parallelization-strategy=dense-outer-loop
1157 /// but give this its own flags in the future
1158 struct ForallRewriter : public OpRewritePattern<scf::ParallelOp> {
1160 
1161  ForallRewriter(MLIRContext *context, unsigned nT)
1162  : OpRewritePattern(context), numThreads(nT){};
1163 
1164  LogicalResult matchAndRewrite(scf::ParallelOp forallOp,
1165  PatternRewriter &rewriter) const override {
1166  // Reject inadmissible loop form.
1167  // Essentially only accept a loop, generated by the sparsifier,
1168  // of the form
1169  // forall (i = 0; i < N; i++)
1170  // so that cyclic scheduling over the threads is easy.
1171  if (!forallOp->hasAttr(LoopEmitter::getLoopEmitterLoopAttrName()) ||
1172  forallOp.getNumReductions() != 0 || forallOp.getNumLoops() != 1 ||
1173  !matchPattern(forallOp.getLowerBound()[0], m_Zero()) ||
1174  !matchPattern(forallOp.getStep()[0], m_One()))
1175  return failure();
1176  // Collect every value that is computed outside the parallel loop.
1177  SetVector<Value> invariants; // stable iteration!
1178  forallOp->walk([&](Operation *op) {
1179  // Collect all values of admissible ops.
1180  for (OpOperand &o : op->getOpOperands()) {
1181  Value val = o.get();
1182  Block *block;
1183  if (auto arg = dyn_cast<BlockArgument>(val))
1184  block = arg.getOwner();
1185  else
1186  block = val.getDefiningOp()->getBlock();
1187  if (!forallOp.getRegion().findAncestorBlockInRegion(*block))
1188  invariants.insert(val);
1189  }
1190  });
1191  // Outline the outside values as proper parameters. Fail when sharing
1192  // value between host and device is not straightforward.
1193  SmallVector<Value> constants;
1194  SmallVector<Value> scalars;
1195  SmallVector<Value> buffers;
1196  for (Value val : invariants) {
1197  Type tp = val.getType();
1198  if (val.getDefiningOp<arith::ConstantOp>())
1199  constants.push_back(val);
1200  else if (isa<FloatType>(tp) || tp.isIntOrIndex())
1201  scalars.push_back(val);
1202  else if (isa<MemRefType>(tp))
1203  buffers.push_back(val);
1204  else
1205  return failure(); // don't know how to share
1206  }
1207  // Pass outlined non-constant values.
1208  // TODO: Experiment with `useHostRegistrationForOut` to see if we want to
1209  // keep the feature at all (either through a heuristic or compiler
1210  // option for gpu codegen).
1211  Location loc = forallOp->getLoc();
1212  SmallVector<Value> args;
1213  SmallVector<Value> tokens;
1214  Value out = genParametersIn(rewriter, loc, scalars, buffers, args, tokens,
1215  /*useHostRegistrationForOut=*/false);
1216  // Set up GPU module and construct GPU function.
1217  auto saveIp = rewriter.saveInsertionPoint();
1218  ModuleOp topModule = forallOp->getParentOfType<ModuleOp>();
1219  auto gpuModule = genGPUModule(rewriter, topModule);
1220  auto gpuFunc = genGPUFunc(rewriter, gpuModule, args);
1221  genGPUCode(rewriter, gpuFunc, forallOp, constants, scalars, buffers);
1222  // Generate code that launches the kernel asynchronously, blocking on all
1223  // opens tokens and yielding a new token for the output.
1224  // TODO: Passing in tokens to launch up does not seem to be properly lowered
1225  // by cubin yet, hence the current blocking wait.
1226  rewriter.restoreInsertionPoint(saveIp);
1227  genBlockingWait(rewriter, loc, tokens);
1228  tokens.clear();
1229  Value kernelToken =
1230  genLaunchGPUFunc(rewriter, gpuFunc, args, tokens, numThreads);
1231  // Finalize the outlined arguments.
1232  genParametersOut(rewriter, loc, out, kernelToken, scalars, buffers, args,
1233  tokens);
1234  genBlockingWait(rewriter, loc, tokens);
1235  rewriter.eraseOp(forallOp);
1236  return success();
1237  }
1238 
1239 private:
1240  unsigned numThreads;
1241 };
1242 
1243 //===----------------------------------------------------------------------===//
1244 // Rewriting rules for library recognition and code generation.
1245 //===----------------------------------------------------------------------===//
1246 
1247 /// Proof-of-concept rewriter. This rule recognizes certain math kernels
1248 /// and replaces these with corresponding calls into a sparse library.
1249 struct LinalgOpRewriter : public OpRewritePattern<linalg::GenericOp> {
1251 
1252  LinalgOpRewriter(MLIRContext *context, bool rt)
1253  : OpRewritePattern(context), enableRT(rt) {}
1254 
1255  LogicalResult matchAndRewrite(linalg::GenericOp op,
1256  PatternRewriter &rewriter) const override {
1257  if (op.getNumDpsInits() != 1)
1258  return failure(); // reject multi-output
1259 
1260  const unsigned numLoops = op.getNumLoops();
1261  const unsigned numTensors = op->getNumOperands();
1262  const auto iteratorTypes = op.getIteratorTypesArray();
1263  SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray();
1264 
1265  using MapList = ArrayRef<ArrayRef<AffineExpr>>;
1266  auto infer = [&](MapList m) {
1267  return AffineMap::inferFromExprList(m, op.getContext());
1268  };
1269  AffineExpr i, j, k;
1270  bindDims(getContext(), i, j, k);
1271 
1272  // TODO: more robust patterns, tranposed versions, more kernels,
1273  // identify alpha and beta and pass them to the CUDA calls.
1274 
1275  // Recognize a SpMV kernel.
1276  if (numLoops == 2 && numTensors == 3 &&
1277  linalg::isParallelIterator(iteratorTypes[0]) &&
1278  linalg::isReductionIterator(iteratorTypes[1]) &&
1279  maps == infer({{i, j}, {j}, {i}}) && matchSumOfMultOfArgs(op)) {
1280  return rewriteSpMV(rewriter, op, enableRT);
1281  }
1282 
1283  // Recognize a SpGEMM, 2:4-SpMM, or SpMM kernel.
1284  if (numLoops == 3 && numTensors == 3 &&
1285  linalg::isParallelIterator(iteratorTypes[0]) &&
1286  linalg::isParallelIterator(iteratorTypes[1]) &&
1287  linalg::isReductionIterator(iteratorTypes[2]) &&
1288  maps == infer({{i, k}, {k, j}, {i, j}}) && matchSumOfMultOfArgs(op)) {
1289  if (!isDenseTensor(op.getOperand(0)) && !isDenseTensor(op.getOperand(1)))
1290  return rewriteSpGEMM(rewriter, op, enableRT);
1291  if (isConversionInto24(op.getOperand(0)))
1292  return rewrite2To4SpMM(rewriter, op);
1293  return rewriteSpMM(rewriter, op, enableRT);
1294  }
1295 
1296  // Recognize a SDDMM kernel.
1297  if (numLoops == 3 && numTensors == 3 &&
1298  linalg::isParallelIterator(iteratorTypes[0]) &&
1299  linalg::isParallelIterator(iteratorTypes[1]) &&
1300  linalg::isReductionIterator(iteratorTypes[2]) &&
1301  maps == infer({{i, k}, {k, j}, {i, j}}) &&
1302  matchSumReductionOfMulUnary(op)) {
1303  return rewriteSDDMM(rewriter, op, enableRT);
1304  }
1305 
1306  return failure();
1307  }
1308 
1309 private:
1310  bool enableRT;
1311 };
1312 
1313 } // namespace
1314 
1315 //===----------------------------------------------------------------------===//
1316 // Public method for populating GPU rewriting rules.
1317 //
1318 // Currently two set of rewriting rules are made available. The first set
1319 // implements direct code generation, currently by means of convering the
1320 // outermost paralell loop into GPU threads. The second set implements
1321 // libary recognition of a set of sparse operations. Eventually, the right
1322 // combination of these two approaches has to be found.
1323 //===----------------------------------------------------------------------===//
1324 
1326  unsigned numThreads) {
1327  patterns.add<ForallRewriter>(patterns.getContext(), numThreads);
1328 }
1329 
1331  bool enableRT) {
1332  patterns.add<LinalgOpRewriter>(patterns.getContext(), enableRT);
1333 }
static void copy(Location loc, Value dst, Value src, Value size, OpBuilder &builder)
Copies the given number of bytes from src to dst pointers.
static MLIRContext * getContext(OpFoldResult val)
Base type for affine expression.
Definition: AffineExpr.h:68
static SmallVector< AffineMap, 4 > inferFromExprList(ArrayRef< ArrayRef< AffineExpr >> exprsList, MLIRContext *context)
Returns a vector of AffineMaps; each with as many results as exprs.size(), as many dims as the larges...
Definition: AffineMap.cpp:312
Block represents an ordered list of Operations.
Definition: Block.h:33
BlockArgument getArgument(unsigned i)
Definition: Block.h:129
BlockArgListType getArguments()
Definition: Block.h:87
Operation & front()
Definition: Block.h:153
UnitAttr getUnitAttr()
Definition: Builders.cpp:138
Ty getType(Args &&...args)
Get or construct an instance of the type Ty with provided arguments.
Definition: Builders.h:100
IndexType getIndexType()
Definition: Builders.cpp:95
IntegerType getI8Type()
Definition: Builders.cpp:103
This is a utility class for mapping one set of IR entities to another.
Definition: IRMapping.h:26
auto lookup(T from) const
Lookup a mapped value within the map.
Definition: IRMapping.h:72
void map(Value from, Value to)
Inserts a new mapping for 'from' to 'to'.
Definition: IRMapping.h:30
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class helps build Operations.
Definition: Builders.h:216
InsertPoint saveInsertionPoint() const
Return a saved insertion point.
Definition: Builders.h:394
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition: Builders.cpp:588
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:440
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Definition: Builders.h:407
void restoreInsertionPoint(InsertPoint ip)
Restore the insert point to a previously saved point.
Definition: Builders.h:399
void cloneRegionBefore(Region &region, Region &parent, Region::iterator before, IRMapping &mapping)
Clone the blocks that belong to "region" before the given position in another region "parent".
Definition: Builders.cpp:615
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:497
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:421
This class represents an operand of an operation.
Definition: Value.h:267
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Definition: Operation.h:407
void setAttr(StringAttr name, Attribute value)
If the an attribute exists with the specified name, change it to the new value.
Definition: Operation.h:582
MutableArrayRef< OpOperand > getOpOperands()
Definition: Operation.h:383
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:791
virtual void eraseBlock(Block *block)
This method erases all operations in a block.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:542
This class provides an abstraction over the various different ranges of value types.
Definition: TypeRange.h:36
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
bool isIntOrIndex() const
Return true if this is an integer (of any signedness) or an index type.
Definition: Types.cpp:123
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
constexpr static llvm::StringLiteral getLoopEmitterLoopAttrName()
Definition: LoopEmitter.h:243
A wrapper around RankedTensorType, which has three goals:
unsigned getCrdWidth() const
Returns the coordinate-overhead bitwidth, defaulting to zero.
bool hasEncoding() const
Returns true for tensors which have an encoding, and false for those which do not.
Dimension getDimRank() const
Returns the dimension-rank.
Type getCrdType() const
Returns the coordinate-overhead MLIR type, defaulting to IndexType.
bool isIdentity() const
Returns true if the dimToLvl mapping is the identity.
Level getLvlRank() const
Returns the level-rank.
unsigned getPosWidth() const
Returns the position-overhead bitwidth, defaulting to zero.
bool isPermutation() const
Returns true if the dimToLvl mapping is a permutation.
AffineMap getDimToLvl() const
Returns the dimToLvl mapping (or the null-map for the identity).
Type getPosType() const
Returns the position-overhead MLIR type, defaulting to IndexType.
bool isParallelIterator(utils::IteratorType iteratorType)
Check if iterator type has "parallel" semantics.
Definition: Utils.cpp:184
bool isReductionIterator(utils::IteratorType iteratorType)
Check if iterator type has "reduction" semantics.
Definition: Utils.cpp:188
Value createOrFoldDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
Definition: LinalgOps.cpp:96
Value constantIndex(OpBuilder &builder, Location loc, int64_t i)
Generates a constant of index type.
Definition: CodegenUtils.h:331
SparseTensorType getSparseTensorType(Value val)
Convenience methods to obtain a SparseTensorType from a Value.
SmallVector< unsigned > getBlockSize(AffineMap dimToLvl)
Given the dimToLvl map, returns the block sizes in a vector.
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition: Matchers.h:490
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
Definition: Value.h:498
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
Definition: AffineExpr.h:348
void populateSparseGPULibgenPatterns(RewritePatternSet &patterns, bool enableRT)
detail::constant_int_predicate_matcher m_Zero()
Matches a constant scalar / vector splat / tensor splat integer zero.
Definition: Matchers.h:442
const FrozenRewritePatternSet & patterns
detail::constant_int_predicate_matcher m_One()
Matches a constant scalar / vector splat / tensor splat integer one.
Definition: Matchers.h:478
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
void populateSparseGPUCodegenPatterns(RewritePatternSet &patterns, unsigned numThreads)
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:358
Utility class for the GPU dialect to represent triples of Values accessible through ....
Definition: GPUDialect.h:39
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.