MLIR  20.0.0git
TosaToLinalgNamed.cpp
Go to the documentation of this file.
1 //===- TosaToLinalgNamed.cpp - Lowering Tosa to Linalg Named Ops ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These rewriters lower from the Tosa to the Linalg named ops.
10 //
11 //===----------------------------------------------------------------------===//
12 
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/IR/PatternMatch.h"
28 
30 
31 #include <numeric>
32 #include <type_traits>
33 
34 using namespace mlir;
35 using namespace mlir::tosa;
36 
38  TypedAttr padAttr, OpBuilder &rewriter) {
39  // Input should be padded only if necessary.
40  if (llvm::all_of(pad, [](int64_t p) { return p == 0; }))
41  return input;
42 
43  ShapedType inputTy = cast<ShapedType>(input.getType());
44  Type inputETy = inputTy.getElementType();
45  auto inputShape = inputTy.getShape();
46 
47  assert((inputShape.size() * 2) == pad.size());
48 
49  SmallVector<int64_t, 4> paddedShape;
51  SmallVector<OpFoldResult, 8> highIndices;
52  for (size_t i : llvm::seq(inputShape.size())) {
53  auto lowPad = pad[i * 2];
54  auto highPad = pad[i * 2 + 1];
55  if (ShapedType::isDynamic(inputShape[i]))
56  paddedShape.push_back(inputShape[i]);
57  else
58  paddedShape.push_back(inputShape[i] + highPad + lowPad);
59  lowIndices.push_back(rewriter.getIndexAttr(lowPad));
60  highIndices.push_back(rewriter.getIndexAttr(highPad));
61  }
62 
63  Value padValue = rewriter.create<arith::ConstantOp>(loc, padAttr);
64 
65  return rewriter.create<tensor::PadOp>(
66  loc, RankedTensorType::get(paddedShape, inputETy), input, lowIndices,
67  highIndices, padValue);
68 }
69 
70 static mlir::Value
72  Value conv, Value result,
73  ArrayRef<AffineMap> indexingMaps) {
74  ShapedType resultTy = cast<ShapedType>(conv.getType());
75  return rewriter
76  .create<linalg::GenericOp>(
77  loc, resultTy, ValueRange({bias, conv}), result, indexingMaps,
78  getNParallelLoopsAttrs(resultTy.getRank()),
79  [](OpBuilder &builder, Location loc, ValueRange args) {
80  Value biasVal = args[0];
81  Type resType = args[1].getType();
82  if (resType != biasVal.getType()) {
83  biasVal = builder.create<arith::ExtSIOp>(loc, resType, biasVal);
84  }
85  Value added = builder.create<arith::AddIOp>(loc, biasVal, args[1]);
86  builder.create<linalg::YieldOp>(loc, added);
87  })
88  .getResult(0);
89 }
90 
91 // Broadcast the source value to all the outer dimensions of the result value.
92 // If required, the element type is expanded using an arith.extsi operation.
94  Location loc, Value source,
95  Value result) {
96  ShapedType resultTy = cast<ShapedType>(result.getType());
97  ShapedType sourceTy = cast<ShapedType>(source.getType());
98  int64_t resultRank = resultTy.getRank();
99  int64_t sourceRank = sourceTy.getRank();
100 
101  // The source tensor is broadcast to all the outer dimensions of the
102  // result tensor.
103  SmallVector<AffineExpr> sourceDims;
104  // In the case of a rank one source tensor with a single element TOSA
105  // specifies that the value be broadcast meaning we need an edge case for a
106  // constant map.
107  assert(sourceTy.hasStaticShape() &&
108  "Dynamic broadcasting shapes not supported!");
109  if (sourceRank == 1 && sourceTy.getDimSize(0) == 1) {
110  sourceDims.push_back(rewriter.getAffineConstantExpr(0));
111  } else {
112  for (auto dim : llvm::seq<int64_t>(0, sourceRank)) {
113  auto expr = rewriter.getAffineDimExpr(dim + resultRank - sourceRank);
114  sourceDims.push_back(expr);
115  }
116  }
117 
118  // Creating maps for the input and output of the broacast-like generic op.
119  SmallVector<AffineMap, 2> indexingMaps = {
120  // Broadcast the last dimension of the bias to all output dimensions.
121  AffineMap::get(/*dimCount=*/resultRank,
122  /*symbolCount=*/0, sourceDims, rewriter.getContext()),
123 
124  // Output indexing map.
125  rewriter.getMultiDimIdentityMap(resultRank)};
126 
127  // Build the broadcast-like operation as a linalg.generic.
128  return rewriter
129  .create<linalg::GenericOp>(
130  loc, resultTy, ValueRange({source}), result, indexingMaps,
131  getNParallelLoopsAttrs(resultTy.getRank()),
132  [](OpBuilder &builder, Location loc, ValueRange args) {
133  Value biasVal = args[0];
134  Type resType = args[1].getType();
135  if (resType != biasVal.getType()) {
136  biasVal = builder.create<arith::ExtSIOp>(loc, resType, biasVal);
137  }
138  builder.create<linalg::YieldOp>(loc, biasVal);
139  })
140  .getResult(0);
141 }
142 
143 static mlir::Value reifyConstantDim(int64_t attr,
144  ImplicitLocOpBuilder &builder) {
145  return builder.create<arith::ConstantIndexOp>(attr);
146 }
147 
148 // Calculating the output width/height using the formula:
149 // H = ((IH+pad_top+pad_bottom-(dilation_y*(KH-1)+1))/stride_y)+1
150 // W = ((IW+pad_left+pad_right-(dilation_x*(KW-1)+1))/stride_x)+1
151 
153  int64_t padBeforeAttr,
154  int64_t padAfterAttr, Value kernelDim,
155  int64_t strideAttr,
156  int64_t dilationAttr,
157  OpBuilder &rewriter) {
158  ImplicitLocOpBuilder builder(loc, rewriter);
159  auto one = rewriter.create<arith::ConstantOp>(
160  loc, IntegerAttr::get(inputDim.getType(), 1));
161  Value padBefore = reifyConstantDim(padBeforeAttr, builder);
162  Value paddedBefore = builder.create<arith::AddIOp>(inputDim, padBefore);
163  Value padAfter = reifyConstantDim(padAfterAttr, builder);
164  Value paddedAfter = builder.create<arith::AddIOp>(paddedBefore, padAfter);
165 
166  Value subOne = builder.create<arith::SubIOp>(kernelDim, one);
167  Value dilation = reifyConstantDim(dilationAttr, builder);
168  Value dilated = builder.create<arith::MulIOp>(dilation, subOne);
169  Value addOne = builder.create<arith::AddIOp>(dilated, one);
170 
171  Value subtract = builder.create<arith::SubIOp>(paddedAfter, addOne);
172  Value stride = reifyConstantDim(strideAttr, builder);
173  Value divide = builder.create<arith::DivUIOp>(subtract, stride);
174  return builder.create<arith::AddIOp>(divide, one);
175 }
176 
177 // Creates a vector of the dynamic output dims for Conv2D and Depthwise_Conv2D
179  Location loc, Value input, Value weight, ShapedType resultTy,
180  ArrayRef<int64_t> padAttr, ArrayRef<int64_t> strideAttr,
181  ArrayRef<int64_t> dilationAttr, ArrayRef<int64_t> inputSizeDims,
182  ArrayRef<int64_t> kernelSizeDims, OpBuilder &rewriter) {
183  ShapedType inputTy = cast<ShapedType>(input.getType());
184  int64_t inputRank = inputTy.getRank();
185 
186  SmallVector<Value> dynDims;
187  dynDims.resize(resultTy.getRank());
188 
189  for (uint32_t i = 0, s = inputSizeDims.size(); i < s; ++i) {
190  int64_t inputDim = inputSizeDims[i];
191  int64_t kernelDim = kernelSizeDims[i];
192  if (resultTy.isDynamicDim(inputDim)) {
193  auto padTop = padAttr[i * 2];
194  auto padBottom = padAttr[i * 2 + 1];
195  auto stride = strideAttr[i];
196  auto dilation = dilationAttr[i];
197  Value initDynDim = rewriter.create<tensor::DimOp>(loc, input, inputDim);
198  Value kernelDynDim =
199  rewriter.create<tensor::DimOp>(loc, weight, kernelDim);
200  // H = F(IH, pad_top, pad_bottom, dilation_y, KH, stride_y)
201  dynDims[inputDim] =
202  getConvOrPoolOutputDim(loc, initDynDim, padTop, padBottom,
203  kernelDynDim, stride, dilation, rewriter);
204  }
205  }
206 
207  // Get the batch/channels dimensions.
208  for (int i = 0; i < inputRank; i++) {
209  if (resultTy.isDynamicDim(i) && !dynDims[i])
210  dynDims[i] = rewriter.create<tensor::DimOp>(loc, input, i);
211  }
212 
213  SmallVector<Value> filteredDims = condenseValues(dynDims);
214  return filteredDims;
215 }
216 
217 // Creates a map to collapse the last dimension of the Depthwise convolution op
218 // due to a shape mismatch
220  int64_t outputRank, SmallVector<ReassociationExprs, 4> &reassociationMap,
221  OpBuilder &rewriter) {
222  reassociationMap.resize(outputRank);
223  for (int i = 0; i < outputRank; i++) {
224  reassociationMap[i].push_back(rewriter.getAffineDimExpr(i));
225  }
226  reassociationMap[outputRank - 1].push_back(
227  rewriter.getAffineDimExpr(outputRank));
228 }
229 
230 namespace {
231 
232 template <typename TosaConvOp, typename LinalgConvOp, typename LinalgConvQOp>
233 class ConvConverter : public OpConversionPattern<TosaConvOp> {
234 public:
236  LogicalResult
237  matchAndRewrite(TosaConvOp op, typename TosaConvOp::Adaptor adaptor,
238  ConversionPatternRewriter &rewriter) const final {
239  Location loc = op->getLoc();
240  Value input = op->getOperand(0);
241  Value weight = op->getOperand(1);
242  Value bias = op->getOperand(2);
243 
244  ShapedType inputTy = cast<ShapedType>(input.getType());
245  ShapedType weightTy = cast<ShapedType>(weight.getType());
246  ShapedType biasTy = cast<ShapedType>(bias.getType());
247  ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType());
248 
249  Type inputETy = inputTy.getElementType();
250  Type resultETy = resultTy.getElementType();
251 
252  DenseI64ArrayAttr padAttr = op.getPadAttr();
253  DenseI64ArrayAttr strideTosaAttr = op.getStrideAttr();
254  DenseI64ArrayAttr dilationTosaAttr = op.getDilationAttr();
255  bool isQuantized = op.getQuantizationInfo().has_value();
256 
257  if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape())
258  return rewriter.notifyMatchFailure(
259  op, "tosa.conv ops require static shapes for weight and bias");
260 
261  if (inputETy.isUnsignedInteger())
262  return rewriter.notifyMatchFailure(
263  op, "tosa.conv ops does not support unsigned integer input");
264 
265  llvm::SmallVector<int64_t> inputSizeDims;
266  llvm::SmallVector<int64_t> kernelSizeDims;
267  for (int i = 1; i < resultTy.getRank() - 1; i++) {
268  inputSizeDims.push_back(i);
269  kernelSizeDims.push_back(i);
270  }
271 
273  loc, input, weight, resultTy, padAttr.asArrayRef(),
274  strideTosaAttr.asArrayRef(), dilationTosaAttr.asArrayRef(),
275  inputSizeDims, kernelSizeDims, rewriter);
276 
277  auto weightShape = weightTy.getShape();
278 
279  // Apply padding as necessary.
280  TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
281  if (isQuantized) {
282  auto quantizationInfo = *op.getQuantizationInfo();
283  int64_t iZp = quantizationInfo.getInputZp();
284 
285  int64_t intMin =
286  APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
287  .getSExtValue();
288  int64_t intMax =
289  APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
290  .getSExtValue();
291 
292  if (iZp < intMin || iZp > intMax)
293  return rewriter.notifyMatchFailure(
294  op, "tosa.conv op quantization has zp outside of input range");
295 
296  zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
297  }
298 
300  pad.resize(2, 0);
301  llvm::append_range(pad, padAttr.asArrayRef());
302  pad.resize(pad.size() + 2, 0);
303  input = applyPad(loc, input, pad, zeroAttr, rewriter);
304 
305  if (4 == inputTy.getRank()) {
306  // For 2D convolutions, we need to check if the target convolution op
307  // wants a HWCF kernel layout.
308  bool wantHwcf =
309  isQuantized ? std::is_same_v<LinalgConvQOp, linalg::Conv2DNhwcHwcfQOp>
310  : std::is_same_v<LinalgConvOp, linalg::Conv2DNhwcHwcfOp>;
311  if (wantHwcf) {
312  // Transpose the kernel to match dimension ordering of the linalg
313  // convolution operation.
314  // TODO(suderman): See if this can be efficiently folded - check whether
315  // the input is used anywhere else, if not fold the constant.
316  SmallVector<int64_t> weightPerm;
317  for (int i = 1; i < resultTy.getRank(); i++)
318  weightPerm.push_back(i);
319  weightPerm.push_back(0);
320 
321  SmallVector<int64_t> newWeightShape;
322  for (auto dim : weightPerm)
323  newWeightShape.push_back(weightShape[dim]);
324  auto weightPermAttr = rewriter.getI64TensorAttr(weightPerm);
325  Value weightPermValue =
326  rewriter.create<arith::ConstantOp>(loc, weightPermAttr);
327  Type newWeightTy =
328  RankedTensorType::get(newWeightShape, weightTy.getElementType());
329  weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight,
330  weightPermValue);
331  }
332  }
333 
334  // For Conv3D transpose the kernel to match dimension ordering of the linalg
335  // convolution operation. Conv2D has a 1-1 mapping in linalg so better to
336  // map directly and then transpose later if desired.
337  if (5 == inputTy.getRank()) {
338  // TODO(suderman): See if this can be efficiently folded - check whether
339  // the input is used anywhere else, if not fold the constant.
340  SmallVector<int64_t> weightPerm;
341  for (int i = 1; i < resultTy.getRank(); i++)
342  weightPerm.push_back(i);
343  weightPerm.push_back(0);
344 
345  SmallVector<int64_t> newWeightShape;
346  for (auto dim : weightPerm)
347  newWeightShape.push_back(weightShape[dim]);
348  auto weightPermAttr = rewriter.getI64TensorAttr(weightPerm);
349  Value weightPermValue =
350  rewriter.create<arith::ConstantOp>(loc, weightPermAttr);
351  Type newWeightTy =
352  RankedTensorType::get(newWeightShape, weightTy.getElementType());
353  weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight,
354  weightPermValue);
355  }
356 
357  // Extract the attributes for convolution.
358  ArrayRef<int64_t> stride = strideTosaAttr;
359  ArrayRef<int64_t> dilation = dilationTosaAttr;
360 
361  // Create the convolution op.
362  auto strideAttr = rewriter.getI64TensorAttr(stride);
363  auto dilationAttr = rewriter.getI64TensorAttr(dilation);
364 
365  Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
366  loc, resultTy.getShape(), resultETy, filteredDims);
367 
368  Value broadcastBias =
369  linalgBroadcastAndMaybeExtSI(rewriter, loc, bias, biasEmptyTensor);
370 
371  if (isQuantized) {
372  auto quantizationInfo = *op.getQuantizationInfo();
373  auto iZp = rewriter.getI32IntegerAttr(quantizationInfo.getInputZp());
374  auto kZp = rewriter.getI32IntegerAttr(quantizationInfo.getWeightZp());
375 
376  auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
377  auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
378 
379  Value conv =
380  rewriter
381  .create<LinalgConvQOp>(
382  loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal},
383  ValueRange{broadcastBias}, strideAttr, dilationAttr)
384  ->getResult(0);
385 
386  rewriter.replaceOp(op, conv);
387  return success();
388  }
389 
390  Value conv = rewriter
391  .create<LinalgConvOp>(
392  loc, resultTy, ValueRange{input, weight},
393  ValueRange{broadcastBias}, strideAttr, dilationAttr)
394  ->getResult(0);
395 
396  rewriter.replaceOp(op, conv);
397  return success();
398  }
399 };
400 
401 class DepthwiseConvConverter
402  : public OpConversionPattern<tosa::DepthwiseConv2DOp> {
403 public:
405  LogicalResult
406  matchAndRewrite(tosa::DepthwiseConv2DOp op, OpAdaptor adaptor,
407  ConversionPatternRewriter &rewriter) const final {
408  Location loc = op->getLoc();
409  Value input = op->getOperand(0);
410  Value weight = op->getOperand(1);
411  Value bias = op->getOperand(2);
412 
413  ShapedType inputTy = cast<ShapedType>(input.getType());
414  ShapedType weightTy = cast<ShapedType>(weight.getType());
415  ShapedType biasTy = cast<ShapedType>(bias.getType());
416  ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType());
417  int64_t resultRank = resultTy.getRank();
418 
419  Type inputETy = inputTy.getElementType();
420  Type resultETy = resultTy.getElementType();
421 
422  auto padAttr = cast<DenseI64ArrayAttr>(op->getAttr("pad"));
423  auto strideTosaAttr = cast<DenseI64ArrayAttr>(op->getAttr("stride"));
424  auto dilationTosaAttr = cast<DenseI64ArrayAttr>(op->getAttr("dilation"));
425 
426  if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape())
427  return rewriter.notifyMatchFailure(
428  op, "tosa.depthwise_conv ops require static shapes");
429 
430  // Compute output dynamic dims
432  loc, input, weight, resultTy, padAttr.asArrayRef(),
433  strideTosaAttr.asArrayRef(), dilationTosaAttr.asArrayRef(),
434  /*inputSizeDims=*/{1, 2},
435  /*kernelSizeDims=*/{0, 1}, rewriter);
436 
437  bool isQuantized = op->hasAttr("quantization_info");
438  IntegerAttr iZp;
439  IntegerAttr kZp;
440  if (isQuantized) {
441  auto quantizationInfo =
442  cast<tosa::ConvOpQuantizationAttr>(op->getAttr("quantization_info"));
443  iZp = rewriter.getI32IntegerAttr(quantizationInfo.getInputZp());
444  kZp = rewriter.getI32IntegerAttr(quantizationInfo.getWeightZp());
445  }
446 
447  auto weightShape = weightTy.getShape();
448  auto resultShape = resultTy.getShape();
449 
450  // Apply padding as necessary.
451  TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
452  if (isQuantized) {
453  auto quantizationInfo =
454  cast<tosa::ConvOpQuantizationAttr>(op->getAttr("quantization_info"));
455  int64_t iZp = quantizationInfo.getInputZp();
456 
457  int64_t intMin =
458  APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
459  .getSExtValue();
460  int64_t intMax =
461  APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
462  .getSExtValue();
463 
464  if (iZp < intMin || iZp > intMax)
465  return rewriter.notifyMatchFailure(
466  op, "tosa.depthwise_conv op quantization has zp outside of input "
467  "range");
468 
469  zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
470  }
471 
473  pad.resize(2, 0);
474  llvm::append_range(pad, padAttr.asArrayRef());
475  pad.resize(pad.size() + 2, 0);
476 
477  input = applyPad(loc, input, pad, zeroAttr, rewriter);
478 
479  // Extract the attributes for convolution.
480  ArrayRef<int64_t> stride = strideTosaAttr;
481  ArrayRef<int64_t> dilation = dilationTosaAttr;
482 
483  // Create the convolution op.
484  auto strideAttr = rewriter.getI64TensorAttr(stride);
485  auto dilationAttr = rewriter.getI64TensorAttr(dilation);
486  ShapedType linalgConvTy =
487  RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2],
488  weightShape[2], weightShape[3]},
489  resultETy);
490 
491  // Broadcast the initial value to the output tensor before convolving.
492  SmallVector<AffineMap, 4> indexingMaps;
493  indexingMaps.push_back(AffineMap::get(
494  /*dimCount=*/resultRank, /*symbolCount=*/0,
495  {rewriter.getAffineDimExpr(3)}, rewriter.getContext()));
496  indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
497  indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
498 
499  auto resultZeroAttr = rewriter.getZeroAttr(resultETy);
500  Value emptyTensor = rewriter.create<tensor::EmptyOp>(
501  loc, linalgConvTy.getShape(), resultETy, filteredDims);
502  Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
503  Value zeroTensor = rewriter
504  .create<linalg::FillOp>(loc, ValueRange{zero},
505  ValueRange{emptyTensor})
506  .result();
507 
508  Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
509  loc, resultTy.getShape(), resultETy, filteredDims);
510  if (!isQuantized) {
511  Value conv = rewriter
512  .create<linalg::DepthwiseConv2DNhwcHwcmOp>(
513  loc, linalgConvTy, ValueRange{input, weight},
514  ValueRange{zeroTensor}, strideAttr, dilationAttr)
515  .getResult(0);
516 
517  SmallVector<ReassociationExprs, 4> reassociationMap;
518  createDepthwiseConvCollapseMap(resultRank, reassociationMap, rewriter);
519  Value convReshape = rewriter.create<tensor::CollapseShapeOp>(
520  loc, resultTy, conv, reassociationMap);
521 
522  Value result =
523  rewriter
524  .create<linalg::GenericOp>(
525  loc, resultTy, ValueRange({bias, convReshape}),
526  biasEmptyTensor, indexingMaps,
527  getNParallelLoopsAttrs(resultRank),
528  [&](OpBuilder &nestedBuilder, Location nestedLoc,
529  ValueRange args) {
530  Value added = nestedBuilder.create<arith::AddFOp>(
531  loc, args[0], args[1]);
532  nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
533  })
534  .getResult(0);
535  rewriter.replaceOp(op, result);
536  } else {
537  auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
538  auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);
539  Value conv =
540  rewriter
541  .create<linalg::DepthwiseConv2DNhwcHwcmQOp>(
542  loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal},
543  ValueRange{zeroTensor}, strideAttr, dilationAttr)
544  .getResult(0);
545  SmallVector<ReassociationExprs, 4> reassociationMap;
546  createDepthwiseConvCollapseMap(resultRank, reassociationMap, rewriter);
547  Value convReshape = rewriter.create<tensor::CollapseShapeOp>(
548  loc, resultTy, conv, reassociationMap);
550  rewriter, loc, bias, convReshape, biasEmptyTensor, indexingMaps);
551  rewriter.replaceOp(op, result);
552  }
553  return success();
554  }
555 };
556 
557 class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
558 public:
560  LogicalResult
561  matchAndRewrite(tosa::MatMulOp op, OpAdaptor adaptor,
562  ConversionPatternRewriter &rewriter) const final {
563  Location loc = op.getLoc();
564 
565  auto outputTy = cast<ShapedType>(op.getType());
566  auto outputElementTy = outputTy.getElementType();
567 
568  SmallVector<Value> dynDims;
569  dynDims.resize(cast<ShapedType>(op->getResult(0).getType()).getRank());
570 
571  if (!outputTy.hasRank() || outputTy.isDynamicDim(0)) {
572  dynDims[0] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 0);
573  }
574 
575  if (!outputTy.hasRank() || outputTy.isDynamicDim(1)) {
576  dynDims[1] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 1);
577  }
578 
579  if (!outputTy.hasRank() || outputTy.isDynamicDim(2)) {
580  dynDims[2] = rewriter.create<tensor::DimOp>(loc, op->getOperand(1), 2);
581  }
582 
583  SmallVector<Value> filteredDims = condenseValues(dynDims);
584 
585  auto zeroAttr = rewriter.getZeroAttr(outputElementTy);
586  Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr);
587  auto emptyTensor = rewriter.create<tensor::EmptyOp>(
588  loc, outputTy.getShape(), outputTy.getElementType(), filteredDims);
589  Value zeroTensor = rewriter
590  .create<linalg::FillOp>(loc, ValueRange{zero},
591  ValueRange{emptyTensor})
592  .result();
593  if (!op.getQuantizationInfo()) {
594  rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
595  op, TypeRange{op.getType()},
596  ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor});
597  return success();
598  }
599 
600  auto quantizationInfo = *op.getQuantizationInfo();
601  auto aZp = rewriter.create<arith::ConstantOp>(
602  loc, rewriter.getI32IntegerAttr(quantizationInfo.getAZp()));
603  auto bZp = rewriter.create<arith::ConstantOp>(
604  loc, rewriter.getI32IntegerAttr(quantizationInfo.getBZp()));
605  rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
606  op, TypeRange{op.getType()},
607  ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor);
608 
609  return success();
610  }
611 };
612 
613 class FullyConnectedConverter
614  : public OpConversionPattern<tosa::FullyConnectedOp> {
615 public:
617  LogicalResult
618  matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor,
619  ConversionPatternRewriter &rewriter) const final {
620  Location loc = op.getLoc();
621  auto outputTy = cast<ShapedType>(op.getType());
622  auto input = op.getInput();
623  auto inputTy = cast<ShapedType>(input.getType());
624 
625  auto bias = op.getBias();
626 
627  auto weight = op.getWeight();
628  auto weightTy = cast<ShapedType>(weight.getType());
629  auto weightShape = weightTy.getShape();
630 
631  auto outputETy = outputTy.getElementType();
632 
633  SmallVector<Value> dynDims;
634  dynDims.resize(cast<ShapedType>(op->getResult(0).getType()).getRank());
635 
636  if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) {
637  dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0);
638  }
639 
640  if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) {
641  dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0);
642  }
643 
644  SmallVector<Value> filteredDims = condenseValues(dynDims);
645 
646  SmallVector<int64_t> permutation{1, 0};
647  auto permutationAttr = rewriter.getI64TensorAttr(permutation);
648  Value permutationValue =
649  rewriter.create<arith::ConstantOp>(loc, permutationAttr);
650 
651  SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[0]};
652  Type newWeightTy =
653  RankedTensorType::get(newWeightShape, weightTy.getElementType());
654 
655  Value transposedWeight = rewriter.create<tosa::TransposeOp>(
656  loc, newWeightTy, weight, permutationValue);
657 
658  Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
659  loc, outputTy.getShape(), outputETy, filteredDims);
660 
661  Value broadcastBias =
662  linalgBroadcastAndMaybeExtSI(rewriter, loc, bias, biasEmptyTensor);
663 
664  if (!op.getQuantizationInfo()) {
665  Value matmul = rewriter
666  .create<linalg::MatmulOp>(
667  loc, TypeRange{op.getType()},
668  ValueRange{input, transposedWeight}, broadcastBias)
669  ->getResult(0);
670 
671  rewriter.replaceOp(op, matmul);
672  return success();
673  }
674 
675  auto quantizationInfo = *op.getQuantizationInfo();
676  auto inputZp = rewriter.create<arith::ConstantOp>(
677  loc, rewriter.getI32IntegerAttr(quantizationInfo.getInputZp()));
678  auto outputZp = rewriter.create<arith::ConstantOp>(
679  loc, rewriter.getI32IntegerAttr(quantizationInfo.getWeightZp()));
680  Value matmul =
681  rewriter
682  .create<linalg::QuantizedMatmulOp>(
683  loc, TypeRange{op.getType()},
684  ValueRange{input, transposedWeight, inputZp, outputZp},
685  broadcastBias)
686  ->getResult(0);
687 
688  rewriter.replaceOp(op, matmul);
689  return success();
690  }
691 };
692 
693 class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> {
694 public:
696 
697  // Compute the dynamic output sizes of the maxpool operation.
698  static SmallVector<Value>
699  computeDynamicOutputSizes(tosa::MaxPool2dOp op, PatternRewriter &rewriter) {
700  TensorType resultTy = op.getType();
701  Location loc = op.getLoc();
702 
703  TypedValue<TensorType> input = op.getInput();
704  ArrayRef<int64_t> kernel = op.getKernel();
705  ArrayRef<int64_t> pad = op.getPad();
706  ArrayRef<int64_t> stride = op.getStride();
707 
708  SmallVector<Value> dynamicDims;
709 
710  // Batch dimension
711  if (resultTy.isDynamicDim(0))
712  dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 0));
713 
714  // Height/width dimensions
715  for (int64_t dim : {1, 2}) {
716  if (!resultTy.isDynamicDim(dim))
717  continue;
718 
719  // Index into the attribute arrays
720  int64_t index = dim - 1;
721 
722  // Input height/width
723  Value ihw = rewriter.create<tensor::DimOp>(loc, input, dim);
724 
725  // Kernel height/width
726  Value khw = rewriter.create<arith::ConstantIndexOp>(loc, kernel[index]);
727 
728  // Output height/width
729  Value ohw = getConvOrPoolOutputDim(loc, ihw, pad[index * 2],
730  pad[index * 2 + 1], khw, stride[index],
731  /*dilationAttr=*/1, rewriter);
732  dynamicDims.push_back(ohw);
733  }
734 
735  // Channel dimension
736  if (resultTy.isDynamicDim(3))
737  dynamicDims.push_back(rewriter.create<tensor::DimOp>(loc, input, 3));
738 
739  return dynamicDims;
740  }
741 
742  LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
743  PatternRewriter &rewriter) const final {
744  Location loc = op.getLoc();
745  TypedValue<TensorType> input = op.getInput();
746  ShapedType inputTy = input.getType();
747 
748  ShapedType resultTy = op.getType();
749  Type resultETy = inputTy.getElementType();
750 
751  SmallVector<Value> dynamicDims = computeDynamicOutputSizes(op, rewriter);
752 
753  // Determine what the initial value needs to be for the max pool op.
754  TypedAttr initialAttr;
755  if (resultETy.isF32() || resultETy.isBF16() || resultETy.isF16())
756  initialAttr = rewriter.getFloatAttr(
757  resultETy, APFloat::getLargest(
758  cast<FloatType>(resultETy).getFloatSemantics(), true));
759 
760  if (isa<IntegerType>(resultETy))
761  initialAttr = rewriter.getIntegerAttr(
762  resultETy,
763  APInt::getSignedMinValue(resultETy.getIntOrFloatBitWidth()));
764 
765  if (!initialAttr)
766  return rewriter.notifyMatchFailure(
767  op, "Unsupported initial value for tosa.maxpool_2d op");
768 
769  // Apply padding as necessary.
771  pad.resize(2, 0);
772  llvm::append_range(pad, op.getPad());
773  pad.resize(pad.size() + 2, 0);
774 
775  Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter);
776 
777  Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
778 
779  ArrayRef<int64_t> kernel = op.getKernel();
780  ArrayRef<int64_t> stride = op.getStride();
781 
782  Attribute strideAttr = rewriter.getI64VectorAttr(stride);
783  Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
784 
785  // Create the linalg op that performs pooling.
786  Value emptyTensor = rewriter.create<tensor::EmptyOp>(
787  loc, resultTy.getShape(), resultTy.getElementType(), dynamicDims);
788 
789  Value filledEmptyTensor =
790  rewriter.create<linalg::FillOp>(loc, initialValue, emptyTensor)
791  .result();
792 
793  Value fakeWindowDims =
794  rewriter.create<tensor::EmptyOp>(loc, kernel, resultETy);
795 
796  rewriter.replaceOpWithNewOp<linalg::PoolingNhwcMaxOp>(
797  op, ArrayRef<Type>{resultTy}, ValueRange{paddedInput, fakeWindowDims},
798  filledEmptyTensor, strideAttr, dilationAttr);
799  return success();
800  }
801 };
802 
803 class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
804 public:
806 
807  LogicalResult matchAndRewrite(tosa::AvgPool2dOp op,
808  PatternRewriter &rewriter) const final {
809  Location loc = op.getLoc();
810  Value input = op.getInput();
811  ShapedType inputTy = cast<ShapedType>(input.getType());
812  Type inElementTy = inputTy.getElementType();
813 
814  ShapedType resultTy = cast<ShapedType>(op.getType());
815  Type resultETy = cast<ShapedType>(op.getType()).getElementType();
816 
817  Type accETy = op.getAccType();
818  ShapedType accTy = resultTy.clone(accETy);
819 
820  auto dynamicDimsOr =
821  checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()});
822  if (!dynamicDimsOr.has_value())
823  return failure();
824  SmallVector<Value> dynamicDims = *dynamicDimsOr;
825 
826  // Apply padding as necessary.
828  pad.resize(2, 0);
829  llvm::append_range(pad, op.getPad());
830  pad.resize(pad.size() + 2, 0);
831  TypedAttr padAttr = rewriter.getZeroAttr(inElementTy);
832  // Unsupported element type
833  if (!padAttr)
834  return failure();
835  Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter);
836 
837  auto initialAttr = rewriter.getZeroAttr(accETy);
838  Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr);
839 
840  ArrayRef<int64_t> kernel = op.getKernel();
841  ArrayRef<int64_t> stride = op.getStride();
842 
843  Attribute strideAttr = rewriter.getI64VectorAttr(stride);
844  Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1});
845 
846  // Create the linalg op that performs pooling.
847  Value poolEmptyTensor = rewriter.create<tensor::EmptyOp>(
848  loc, accTy.getShape(), accETy, dynamicDims);
849 
850  Value filledEmptyTensor =
851  rewriter
852  .create<linalg::FillOp>(loc, ValueRange{initialValue},
853  ValueRange{poolEmptyTensor})
854  .result();
855 
856  Value fakeWindowDims =
857  rewriter.create<tensor::EmptyOp>(loc, kernel, accETy);
858 
859  // Sum across the pooled region.
860  Value poolingOp = rewriter
861  .create<linalg::PoolingNhwcSumOp>(
862  loc, ArrayRef<Type>{accTy},
863  ValueRange{paddedInput, fakeWindowDims},
864  filledEmptyTensor, strideAttr, dilationAttr)
865  .getResult(0);
866 
867  // Normalize the summed value by the number of elements grouped in each
868  // pool.
869  Value iH = rewriter.create<tensor::DimOp>(loc, poolingOp, 1);
870  Value iW = rewriter.create<tensor::DimOp>(loc, poolingOp, 2);
871 
872  auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
873  iH = rewriter.create<arith::SubIOp>(loc, iH, one);
874  iW = rewriter.create<arith::SubIOp>(loc, iW, one);
875 
876  Value genericEmptyTensor = rewriter.create<tensor::EmptyOp>(
877  loc, resultTy.getShape(), resultETy, dynamicDims);
878 
879  auto affineMap = rewriter.getMultiDimIdentityMap(resultTy.getRank());
880  auto genericOp = rewriter.create<linalg::GenericOp>(
881  loc, ArrayRef<Type>({resultTy}), ValueRange{poolingOp},
882  ValueRange{genericEmptyTensor},
883  ArrayRef<AffineMap>({affineMap, affineMap}),
884  getNParallelLoopsAttrs(resultTy.getRank()),
885  [&](OpBuilder &b, Location loc, ValueRange args) {
886  auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
887 
888  // Determines what the portion of valid input is covered by the
889  // kernel.
890  auto padFn = [&](Value valid, Value pos, int64_t pad) -> Value {
891  if (pad == 0)
892  return valid;
893 
894  auto padVal = rewriter.create<arith::ConstantIndexOp>(loc, pad);
895  Value dpos = rewriter.create<arith::SubIOp>(loc, pos, padVal);
896 
897  Value offset = rewriter.create<arith::MinSIOp>(loc, dpos, zero);
898  return rewriter.create<arith::AddIOp>(loc, valid, offset)
899  ->getResult(0);
900  };
901 
902  auto coverageFn = [&](int64_t i, Value isize) -> Value {
903  Value strideVal =
904  rewriter.create<arith::ConstantIndexOp>(loc, stride[i - 1]);
905  Value val =
906  rewriter.create<arith::ConstantIndexOp>(loc, kernel[i - 1]);
907 
908  // Find the position relative to the input tensor's ends.
909  Value left = rewriter.create<linalg::IndexOp>(loc, i);
910  Value right = rewriter.create<arith::SubIOp>(loc, isize, left);
911  left = rewriter.create<arith::MulIOp>(loc, left, strideVal);
912  right = rewriter.create<arith::MulIOp>(loc, right, strideVal);
913 
914  // Determine how much padding was included.
915  val = padFn(val, left, pad[i * 2]);
916  val = padFn(val, right, pad[i * 2 + 1]);
917  return rewriter.create<arith::MaxSIOp>(loc, one, val);
918  };
919 
920  // Compute the indices from either end.
921  Value kH3 = coverageFn(1, iH);
922  Value kW3 = coverageFn(2, iW);
923 
924  // Compute the total number of elements and normalize.
925  auto count = rewriter.create<arith::IndexCastOp>(
926  loc, rewriter.getI32Type(),
927  rewriter.create<arith::MulIOp>(loc, kH3, kW3));
928 
929  // Divide by the number of summed values. For floats this is just
930  // a div however for quantized values input normalization had
931  // to be applied.
932  Value poolVal = args[0];
933  if (isa<FloatType>(accETy)) {
934  auto countF = rewriter.create<arith::SIToFPOp>(loc, accETy, count);
935  poolVal = rewriter.create<arith::DivFOp>(loc, poolVal, countF)
936  ->getResult(0);
937  if (accETy.getIntOrFloatBitWidth() >
938  resultETy.getIntOrFloatBitWidth())
939  poolVal =
940  rewriter.create<arith::TruncFOp>(loc, resultETy, poolVal);
941  } else {
942 
943  // If we have quantization information we need to apply an offset
944  // for the input zp value.
945  if (op.getQuantizationInfo()) {
946  auto quantizationInfo = *op.getQuantizationInfo();
947  auto inputZp = rewriter.create<arith::ConstantOp>(
948  loc, b.getIntegerAttr(accETy, quantizationInfo.getInputZp()));
949  Value offset =
950  rewriter.create<arith::MulIOp>(loc, accETy, count, inputZp);
951  poolVal =
952  rewriter.create<arith::SubIOp>(loc, accETy, poolVal, offset);
953  }
954 
955  // Compute: k = 32 - count_leading_zeros(value - 1)
956  Value one32 = rewriter.create<arith::ConstantOp>(
957  loc, rewriter.getI32IntegerAttr(1));
958  Value thirtyTwo32 = rewriter.create<arith::ConstantOp>(
959  loc, rewriter.getI32IntegerAttr(32));
960 
961  Value countSubOne =
962  rewriter.create<arith::SubIOp>(loc, count, one32);
963  Value leadingZeros =
964  rewriter.create<math::CountLeadingZerosOp>(loc, countSubOne);
965  Value k =
966  rewriter.create<arith::SubIOp>(loc, thirtyTwo32, leadingZeros);
967 
968  // Compute: numerator = ((1 << 30) + 1) << k
969  Value k64 =
970  rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), k);
971  Value thirtyShiftPlusOne = rewriter.create<arith::ConstantOp>(
972  loc, rewriter.getI64IntegerAttr((1 << 30) + 1));
973  Value numerator =
974  rewriter.create<arith::ShLIOp>(loc, thirtyShiftPlusOne, k64);
975 
976  // Compute: scale.multiplier = numerator / value;
977  Value count64 = rewriter.create<arith::ExtUIOp>(
978  loc, rewriter.getI64Type(), count);
979  Value multiplier =
980  rewriter.create<arith::DivUIOp>(loc, numerator, count64);
981  multiplier = rewriter.create<arith::TruncIOp>(
982  loc, rewriter.getI32Type(), multiplier);
983 
984  // Compute: scale.shift = 30 + k
985  Value k8 =
986  rewriter.create<arith::TruncIOp>(loc, rewriter.getI8Type(), k);
987  Value thirty8 = rewriter.create<arith::ConstantOp>(
988  loc, rewriter.getI8IntegerAttr(30));
989  Value shift = rewriter.create<arith::AddIOp>(loc, k8, thirty8);
990 
991  auto scaled =
992  rewriter
993  .create<tosa::ApplyScaleOp>(loc, rewriter.getI32Type(),
994  poolVal, multiplier, shift,
995  rewriter.getBoolAttr(false))
996  .getResult();
997 
998  // If we have quantization information we need to apply output
999  // zeropoint.
1000  if (op.getQuantizationInfo()) {
1001  auto quantizationInfo = *op.getQuantizationInfo();
1002  auto outputZp = rewriter.create<arith::ConstantOp>(
1003  loc, b.getIntegerAttr(scaled.getType(),
1004  quantizationInfo.getOutputZp()));
1005  scaled = rewriter.create<arith::AddIOp>(loc, scaled, outputZp)
1006  .getResult();
1007  }
1008 
1009  // Apply Clip.
1010  int64_t outBitwidth = resultETy.getIntOrFloatBitWidth();
1011 
1012  auto min = rewriter.create<arith::ConstantIntOp>(
1013  loc, APInt::getSignedMinValue(outBitwidth).getSExtValue(),
1014  accETy);
1015  auto max = rewriter.create<arith::ConstantIntOp>(
1016  loc, APInt::getSignedMaxValue(outBitwidth).getSExtValue(),
1017  accETy);
1018  auto clamp = clampIntHelper(loc, scaled, min, max, rewriter,
1019  /*isUnsigned=*/false);
1020 
1021  poolVal = clamp;
1022  // Convert type.
1023  if (resultETy != clamp.getType()) {
1024  poolVal =
1025  rewriter.create<arith::TruncIOp>(loc, resultETy, poolVal);
1026  }
1027  }
1028 
1029  rewriter.create<linalg::YieldOp>(loc, poolVal);
1030  });
1031 
1032  rewriter.replaceOp(op, genericOp.getResult(0));
1033  return success();
1034  }
1035 };
1036 
1037 class TransposeConverter : public OpRewritePattern<tosa::TransposeOp> {
1038 public:
1040 
1041  LogicalResult matchAndRewrite(tosa::TransposeOp op,
1042  PatternRewriter &rewriter) const final {
1043  SmallVector<int64_t> constantPerms;
1044  if (failed(op.getConstantPerms(constantPerms)))
1045  return failure();
1046 
1047  Location loc = op.getLoc();
1048  // The verifier should have made sure we have a valid permutation tensor.
1049  assert(isPermutationVector(constantPerms) && "Expected valid permutation");
1050  SmallVector<OpFoldResult> inputSizes =
1051  tensor::getMixedSizes(rewriter, loc, op.getInput1());
1052  auto permutedSizes =
1053  applyPermutation<OpFoldResult>(inputSizes, constantPerms);
1054 
1055  auto permutedInit = rewriter.create<tensor::EmptyOp>(
1056  loc, permutedSizes, op.getInput1().getType().getElementType());
1057  rewriter.replaceOpWithNewOp<linalg::TransposeOp>(
1058  op, op.getInput1(), permutedInit, constantPerms);
1059  return success();
1060  }
1061 };
1062 } // namespace
1063 
1065  RewritePatternSet *patterns, const TosaToLinalgNamedOptions &options) {
1066  if (options.preferConv2DKernelLayoutHWCF) {
1067  patterns->add<ConvConverter<tosa::Conv2DOp, linalg::Conv2DNhwcHwcfOp,
1068  linalg::Conv2DNhwcHwcfQOp>>(
1069  patterns->getContext());
1070  } else {
1071  patterns->add<ConvConverter<tosa::Conv2DOp, linalg::Conv2DNhwcFhwcOp,
1072  linalg::Conv2DNhwcFhwcQOp>>(
1073  patterns->getContext());
1074  }
1075  patterns->add<
1076  // clang-format off
1077  ConvConverter<tosa::Conv3DOp, linalg::Conv3DNdhwcDhwcfOp, linalg::Conv3DNdhwcDhwcfQOp>,
1078  DepthwiseConvConverter,
1079  MatMulConverter,
1080  MaxPool2dConverter,
1081  AvgPool2dConverter,
1082  FullyConnectedConverter,
1083  TransposeConverter
1084  >(patterns->getContext());
1085  // clang-format on
1086 }
static llvm::ManagedStatic< PassManagerOptions > options
static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, Value upperBound)
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
static mlir::Value applyPad(Location loc, Value input, ArrayRef< int64_t > pad, TypedAttr padAttr, OpBuilder &rewriter)
static mlir::Value linalgBroadcastAndMaybeExtSI(PatternRewriter &rewriter, Location loc, Value source, Value result)
static void createDepthwiseConvCollapseMap(int64_t outputRank, SmallVector< ReassociationExprs, 4 > &reassociationMap, OpBuilder &rewriter)
static mlir::Value linalgIntBroadcastExtSIAdd(PatternRewriter &rewriter, Location loc, Value bias, Value conv, Value result, ArrayRef< AffineMap > indexingMaps)
static mlir::Value getConvOrPoolOutputDim(Location loc, Value inputDim, int64_t padBeforeAttr, int64_t padAfterAttr, Value kernelDim, int64_t strideAttr, int64_t dilationAttr, OpBuilder &rewriter)
static mlir::Value reifyConstantDim(int64_t attr, ImplicitLocOpBuilder &builder)
static SmallVector< Value > inferDynamicDimsForConv(Location loc, Value input, Value weight, ShapedType resultTy, ArrayRef< int64_t > padAttr, ArrayRef< int64_t > strideAttr, ArrayRef< int64_t > dilationAttr, ArrayRef< int64_t > inputSizeDims, ArrayRef< int64_t > kernelSizeDims, OpBuilder &rewriter)
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
Attributes are known-constant values of operations.
Definition: Attributes.h:25
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:132
IntegerAttr getI32IntegerAttr(int32_t value)
Definition: Builders.cpp:224
IntegerAttr getIntegerAttr(Type type, int64_t value)
Definition: Builders.cpp:246
AffineMap getMultiDimIdentityMap(unsigned rank)
Definition: Builders.cpp:402
FloatAttr getFloatAttr(Type type, double value)
Definition: Builders.cpp:269
AffineExpr getAffineConstantExpr(int64_t constant)
Definition: Builders.cpp:387
IntegerType getI64Type()
Definition: Builders.cpp:93
IntegerType getI32Type()
Definition: Builders.cpp:91
IntegerAttr getI64IntegerAttr(int64_t value)
Definition: Builders.cpp:136
BoolAttr getBoolAttr(bool value)
Definition: Builders.cpp:124
TypedAttr getZeroAttr(Type type)
Definition: Builders.cpp:339
AffineExpr getAffineDimExpr(unsigned position)
Definition: Builders.cpp:379
MLIRContext * getContext() const
Definition: Builders.h:55
DenseIntElementsAttr getI64VectorAttr(ArrayRef< int64_t > values)
Definition: Builders.cpp:152
IntegerType getI8Type()
Definition: Builders.cpp:87
IntegerAttr getI8IntegerAttr(int8_t value)
Definition: Builders.cpp:242
This class implements a pattern rewriter for use with ConversionPatterns.
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
OpTy create(Args &&...args)
Create an operation of specific op type at the current insertion point and location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:63
This class helps build Operations.
Definition: Builders.h:211
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:472
OpConversionPattern is a wrapper around ConversionPattern that allows for matching and rewriting agai...
Value getOperand(unsigned idx)
Definition: Operation.h:345
Attribute getAttr(StringAttr name)
Return the specified attribute if present, null otherwise.
Definition: Operation.h:529
bool hasAttr(StringAttr name)
Return true if the operation has an attribute with the provided name, false otherwise.
Definition: Operation.h:555
Operation * clone(IRMapping &mapper, CloneOptions options=CloneOptions::all())
Create a deep copy of this operation, remapping any operands that use values outside of the operation...
Definition: Operation.cpp:717
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
Definition: Operation.h:402
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
static Operation * create(Location location, OperationName name, TypeRange resultTypes, ValueRange operands, NamedAttrList &&attributes, OpaqueProperties properties, BlockRange successors, unsigned numRegions)
Create a new Operation with the specific fields.
Definition: Operation.cpp:67
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:785
MLIRContext * getContext() const
Definition: PatternMatch.h:823
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
Definition: PatternMatch.h:847
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:718
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:536
Tensor types represent multi-dimensional arrays, and have two variants: RankedTensorType and Unranked...
Definition: BuiltinTypes.h:98
This class provides an abstraction over the various different ranges of value types.
Definition: TypeRange.h:36
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
bool isF32() const
Definition: Types.cpp:53
bool isUnsignedInteger() const
Return true if this is an unsigned integer type (with the specified width).
Definition: Types.cpp:93
bool isF16() const
Definition: Types.cpp:51
unsigned getIntOrFloatBitWidth() const
Return the bit width of an integer or a float type, assert failure on other types.
Definition: Types.cpp:127
bool isBF16() const
Definition: Types.cpp:50
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
Base class for DenseArrayAttr that is instantiated and specialized for each supported element type be...
SmallVector< OpFoldResult > getMixedSizes(OpBuilder &builder, Location loc, Value value)
Return the dimensions of the given tensor value.
Definition: TensorOps.cpp:65
std::optional< SmallVector< Value > > checkHasDynamicBatchDims(PatternRewriter &rewriter, Op op, ArrayRef< Value > params)
SmallVector< utils::IteratorType > getNParallelLoopsAttrs(unsigned nParallelLoops)
SmallVector< Value > condenseValues(const SmallVector< Value > &values)
Value clampIntHelper(Location loc, Value arg, Value min, Value max, OpBuilder &rewriter, bool isUnsigned)
void populateTosaToLinalgNamedConversionPatterns(RewritePatternSet *patterns, const TosaToLinalgNamedOptions &options)
Populates conversion passes from TOSA dialect to Linalg named operations.
Include the generated interface declarations.
std::conditional_t< std::is_same_v< Ty, mlir::Type >, mlir::Value, detail::TypedValue< Ty > > TypedValue
If Ty is mlir::Type this will select Value instead of having a wrapper around it.
Definition: Value.h:498
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
bool isPermutationVector(ArrayRef< int64_t > interchange)
Method to check if an interchange vector is a permutation.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:358