31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/TypeSwitch.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/NVVMIntrinsicUtils.h"
35#include "llvm/Support/Casting.h"
36#include "llvm/Support/FormatVariadic.h"
37#include "llvm/Support/NVPTXAddrSpace.h"
38#include "llvm/Support/raw_ostream.h"
46#include "mlir/Dialect/LLVMIR/NVVMOpsDialect.cpp.inc"
47#include "mlir/Dialect/LLVMIR/NVVMOpsEnums.cpp.inc"
49static constexpr unsigned notIntrinsic = llvm::Intrinsic::not_intrinsic;
56 auto ptrTy = llvm::cast<LLVM::LLVMPointerType>(
ptr.getType());
57 return ptrTy.getAddressSpace() ==
static_cast<unsigned>(targetAS);
74 NVVMMemorySpace targetAS) {
75 unsigned AS =
static_cast<unsigned>(targetAS);
76 return builder.CreateAddrSpaceCast(
77 ptr, llvm::PointerType::get(builder.getContext(), AS));
81static llvm::nvvm::CTAGroupKind
84 case NVVM::CTAGroupKind::CTA_1:
85 return llvm::nvvm::CTAGroupKind::CG_1;
86 case NVVM::CTAGroupKind::CTA_2:
87 return llvm::nvvm::CTAGroupKind::CG_2;
89 llvm_unreachable(
"unsupported cta_group value");
101 size_t numIm2ColOffsets,
103 if (tensorDims < 1 || tensorDims > 5)
104 return emitError(loc,
"expects coordinates between 1 to 5 dimension");
112 "to use im2col mode, the tensor has to be at least 3-dimensional");
114 if (numIm2ColOffsets && (tensorDims != (numIm2ColOffsets + 2)))
116 loc,
"im2col offsets must be 2 less than number of coordinates");
121LogicalResult CpAsyncBulkTensorSharedCTAToGlobalOp::verify() {
122 TMAStoreMode mode = getMode();
126 if (getPredicate()) {
127 if (mode != TMAStoreMode::TILE)
128 return emitError(
"Inline-ptx lowering supported only for Tile mode.");
129 if (getL2CacheHint())
130 return emitError(
"Inline-ptx lowering unsupported with L2 cache-hint.");
135 case TMAStoreMode::TILE:
137 case TMAStoreMode::IM2COL:
139 case TMAStoreMode::TILE_SCATTER4:
141 return emitError(
"Scatter4 mode expects 5 coordinates");
146LogicalResult CpAsyncOp::verify() {
147 if (getModifier() != LoadCacheModifierKind::CG &&
148 getModifier() != LoadCacheModifierKind::CA)
149 return emitError(
"Only CG and CA cache modifiers are supported.");
150 if (getSize() != 4 && getSize() != 8 && getSize() != 16)
151 return emitError(
"expected byte size to be either 4, 8 or 16.");
152 if (getModifier() == LoadCacheModifierKind::CG && getSize() != 16)
153 return emitError(
"CG cache modifier is only support for 16 bytes copy.");
160 if (tensorDims < 1 || tensorDims > 5)
161 return emitError(loc,
"expects coordinates between 1 to 5 dimension");
163 auto checkTMALoadParams = [&](TMALoadMode mode,
bool isIm2col,
164 size_t expectedIm2colOff) -> LogicalResult {
165 if (isIm2col && (tensorDims < 3))
167 <<
"to use " << stringifyEnum(mode)
168 <<
" mode, the tensor has to be at least 3-dimensional";
170 if (numIm2colOff != expectedIm2colOff)
171 return emitError(loc) <<
" im2col offsets expected " << expectedIm2colOff
172 <<
" (provided " << numIm2colOff <<
")";
178 case TMALoadMode::TILE:
179 return checkTMALoadParams(mode,
false, 0);
180 case TMALoadMode::IM2COL:
181 return checkTMALoadParams(mode,
true, tensorDims - 2);
182 case TMALoadMode::IM2COL_W:
183 case TMALoadMode::IM2COL_W_128:
184 return checkTMALoadParams(mode,
true, 2);
185 case TMALoadMode::TILE_GATHER4:
186 return (tensorDims == 5)
187 ? checkTMALoadParams(mode,
false, 0)
188 :
emitError(loc,
"Gather4 mode expects 5 coordinates");
193LogicalResult CpAsyncBulkTensorPrefetchOp::verify() {
195 getMode(), getLoc());
198LogicalResult CpAsyncBulkTensorGlobalToSharedClusterOp::verify() {
199 TMALoadMode mode = getMode();
200 bool isCTAOnly = getIsCTAOnly();
201 if (getPredicate()) {
203 return emitError(
"Predicate is supported only for shared::cluster mode.");
204 if (mode != TMALoadMode::TILE && mode != TMALoadMode::IM2COL)
206 "Predicate is supported only for Tile and Im2col modes.");
208 NVVMMemorySpace expectedAS =
209 isCTAOnly ? NVVMMemorySpace::Shared : NVVMMemorySpace::SharedCluster;
210 unsigned AS = llvm::cast<LLVM::LLVMPointerType>(getDstMem().
getType())
212 if (AS != expectedAS)
215 ?
"Shared::cta destination requires address-space 3."
216 :
"Shared::cluster destination requires address-space 7.");
219 if (getMulticastMask())
220 return emitError(
"Multicast is not supported with shared::cta mode.");
222 return emitError(
"CTAGroup is not supported with shared::cta mode.");
227 getMode(), getLoc());
230LogicalResult CpAsyncBulkTensorReduceOp::verify() {
231 TMAStoreMode mode = getMode();
234 case TMAStoreMode::TILE:
236 case TMAStoreMode::IM2COL:
238 case TMAStoreMode::TILE_SCATTER4:
239 return emitError(
"Scatter mode unsupported for CpAsyncBulkTensorReduceOp");
244LogicalResult CpAsyncBulkGlobalToSharedClusterOp::verify() {
246 if (isSharedCTA && getMulticastMask())
247 return emitError(
"Multicast is not supported with shared::cta mode.");
253 NVVM::MemScopeKind scope,
254 Value retVal =
nullptr) {
255 if (scope != NVVM::MemScopeKind::CTA && scope != NVVM::MemScopeKind::CLUSTER)
256 return op->
emitError(
"mbarrier scope must be either CTA or Cluster");
259 bool hasRetValue =
static_cast<bool>(retVal);
260 if (isSharedCluster && hasRetValue)
262 "mbarrier in shared_cluster space cannot return any value");
267LogicalResult MBarrierArriveOp::verify() {
272LogicalResult MBarrierArriveDropOp::verify() {
277LogicalResult MBarrierArriveExpectTxOp::verify() {
281 if (getPredicate()) {
282 if (getScope() != NVVM::MemScopeKind::CTA)
283 return emitError(
"mbarrier scope must be CTA when using predicate");
286 return emitError(
"mbarrier in shared_cluster space is not supported when "
290 return emitError(
"return-value is not supported when using predicate");
292 if (getRelaxed() ==
true)
293 return emitError(
"mbarrier with relaxed semantics is not supported when "
300LogicalResult MBarrierArriveDropExpectTxOp::verify() {
305LogicalResult MBarrierExpectTxOp::verify() {
309LogicalResult MBarrierCompleteTxOp::verify() {
313LogicalResult MBarrierTestWaitOp::verify() {
317LogicalResult MBarrierTryWaitOp::verify() {
321LogicalResult ConvertFloatToTF32Op::verify() {
322 using RndMode = NVVM::FPRoundingMode;
326 return emitError(
"Relu not supported with rna rounding mode.");
333 "Only {rn,rz,rna} rounding modes supported for ConvertFloatToTF32Op.");
338LogicalResult ConvertF32x2ToF6x2Op::verify() {
341 if (!llvm::isa<mlir::Float6E2M3FNType, mlir::Float6E3M2FNType>(getDstTy())) {
343 << mlir::Float6E2M3FNType::get(ctx) <<
" and "
344 << mlir::Float6E3M2FNType::get(ctx)
345 <<
" types are supported for conversions from f32x2 to f6x2.";
350LogicalResult ConvertF32x2ToF8x2Op::verify() {
351 using RndMode = NVVM::FPRoundingMode;
352 using SatMode = NVVM::SaturationMode;
354 bool isRoundingModeRN = getRnd() == RndMode::RN;
355 bool isRoundingModeRZ = getRnd() == RndMode::RZ;
356 bool isRoundingModeRP = getRnd() == RndMode::RP;
357 bool isSatFinite = getSat() == SatMode::SATFINITE;
359 bool hasRelu = getRelu();
364 .Case<mlir::Float8E4M3FNType, mlir::Float8E5M2Type>(
366 if (!isRoundingModeRN) {
367 return emitOpError(
"Only RN rounding mode is supported for "
368 "conversions from f32x2 to ")
369 << mlir::Float8E4M3FNType::get(ctx) <<
" and "
370 << mlir::Float8E5M2Type::get(ctx) <<
" types";
373 return emitOpError(
"Only SATFINITE saturation mode is supported "
376 << mlir::Float8E4M3FNType::get(ctx) <<
" and "
377 << mlir::Float8E5M2Type::get(ctx) <<
" types";
381 .Case<mlir::Float8E8M0FNUType>([&](
mlir::Type) -> LogicalResult {
382 if (!(isRoundingModeRZ || isRoundingModeRP)) {
383 return emitOpError(
"Only RZ and RP rounding modes are supported for "
384 "conversions from f32x2 to ")
385 << mlir::Float8E8M0FNUType::get(ctx) <<
" type";
388 return emitOpError(
"relu not supported for conversions to ")
389 << mlir::Float8E8M0FNUType::get(ctx) <<
" type";
395 << mlir::Float8E4M3FNType::get(ctx) <<
", "
396 << mlir::Float8E5M2Type::get(ctx) <<
", and "
397 << mlir::Float8E8M0FNUType::get(ctx)
399 "supported for conversions from f32x2 to f8x2";
403LogicalResult ConvertF16x2ToF8x2Op::verify() {
406 if (!llvm::isa<mlir::Float8E4M3FNType, mlir::Float8E5M2Type>(getDstTy())) {
408 << mlir::Float8E4M3FNType::get(ctx) <<
" and "
409 << mlir::Float8E5M2Type::get(ctx)
410 <<
" types are supported for conversions from f16x2 to f8x2.";
415LogicalResult ConvertBF16x2ToF8x2Op::verify() {
416 using RndMode = NVVM::FPRoundingMode;
418 if (!llvm::isa<mlir::Float8E8M0FNUType>(getDstTy()))
420 <<
" type is supported for conversions from "
424 if (rnd != RndMode::RZ && rnd != RndMode::RP)
425 return emitOpError(
"Only RZ and RP rounding modes are supported for "
426 "conversions from bf16x2 to f8x2.");
431LogicalResult ConvertF32x2ToF4x2Op::verify() {
434 if (!llvm::isa<mlir::Float4E2M1FNType>(getDstTy()))
436 << mlir::Float4E2M1FNType::get(ctx)
437 <<
" type is supported for conversions from f32x2 to f4x2.";
442LogicalResult ConvertF8x2ToF16x2Op::verify() {
445 if (!llvm::isa<Float8E4M3FNType, Float8E5M2Type>(getSrcType()))
447 << mlir::Float8E4M3FNType::get(ctx) <<
" and "
448 << mlir::Float8E5M2Type::get(ctx)
449 <<
" types are supported for conversions from f8x2 to f16x2.";
454LogicalResult ConvertF8x2ToBF16x2Op::verify() {
456 if (!llvm::isa<Float8E8M0FNUType>(getSrcType()))
458 << mlir::Float8E8M0FNUType::get(ctx)
459 <<
" type is supported for conversions from f8x2 to bf16x2.";
464LogicalResult ConvertF6x2ToF16x2Op::verify() {
467 if (!llvm::isa<Float6E2M3FNType, Float6E3M2FNType>(getSrcType()))
469 << mlir::Float6E2M3FNType::get(ctx) <<
" and "
470 << mlir::Float6E3M2FNType::get(ctx)
471 <<
" types are supported for conversions from f6x2 to f16x2.";
476LogicalResult ConvertF4x2ToF16x2Op::verify() {
479 if (!llvm::isa<Float4E2M1FNType>(getSrcType()))
481 << mlir::Float4E2M1FNType::get(ctx)
482 <<
" type is supported for conversions from f4x2 to f16x2.";
487LogicalResult PermuteOp::verify() {
488 using Mode = NVVM::PermuteMode;
489 bool hasHi =
static_cast<bool>(getHi());
497 << stringifyPermuteMode(getMode()) <<
"' requires 'hi' operand.";
504 return emitError(
"mode '") << stringifyPermuteMode(getMode())
505 <<
"' does not accept 'hi' operand.";
520 static constexpr FPRoundingMode validRndModes[] = {
521 FPRoundingMode::RN, FPRoundingMode::RZ, FPRoundingMode::RS};
523 if (!llvm::is_contained(validRndModes, rnd)) {
525 "Only RN, RZ, and RS rounding modes are supported for "
526 "conversions from f32x2 to ")
530 if (rnd == FPRoundingMode::RS) {
531 if (!hasRandomBits) {
532 return op->
emitOpError(
"random_bits is required for RS rounding mode.");
537 "random_bits not supported for RN and RZ rounding modes.");
544LogicalResult ConvertF32x2ToF16x2Op::verify() {
546 getRandomBits() ?
true :
false, *
this);
549LogicalResult ConvertF32x2ToBF16x2Op::verify() {
551 getRandomBits() ?
true :
false, *
this);
554LogicalResult ConvertF32x4ToF8x4Op::verify() {
557 if (!llvm::isa<mlir::Float8E4M3FNType, mlir::Float8E5M2Type>(getDstTy()))
559 << mlir::Float8E4M3FNType::get(ctx) <<
" and "
560 << mlir::Float8E5M2Type::get(ctx)
561 <<
" types are supported for conversions from f32x4 to f8x4.";
566LogicalResult ConvertF32x4ToF6x4Op::verify() {
569 if (!llvm::isa<mlir::Float6E2M3FNType, mlir::Float6E3M2FNType>(getDstTy()))
571 << mlir::Float6E2M3FNType::get(ctx) <<
" and "
572 << mlir::Float6E3M2FNType::get(ctx)
573 <<
" types are supported for conversions from f32x4 to f6x4.";
578LogicalResult ConvertF32x4ToF4x4Op::verify() {
581 if (!llvm::isa<mlir::Float4E2M1FNType>(getDstTy()))
582 return emitOpError(
"Only ") << mlir::Float4E2M1FNType::get(ctx)
583 <<
" type is supported for conversions from "
589LogicalResult BulkStoreOp::verify() {
590 if (getInitVal() != 0)
591 return emitOpError(
"only 0 is supported for initVal, got ") << getInitVal();
595LogicalResult PMEventOp::verify() {
596 auto eventId = getEventId();
597 auto maskedEventId = getMaskedEventId();
598 if (!maskedEventId && !eventId) {
599 return emitOpError() <<
"either `id` or `mask` must be set";
602 if (maskedEventId && eventId) {
603 return emitOpError() <<
"`id` and `mask` cannot be set at the same time";
607 if (eventId < 0 || eventId > 15) {
608 return emitOpError() <<
"`id` must be between 0 and 15";
612 return llvm::success();
618std::optional<mlir::NVVM::MMATypes>
619MmaOp::inferOperandMMAType(
Type operandElType,
bool isAccumulator) {
621 VectorType::get(2, Float16Type::get(operandElType.
getContext()));
622 if (operandElType.
isF64())
623 return NVVM::MMATypes::f64;
624 if (operandElType.
isF16() || operandElType == half2Type)
625 return NVVM::MMATypes::f16;
626 if (operandElType.
isF32() && isAccumulator)
627 return NVVM::MMATypes::f32;
628 if (operandElType.
isF32() && !isAccumulator)
629 return NVVM::MMATypes::tf32;
630 if (llvm::isa<IntegerType>(operandElType)) {
632 return NVVM::MMATypes::s32;
636 if (
auto structType = llvm::dyn_cast<LLVM::LLVMStructType>(operandElType)) {
637 if (structType.getBody().empty())
639 return inferOperandMMAType(structType.getBody()[0], isAccumulator);
646 return (type == MMATypes::u4 || type == MMATypes::s4);
650 return (type == MMATypes::u8 || type == MMATypes::s8);
655 type == MMATypes::s32;
658MMATypes MmaOp::accumPtxType() {
659 std::optional<mlir::NVVM::MMATypes> val = inferOperandMMAType(
660 getODSOperands(2).getTypes().front(),
true);
661 assert(val.has_value() &&
"accumulator PTX type should always be inferrable");
665MMATypes MmaOp::resultPtxType() {
666 std::optional<mlir::NVVM::MMATypes> val =
667 inferOperandMMAType(getResult().
getType(),
true);
668 assert(val.has_value() &&
"result PTX type should always be inferrable");
674 struct MMAOperandFragment {
675 StringRef operandName;
676 StringRef ptxTypeAttr;
677 SmallVector<Value, 4> regs;
678 explicit MMAOperandFragment(StringRef name, StringRef ptxTypeName)
679 : operandName(name), ptxTypeAttr(ptxTypeName) {}
682 std::array<MMAOperandFragment, 3> frags{
683 MMAOperandFragment(
"A", getMultiplicandAPtxTypeAttrName()),
684 MMAOperandFragment(
"B", getMultiplicandBPtxTypeAttrName()),
685 MMAOperandFragment(
"C",
"")};
687 mlir::NVVM::MmaOp::getOperandSegmentSizeAttr()};
689 for (
unsigned fragIdx = 0; fragIdx < frags.size(); fragIdx++) {
690 auto &frag = frags[fragIdx];
691 auto varOperandSpec = getODSOperandIndexAndLength(fragIdx);
692 for (
auto operandIdx = varOperandSpec.first;
693 operandIdx < varOperandSpec.first + varOperandSpec.second;
695 frag.regs.push_back(this->getOperand(operandIdx));
696 if (operandIdx == 0) {
697 regTypes.push_back(this->getOperand(operandIdx).
getType());
700 std::optional<MMATypes> inferredType = MmaOp::inferOperandMMAType(
701 regTypes.back(), fragIdx >= 2);
703 ignoreAttrNames.push_back(frag.ptxTypeAttr);
706 auto printMmaOperand = [&](
const MMAOperandFragment &frag) ->
void {
707 p <<
" " << frag.operandName;
713 for (
const auto &frag : frags) {
714 printMmaOperand(frag);
723 frags[1].regs[0].getType(),
724 frags[2].regs[0].getType()},
733 std::optional<MMAIntOverflow> intOverflow,
734 std::optional<std::array<MMATypes, 2>> multiplicandPtxTypes,
735 std::optional<std::array<MMALayout, 2>> multiplicandLayouts) {
737 assert(
shape.size() == 3 &&
"expected shape to have size 3 (m, n, k)");
742 result.addOperands(operandA);
743 result.addOperands(operandB);
744 result.addOperands(operandC);
746 if (multiplicandPtxTypes) {
747 result.addAttribute(
"multiplicandAPtxType",
748 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[0]));
749 result.addAttribute(
"multiplicandBPtxType",
750 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[1]));
752 if (
auto res = inferOperandMMAType(operandA[0].
getType(),
false))
753 result.addAttribute(
"multiplicandAPtxType", MMATypesAttr::get(ctx, *res));
754 if (
auto res = inferOperandMMAType(operandB[0].
getType(),
false))
755 result.addAttribute(
"multiplicandBPtxType", MMATypesAttr::get(ctx, *res));
758 if (multiplicandLayouts) {
759 result.addAttribute(
"layoutA",
760 MMALayoutAttr::get(ctx, (*multiplicandLayouts)[0]));
761 result.addAttribute(
"layoutB",
762 MMALayoutAttr::get(ctx, (*multiplicandLayouts)[1]));
764 result.addAttribute(
"layoutA", MMALayoutAttr::get(ctx, MMALayout::row));
765 result.addAttribute(
"layoutB", MMALayoutAttr::get(ctx, MMALayout::col));
768 if (intOverflow.has_value())
769 result.addAttribute(
"intOverflowBehavior",
770 MMAIntOverflowAttr::get(ctx, *intOverflow));
771 if (b1Op.has_value())
772 result.addAttribute(
"b1Op", MMAB1OpAttr::get(ctx, *b1Op));
774 result.addTypes(resultType);
776 MmaOp::getOperandSegmentSizeAttr(),
778 static_cast<int32_t>(operandB.size()),
779 static_cast<int32_t>(operandC.size())}));
787 struct MMAOperandFragment {
788 std::optional<MMATypes> elemtype;
789 SmallVector<OpAsmParser::UnresolvedOperand, 4> regs;
790 SmallVector<Type> regTypes;
794 std::array<MMAOperandFragment, 4> frags;
800 MMAOperandFragment &frag) -> LogicalResult {
830 if (operandTypes.size() != 3)
833 "expected one type for each operand segment but got " +
834 Twine(operandTypes.size()) +
" types");
835 for (
const auto &iter : llvm::enumerate(operandTypes)) {
836 auto &frag = frags[iter.index()];
837 frag.regTypes.resize(frag.regs.size(), iter.value());
841 frag.elemtype = inferOperandMMAType(frag.regTypes[0],
848 frags[3].elemtype = inferOperandMMAType(resultType,
true);
850 std::array<StringRef, 2> names{
"multiplicandAPtxType",
851 "multiplicandBPtxType"};
852 for (
unsigned idx = 0; idx < names.size(); idx++) {
853 const auto &frag = frags[idx];
854 std::optional<NamedAttribute> attr = namedAttributes.
getNamed(names[idx]);
855 if (!frag.elemtype.has_value() && !attr.has_value()) {
858 "attribute " + names[idx] +
859 " is not provided explicitly and cannot be inferred");
861 if (!attr.has_value())
863 names[idx], MMATypesAttr::get(parser.
getContext(), *frag.elemtype));
866 result.addTypes(resultType);
867 if (!namedAttributes.
empty())
868 result.addAttributes(namedAttributes);
869 result.addAttribute(MmaOp::getOperandSegmentSizeAttr(),
871 static_cast<int32_t>(frags[0].regs.size()),
872 static_cast<int32_t>(frags[1].regs.size()),
873 static_cast<int32_t>(frags[2].regs.size()),
878LogicalResult MmaOp::verify() {
880 auto f16Ty = Float16Type::get(context);
881 auto i32Ty = IntegerType::get(context, 32);
882 auto f16x2Ty = VectorType::get(2, f16Ty);
883 auto f32Ty = Float32Type::get(context);
884 auto f16x2x4StructTy = LLVM::LLVMStructType::getLiteral(
885 context, {f16x2Ty, f16x2Ty, f16x2Ty, f16x2Ty});
888 LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty, i32Ty, i32Ty});
891 auto f16x2x2StructTy =
892 LLVM::LLVMStructType::getLiteral(context, {f16x2Ty, f16x2Ty});
894 LLVM::LLVMStructType::getLiteral(context, {f32Ty, f32Ty, f32Ty, f32Ty});
896 LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty});
898 std::array<int64_t, 3> mmaShape{getShapeAttr().getM(), getShapeAttr().getN(),
899 getShapeAttr().getK()};
905 AllowedShapes allowedShapes;
906 AllowedTypes expectedA;
907 AllowedTypes expectedB;
908 AllowedTypes expectedC;
913 if (mmaShape[0] == 16) {
915 Type multiplicandFragType;
916 switch (*getMultiplicandAPtxType()) {
919 multiplicandFragType = i32Ty;
920 expectedResult.push_back(LLVM::LLVMStructType::getLiteral(
921 context, {f32Ty, f32Ty, f32Ty, f32Ty}));
925 multiplicandFragType = i32Ty;
926 expectedResult.push_back(LLVM::LLVMStructType::getLiteral(
927 context, {f32Ty, f32Ty, f32Ty, f32Ty}));
931 multiplicandFragType = f16x2Ty;
932 expectedResult.push_back(f16x2x2StructTy);
933 expectedResult.push_back(f32x4StructTy);
947 return emitError(
"invalid shape or multiplicand type: " +
948 stringifyEnum(getMultiplicandAPtxType().value()));
952 expectedResult.push_back(s32x4StructTy);
953 expectedC.emplace_back(4, i32Ty);
954 multiplicandFragType = i32Ty;
956 expectedC.emplace_back(2, f16x2Ty);
957 expectedC.emplace_back(4, f32Ty);
960 int64_t unitA = (mmaShape[0] / 8) * (mmaShape[2] / kFactor);
961 int64_t unitB = (mmaShape[1] / 8) * (mmaShape[2] / kFactor);
962 expectedA.emplace_back(unitA, multiplicandFragType);
963 expectedB.emplace_back(unitB, multiplicandFragType);
964 allowedShapes.push_back({16, 8, kFactor});
965 allowedShapes.push_back({16, 8, kFactor * 2});
967 if (resultPtxType() != accumPtxType())
972 if (mmaShape[0] == 8) {
973 if (*getMultiplicandAPtxType() == MMATypes::f16) {
974 expectedA.emplace_back(2, f16x2Ty);
975 expectedB.emplace_back(2, f16x2Ty);
976 expectedResult.push_back(f16x2x4StructTy);
977 expectedResult.push_back(f32x8StructTy);
978 expectedC.emplace_back(4, f16x2Ty);
979 expectedC.emplace_back(8, f32Ty);
980 allowedShapes.push_back({8, 8, 4});
982 if (*getMultiplicandAPtxType() == MMATypes::f64) {
983 Type f64Ty = Float64Type::get(context);
984 expectedA.emplace_back(1, f64Ty);
985 expectedB.emplace_back(1, f64Ty);
986 expectedC.emplace_back(2, f64Ty);
987 expectedResult.emplace_back(LLVM::LLVMStructType::getLiteral(
989 allowedShapes.push_back({8, 8, 4});
992 expectedA.push_back({i32Ty});
993 expectedB.push_back({i32Ty});
994 expectedC.push_back({i32Ty, i32Ty});
995 expectedResult.push_back(s32x2StructTy);
997 allowedShapes.push_back({8, 8, 32});
999 allowedShapes.push_back({8, 8, 16});
1000 if (getMultiplicandAPtxType().value() == MMATypes::b1)
1001 allowedShapes.push_back({8, 8, 128});
1005 std::string errorMessage;
1006 llvm::raw_string_ostream errorStream(errorMessage);
1009 if (expectedA.empty() || expectedB.empty() || expectedC.empty() ||
1010 !llvm::is_contained(allowedShapes, mmaShape)) {
1011 errorStream <<
"unimplemented variant for MMA shape <";
1012 llvm::interleaveComma(mmaShape, errorStream);
1018 std::array<StringRef, 3> operandNames{
"A",
"B",
"C"};
1019 for (
const auto &iter : llvm::enumerate(
1021 auto spec = this->getODSOperandIndexAndLength(iter.index());
1023 operand_type_begin() + spec.first +
1025 bool match = llvm::is_contained(iter.value(), operandTySeg);
1028 errorStream <<
"Could not match types for the "
1029 << operandNames[iter.index()]
1030 <<
" operands; expected one of ";
1031 for (
const auto &x : iter.value()) {
1032 errorStream << x.size() <<
"x" << x[0] <<
" ";
1034 errorStream <<
"but got ";
1035 llvm::interleaveComma(operandTySeg, errorStream);
1041 if (!llvm::any_of(expectedResult, [&](
Type expectedResultType) {
1042 return expectedResultType == getResult().getType();
1045 <<
"Could not match allowed types for the result; expected one of ";
1046 llvm::interleaveComma(expectedResult, errorStream);
1047 errorStream <<
" but got " << getResult().getType();
1052 if (getMultiplicandAPtxType() == MMATypes::b1 && !getB1Op()) {
1053 return emitOpError(
"op requires " + getB1OpAttrName().strref() +
1061 if (!getIntOverflowBehavior())
1063 getIntOverflowBehaviorAttrName().strref() +
1071 (mmaShape[0] == 8 && mmaShape[1] == 8 && mmaShape[2] == 4 &&
1072 getMultiplicandAPtxType() == MMATypes::f16);
1074 if (!isM8N8K4_F16) {
1076 if (getLayoutA() != MMALayout::row || getLayoutB() != MMALayout::col) {
1077 return emitOpError(
"requires layoutA = #nvvm.mma_layout<row> and "
1078 "layoutB = #nvvm.mma_layout<col> for shape <")
1079 << mmaShape[0] <<
", " << mmaShape[1] <<
", " << mmaShape[2]
1080 <<
"> with element types "
1081 << stringifyEnum(*getMultiplicandAPtxType()) <<
" and "
1082 << stringifyEnum(*getMultiplicandBPtxType())
1083 <<
". Only m8n8k4 with f16 supports other layouts.";
1090MMATypes MmaSpOp::accumPtxType() {
1091 std::optional<mlir::NVVM::MMATypes> val = MmaOp::inferOperandMMAType(
1092 getODSOperands(2).getTypes().front(),
true);
1093 assert(val.has_value() &&
"accumulator PTX type should always be inferrable");
1097MMATypes MmaSpOp::resultPtxType() {
1098 std::optional<mlir::NVVM::MMATypes> val =
1099 MmaOp::inferOperandMMAType(getResult().
getType(),
true);
1100 assert(val.has_value() &&
"result PTX type should always be inferrable");
1106 llvm::IRBuilderBase &builder) {
1107 auto thisOp = cast<NVVM::MmaSpOp>(op);
1115 auto intId = MmaSpOp::getIntrinsicID(
1116 thisOp.getShape().getM(), thisOp.getShape().getN(),
1117 thisOp.getShape().getK(), thisOp.getIntOverflowBehavior(),
1118 thisOp.getOrderedMetadata(), thisOp.getKind(),
1119 *thisOp.getMultiplicandAPtxType(), *thisOp.getMultiplicandBPtxType(),
1120 thisOp.accumPtxType(), thisOp.resultPtxType());
1122 return {intId, args};
1127 struct MMAOperandFragment {
1128 StringRef operandName;
1129 StringRef ptxTypeAttr;
1130 SmallVector<Value, 4> regs;
1131 explicit MMAOperandFragment(StringRef name, StringRef ptxTypeName)
1132 : operandName(name), ptxTypeAttr(ptxTypeName) {}
1135 std::array<MMAOperandFragment, 5> frags{
1136 MMAOperandFragment(
"A", getMultiplicandAPtxTypeAttrName()),
1137 MMAOperandFragment(
"B", getMultiplicandBPtxTypeAttrName()),
1138 MMAOperandFragment(
"C",
""), MMAOperandFragment(
"sparseMetadata",
""),
1139 MMAOperandFragment(
"selector",
"")};
1141 mlir::NVVM::MmaSpOp::getOperandSegmentSizeAttr()};
1144 for (
unsigned fragIdx = 0; fragIdx < 3; fragIdx++) {
1145 auto &frag = frags[fragIdx];
1146 auto varOperandSpec = getODSOperandIndexAndLength(fragIdx);
1147 for (
auto operandIdx = varOperandSpec.first;
1148 operandIdx < varOperandSpec.first + varOperandSpec.second;
1150 frag.regs.push_back(this->getOperand(operandIdx));
1151 if (operandIdx == varOperandSpec.first) {
1152 regTypes.push_back(this->getOperand(operandIdx).
getType());
1155 std::optional<MMATypes> inferredType = MmaOp::inferOperandMMAType(
1156 regTypes.back(), fragIdx >= 2);
1158 ignoreAttrNames.push_back(frag.ptxTypeAttr);
1162 frags[3].regs.push_back(getSparseMetadata());
1163 frags[4].regs.push_back(getSparsitySelector());
1165 auto printMmaSpOperand = [&](
const MMAOperandFragment &frag) ->
void {
1166 p <<
" " << frag.operandName;
1172 for (
const auto &frag : frags)
1173 printMmaSpOperand(frag);
1178 for (
int i = 0; i < 3; ++i) {
1183 p <<
") -> " << getResult().getType();
1190 std::optional<MMAIntOverflow> intOverflow,
1191 std::optional<std::array<MMATypes, 2>> multiplicandPtxTypes) {
1193 assert(
shape.size() == 3 &&
"expected shape to have size 3 (m, n, k)");
1198 result.addOperands(operandA);
1199 result.addOperands(operandB);
1200 result.addOperands(operandC);
1201 result.addOperands(sparseMetadata);
1202 result.addOperands(sparsitySelector);
1204 if (multiplicandPtxTypes) {
1205 result.addAttribute(
"multiplicandAPtxType",
1206 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[0]));
1207 result.addAttribute(
"multiplicandBPtxType",
1208 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[1]));
1210 if (
auto res = MmaOp::inferOperandMMAType(operandA[0].
getType(),
false))
1211 result.addAttribute(
"multiplicandAPtxType", MMATypesAttr::get(ctx, *res));
1212 if (
auto res = MmaOp::inferOperandMMAType(operandB[0].
getType(),
false))
1213 result.addAttribute(
"multiplicandBPtxType", MMATypesAttr::get(ctx, *res));
1216 if (intOverflow.has_value())
1217 result.addAttribute(
"intOverflowBehavior",
1218 MMAIntOverflowAttr::get(ctx, *intOverflow));
1220 result.addTypes(resultType);
1222 MmaSpOp::getOperandSegmentSizeAttr(),
1224 static_cast<int32_t>(operandB.size()),
1225 static_cast<int32_t>(operandC.size()), 1,
1230 struct MMAOperandFragment {
1231 std::optional<MMATypes> elemtype;
1232 SmallVector<OpAsmParser::UnresolvedOperand, 4> regs;
1233 SmallVector<Type> regTypes;
1237 std::array<MMAOperandFragment, 6> frags;
1242 auto parseMmaSpOperand = [&](StringRef operandName,
1243 MMAOperandFragment &frag) -> LogicalResult {
1254 if (parseMmaSpOperand(
"A", frags[0]).
failed())
1256 if (parseMmaSpOperand(
"B", frags[1]).
failed())
1258 if (parseMmaSpOperand(
"C", frags[2]).
failed())
1260 if (parseMmaSpOperand(
"sparseMetadata", frags[3]).
failed())
1262 if (parseMmaSpOperand(
"selector", frags[4]).
failed())
1278 if (operandTypes.size() != 3)
1281 "expected one type for each operand segment but got " +
1282 Twine(operandTypes.size()) +
" types");
1283 for (
const auto &iter : llvm::enumerate(operandTypes)) {
1284 auto &frag = frags[iter.index()];
1285 frag.regTypes.resize(frag.regs.size(), iter.value());
1290 MmaOp::inferOperandMMAType(frag.regTypes[0],
1298 MmaOp::inferOperandMMAType(resultType,
true);
1313 std::array<StringRef, 2> names{
"multiplicandAPtxType",
1314 "multiplicandBPtxType"};
1315 for (
unsigned idx = 0; idx < names.size(); idx++) {
1316 const auto &frag = frags[idx];
1317 std::optional<NamedAttribute> attr = namedAttributes.
getNamed(names[idx]);
1318 if (!frag.elemtype.has_value() && !attr.has_value()) {
1321 "attribute " + names[idx] +
1322 " is not provided explicitly and cannot be inferred");
1324 if (!attr.has_value())
1326 names[idx], MMATypesAttr::get(parser.
getContext(), *frag.elemtype));
1329 result.addTypes(resultType);
1330 if (!namedAttributes.
empty())
1331 result.addAttributes(namedAttributes);
1332 result.addAttribute(MmaSpOp::getOperandSegmentSizeAttr(),
1334 static_cast<int32_t>(frags[0].regs.size()),
1335 static_cast<int32_t>(frags[1].regs.size()),
1336 static_cast<int32_t>(frags[2].regs.size()),
1343LogicalResult MmaSpOp::verify() {
1345 auto f16Ty = Float16Type::get(context);
1346 auto i32Ty = IntegerType::get(context, 32);
1347 auto f16x2Ty = VectorType::get(2, f16Ty);
1348 auto f32Ty = Float32Type::get(context);
1349 auto f16x2x4StructTy = LLVM::LLVMStructType::getLiteral(
1350 context, {f16x2Ty, f16x2Ty, f16x2Ty, f16x2Ty});
1352 auto s32x4StructTy =
1353 LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty, i32Ty, i32Ty});
1354 auto f32x8StructTy =
1356 auto f16x2x2StructTy =
1357 LLVM::LLVMStructType::getLiteral(context, {f16x2Ty, f16x2Ty});
1358 auto f32x4StructTy =
1359 LLVM::LLVMStructType::getLiteral(context, {f32Ty, f32Ty, f32Ty, f32Ty});
1360 auto s32x2StructTy =
1361 LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty});
1363 std::array<int64_t, 3> mmaShape{getShapeAttr().getM(), getShapeAttr().getN(),
1364 getShapeAttr().getK()};
1370 AllowedShapes allowedShapes;
1371 AllowedTypes expectedA;
1372 AllowedTypes expectedB;
1373 AllowedTypes expectedC;
1378 if (mmaShape[0] == 16) {
1380 Type multiplicandFragType;
1381 switch (*getMultiplicandAPtxType()) {
1382 case MMATypes::tf32:
1384 multiplicandFragType = i32Ty;
1385 expectedResult.push_back(LLVM::LLVMStructType::getLiteral(
1386 context, {f32Ty, f32Ty, f32Ty, f32Ty}));
1388 allowedShapes.push_back({16, 8, 8});
1389 allowedShapes.push_back({16, 8, 16});
1391 case MMATypes::bf16:
1393 multiplicandFragType = i32Ty;
1394 expectedResult.push_back(LLVM::LLVMStructType::getLiteral(
1395 context, {f32Ty, f32Ty, f32Ty, f32Ty}));
1397 allowedShapes.push_back({16, 8, 16});
1398 allowedShapes.push_back({16, 8, 32});
1402 multiplicandFragType = f16x2Ty;
1403 expectedResult.push_back(f16x2x2StructTy);
1404 expectedResult.push_back(f32x4StructTy);
1406 allowedShapes.push_back({16, 8, 16});
1407 allowedShapes.push_back({16, 8, 32});
1413 allowedShapes.push_back({16, 8, 64});
1414 allowedShapes.push_back({16, 8, 128});
1420 allowedShapes.push_back({16, 8, 32});
1421 allowedShapes.push_back({16, 8, 64});
1423 case MMATypes::e4m3:
1424 case MMATypes::e5m2:
1425 case MMATypes::e3m2:
1426 case MMATypes::e2m3:
1427 case MMATypes::e2m1:
1429 multiplicandFragType = i32Ty;
1430 expectedResult.push_back(f16x2x2StructTy);
1431 expectedResult.push_back(f32x4StructTy);
1433 allowedShapes.push_back({16, 8, 64});
1436 return emitError(
"invalid shape or multiplicand type: " +
1437 stringifyEnum(getMultiplicandAPtxType().value()));
1441 expectedResult.push_back(s32x4StructTy);
1442 expectedC.emplace_back(4, i32Ty);
1443 multiplicandFragType = i32Ty;
1444 }
else if (*getMultiplicandAPtxType() >= MMATypes::e4m3 &&
1445 *getMultiplicandAPtxType() <= MMATypes::e2m1) {
1447 expectedC.emplace_back(2, f16x2Ty);
1448 expectedC.emplace_back(4, f32Ty);
1450 expectedC.emplace_back(2, f16x2Ty);
1451 expectedC.emplace_back(4, f32Ty);
1456 int64_t unitA = (mmaShape[0] / 8) * (mmaShape[2] / kFactor) / 2;
1457 int64_t unitB = (mmaShape[1] / 8) * (mmaShape[2] / kFactor);
1458 expectedA.emplace_back(unitA, multiplicandFragType);
1459 expectedB.emplace_back(unitB, multiplicandFragType);
1461 if (resultPtxType() != accumPtxType())
1466 if (mmaShape[0] == 8) {
1467 if (*getMultiplicandAPtxType() == MMATypes::f16) {
1468 expectedA.emplace_back(2, f16x2Ty);
1469 expectedB.emplace_back(2, f16x2Ty);
1470 expectedResult.push_back(f16x2x4StructTy);
1471 expectedResult.push_back(f32x8StructTy);
1472 expectedC.emplace_back(4, f16x2Ty);
1473 expectedC.emplace_back(8, f32Ty);
1474 allowedShapes.push_back({8, 8, 4});
1476 if (*getMultiplicandAPtxType() == MMATypes::f64) {
1477 Type f64Ty = Float64Type::get(context);
1478 expectedA.emplace_back(1, f64Ty);
1479 expectedB.emplace_back(1, f64Ty);
1480 expectedC.emplace_back(2, f64Ty);
1481 expectedResult.emplace_back(LLVM::LLVMStructType::getLiteral(
1483 allowedShapes.push_back({8, 8, 4});
1486 expectedA.push_back({i32Ty});
1487 expectedB.push_back({i32Ty});
1488 expectedC.push_back({i32Ty, i32Ty});
1489 expectedResult.push_back(s32x2StructTy);
1491 allowedShapes.push_back({8, 8, 32});
1493 allowedShapes.push_back({8, 8, 16});
1497 std::string errorMessage;
1498 llvm::raw_string_ostream errorStream(errorMessage);
1501 if (expectedA.empty() || expectedB.empty() || expectedC.empty() ||
1502 !llvm::is_contained(allowedShapes, mmaShape)) {
1503 errorStream <<
"unimplemented variant for MMA shape <";
1504 llvm::interleaveComma(mmaShape, errorStream);
1510 std::array<StringRef, 3> operandNames{
"A",
"B",
"C"};
1511 for (
const auto &iter : llvm::enumerate(
1513 auto spec = this->getODSOperandIndexAndLength(iter.index());
1515 operand_type_begin() + spec.first +
1517 bool match = llvm::is_contained(iter.value(), operandTySeg);
1520 errorStream <<
"Could not match types for the "
1521 << operandNames[iter.index()]
1522 <<
" operands; expected one of ";
1523 for (
const auto &x : iter.value()) {
1524 errorStream << x.size() <<
"x" << x[0] <<
" ";
1526 errorStream <<
"but got ";
1527 llvm::interleaveComma(operandTySeg, errorStream);
1533 if (!llvm::any_of(expectedResult, [&](
Type expectedResultType) {
1534 return expectedResultType == getResult().getType();
1537 <<
"Could not match allowed types for the result; expected one of ";
1538 llvm::interleaveComma(expectedResult, errorStream);
1539 errorStream <<
" but got " << getResult().getType();
1547 if (!getIntOverflowBehavior())
1549 getIntOverflowBehaviorAttrName().strref() +
1554 if (!getSparseMetadata().
getType().isInteger(32)) {
1555 return emitOpError() <<
"sparse metadata must be i32 type";
1559 if (!getSparsitySelector().
getType().isInteger(32)) {
1560 return emitOpError() <<
"sparsity selector must be i32 type";
1572struct MMAOperandFragment {
1573 StringRef operandName;
1574 StringRef ptxTypeAttr;
1575 SmallVector<Value, 4> regs;
1576 explicit MMAOperandFragment(StringRef name, StringRef ptxTypeName)
1577 : operandName(name), ptxTypeAttr(ptxTypeName) {}
1584 p <<
" " << name <<
"[";
1603template <
typename Op>
1608 for (
unsigned fragIdx = 0; fragIdx < frags.size(); fragIdx++) {
1609 auto &frag = frags[fragIdx];
1610 auto varOperandSpec = op.getODSOperandIndexAndLength(fragIdx);
1611 for (
auto operandIdx = varOperandSpec.first;
1612 operandIdx < varOperandSpec.first + varOperandSpec.second;
1614 frag.regs.push_back(op.getOperand(operandIdx));
1615 if (fragIdx == 0 && operandIdx == varOperandSpec.first) {
1616 regTypes.push_back(op.getOperand(operandIdx).getType());
1620 regTypes.push_back(frag.regs[0].getType());
1622 std::optional<MMATypes> inferredType =
1623 MmaOp::inferOperandMMAType(regTypes.back(),
1626 ignoreAttrNames.push_back(frag.ptxTypeAttr);
1637 auto typeParser = [&]() {
1641 operandTypes.push_back(ty);
1647 if (operandTypes.size() != 3)
1649 "expected exactly 3 types");
1658 if (!attrs.
get(
"multiplicandAPtxType")) {
1659 if (
auto inferredType =
1660 MmaOp::inferOperandMMAType(operandTypes[0],
false)) {
1661 attrs.
set(
"multiplicandAPtxType", MMATypesAttr::get(ctx, *inferredType));
1664 if (!attrs.
get(
"multiplicandBPtxType")) {
1665 if (
auto inferredType =
1666 MmaOp::inferOperandMMAType(operandTypes[1],
false)) {
1667 attrs.
set(
"multiplicandBPtxType", MMATypesAttr::get(ctx, *inferredType));
1673template <
typename OpType>
1676 ScaleVecSize scaleVecSize,
1677 BlockScaleFormat blockScaleFormat,
1678 MMABlockScaleKind kind) {
1680 auto &properties =
result.getOrAddProperties<
typename OpType::Properties>();
1681 properties.setShape(
1683 properties.setScaleVecSize(ScaleVecSizeAttr::get(ctx, scaleVecSize));
1684 properties.setBlockScaleFormat(
1685 BlockScaleFormatAttr::get(ctx, blockScaleFormat));
1686 properties.setKind(MMABlockScaleKindAttr::get(ctx, kind));
1693 std::optional<std::array<MMATypes, 2>> multiplicandPtxTypes) {
1694 if (multiplicandPtxTypes) {
1695 result.addAttribute(
"multiplicandAPtxType",
1696 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[0]));
1697 result.addAttribute(
"multiplicandBPtxType",
1698 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[1]));
1700 if (
auto res = MmaOp::inferOperandMMAType(operandA[0].
getType(),
false))
1701 result.addAttribute(
"multiplicandAPtxType", MMATypesAttr::get(ctx, *res));
1702 if (
auto res = MmaOp::inferOperandMMAType(operandB[0].
getType(),
false))
1703 result.addAttribute(
"multiplicandBPtxType", MMATypesAttr::get(ctx, *res));
1708template <
typename OpTy>
1710 return *MmaOp::inferOperandMMAType(
1711 cast<LLVM::LLVMStructType>(op.getRes().getType()).getBody()[0],
1721 std::array<MMAOperandFragment, 3> frags{
1722 MMAOperandFragment(
"A", getMultiplicandAPtxTypeAttrName()),
1723 MMAOperandFragment(
"B", getMultiplicandBPtxTypeAttrName()),
1724 MMAOperandFragment(
"C",
"")};
1726 mlir::NVVM::MmaBlockScaleOp::getOperandSegmentSizeAttr()};
1731 for (
const auto &frag : frags)
1736 {getScaleAData(), getByteIdA(), getThreadIdA()});
1738 {getScaleBData(), getByteIdB(), getThreadIdB()});
1745 frags[1].regs[0].getType(),
1746 frags[2].regs[0].getType()},
1752ParseResult MmaBlockScaleOp::parse(
OpAsmParser &parser,
1754 struct LocalOperandFragment {
1755 std::optional<MMATypes> elemtype;
1756 SmallVector<OpAsmParser::UnresolvedOperand, 4> regs;
1760 std::array<LocalOperandFragment, 3> frags;
1789 for (
const auto &[idx, frag] : llvm::enumerate(frags)) {
1790 frag.elemtype = MmaOp::inferOperandMMAType(operandTypes[idx],
1793 .resolveOperands(frag.regs, operandTypes[idx], parser.
getNameLoc(),
1803 .resolveOperands(scaleAOperands, scaleTypes, parser.
getNameLoc(),
1813 result.addAttributes(namedAttributes);
1817 result.addTypes(resultTypes);
1818 result.addAttribute(MmaBlockScaleOp::getOperandSegmentSizeAttr(),
1820 static_cast<int32_t>(frags[0].regs.size()),
1821 static_cast<int32_t>(frags[1].regs.size()),
1822 static_cast<int32_t>(frags[2].regs.size()),
1833void MmaBlockScaleOp::build(
1838 std::optional<std::array<MMATypes, 2>> multiplicandPtxTypes,
1839 ScaleVecSize scaleVecSize, BlockScaleFormat blockScaleFormat,
1840 MMABlockScaleKind kind) {
1841 assert(
shape.size() == 3 &&
"expected shape to have size 3 (m, n, k)");
1844 blockScaleFormat, kind);
1846 result.addOperands(operandA);
1847 result.addOperands(operandB);
1848 result.addOperands(operandC);
1850 {scaleAData, byteIdA, threadIdA, scaleBData, byteIdB, threadIdB});
1853 multiplicandPtxTypes);
1855 result.addTypes(resultType);
1856 result.addAttribute(MmaBlockScaleOp::getOperandSegmentSizeAttr(),
1858 static_cast<int32_t>(operandA.size()),
1859 static_cast<int32_t>(operandB.size()),
1860 static_cast<int32_t>(operandC.size()),
1872 auto curOp = cast<NVVM::MmaBlockScaleOp>(op);
1876 for (
Value operand : curOp.getOperandA())
1878 for (
Value operand : curOp.getOperandB())
1880 for (
Value operand : curOp.getOperandC())
1884 args.push_back(mt.
lookupValue(curOp.getScaleAData()));
1885 args.push_back(mt.
lookupValue(curOp.getByteIdA()));
1886 args.push_back(mt.
lookupValue(curOp.getThreadIdA()));
1887 args.push_back(mt.
lookupValue(curOp.getScaleBData()));
1888 args.push_back(mt.
lookupValue(curOp.getByteIdB()));
1889 args.push_back(mt.
lookupValue(curOp.getThreadIdB()));
1891 unsigned intId = MmaBlockScaleOp::getIntrinsicID(
1892 curOp.getShape().getM(), curOp.getShape().getN(), curOp.getShape().getK(),
1893 *curOp.getMultiplicandAPtxType(), *curOp.getMultiplicandBPtxType(),
1895 curOp.getBlockScaleFormat(), curOp.getKind());
1897 return {intId, args};
1900LogicalResult MmaBlockScaleOp::verify() {
1906 if (m == 16 && n == 8 && k == 64) {
1907 if (getMultiplicandAPtxType() != NVVM::MMATypes::e2m1 ||
1908 getMultiplicandBPtxType() != NVVM::MMATypes::e2m1)
1910 "unsupported MMATypes attribute for mma.m16n8k64.(mxf4nvf4|mxf4)");
1911 if (getKind() == NVVM::MMABlockScaleKind::MXF4) {
1912 if (getScaleVecSize() != NVVM::ScaleVecSize::X2)
1914 "unsupported ScaleVecSize attribute for mma.m16n8k64.mxf4");
1915 if (getBlockScaleFormat() != NVVM::BlockScaleFormat::UE8M0)
1917 "unsupported BlockScaleFormat attribute for mma.m16n8k64.mxf4");
1918 }
else if (getKind() == NVVM::MMABlockScaleKind::MXF4NVF4) {
1919 if (!((getScaleVecSize() == NVVM::ScaleVecSize::X2 &&
1920 getBlockScaleFormat() == NVVM::BlockScaleFormat::UE8M0) ||
1921 (getScaleVecSize() == NVVM::ScaleVecSize::X4 &&
1922 getBlockScaleFormat() == NVVM::BlockScaleFormat::UE4M3)))
1924 "attributes for mma.m16n8k64.mxf4nvf4");
1928 }
else if (m == 16 && n == 8 && k == 32) {
1929 if (!(getKind() == NVVM::MMABlockScaleKind::MXF8F6F4 &&
1930 getScaleVecSize() == NVVM::ScaleVecSize::X1 &&
1931 getBlockScaleFormat() == NVVM::BlockScaleFormat::UE8M0))
1933 emitOpError(
"unsupported Kind, ScaleVecSize and BlockScaleFormat "
1934 "attributes for mma.m16n8k32");
1947 std::array<MMAOperandFragment, 3> frags{
1948 MMAOperandFragment(
"A", getMultiplicandAPtxTypeAttrName()),
1949 MMAOperandFragment(
"B", getMultiplicandBPtxTypeAttrName()),
1950 MMAOperandFragment(
"C",
"")};
1952 mlir::NVVM::MmaSpBlockScaleOp::getOperandSegmentSizeAttr()};
1957 for (
const auto &frag : frags)
1966 {getScaleAData(), getByteIdA(), getThreadIdA()});
1968 {getScaleBData(), getByteIdB(), getThreadIdB()});
1975 frags[1].regs[0].getType(),
1976 frags[2].regs[0].getType()},
1982ParseResult MmaSpBlockScaleOp::parse(
OpAsmParser &parser,
1984 struct LocalOperandFragment {
1985 std::optional<MMATypes> elemtype;
1986 SmallVector<OpAsmParser::UnresolvedOperand, 4> regs;
1990 std::array<LocalOperandFragment, 3> frags;
2026 for (
const auto &[idx, frag] : llvm::enumerate(frags)) {
2027 frag.elemtype = MmaOp::inferOperandMMAType(operandTypes[idx],
2030 .resolveOperands(frag.regs, operandTypes[idx], parser.
getNameLoc(),
2039 .resolveOperands(metadataOperands, i32Type, parser.
getNameLoc(),
2052 .resolveOperands(scaleAOperands, scaleTypes, parser.
getNameLoc(),
2062 result.addAttributes(namedAttributes);
2067 if (!
result.attributes.get(
"orderedMetadata"))
2070 result.addTypes(resultTypes);
2071 result.addAttribute(MmaSpBlockScaleOp::getOperandSegmentSizeAttr(),
2073 static_cast<int32_t>(frags[0].regs.size()),
2074 static_cast<int32_t>(frags[1].regs.size()),
2075 static_cast<int32_t>(frags[2].regs.size()),
2088void MmaSpBlockScaleOp::build(
2094 std::optional<std::array<MMATypes, 2>> multiplicandPtxTypes,
2095 ScaleVecSize scaleVecSize, BlockScaleFormat blockScaleFormat,
2096 MMABlockScaleKind kind) {
2097 assert(
shape.size() == 3 &&
"expected shape to have size 3 (m, n, k)");
2100 builder,
result,
shape, scaleVecSize, blockScaleFormat, kind);
2103 result.addOperands(operandA);
2104 result.addOperands(operandB);
2105 result.addOperands(operandC);
2106 result.addOperands({sparseMetadata, sparsitySelector, scaleAData, byteIdA,
2107 threadIdA, scaleBData, byteIdB, threadIdB});
2110 multiplicandPtxTypes);
2112 result.addTypes(resultType);
2113 result.addAttribute(MmaSpBlockScaleOp::getOperandSegmentSizeAttr(),
2115 static_cast<int32_t>(operandA.size()),
2116 static_cast<int32_t>(operandB.size()),
2117 static_cast<int32_t>(operandC.size()),
2131 auto curOp = cast<NVVM::MmaSpBlockScaleOp>(op);
2135 for (
Value operand : curOp.getOperandA())
2137 for (
Value operand : curOp.getOperandB())
2139 for (
Value operand : curOp.getOperandC())
2143 args.push_back(mt.
lookupValue(curOp.getSparseMetadata()));
2144 args.push_back(mt.
lookupValue(curOp.getSparsitySelector()));
2147 args.push_back(mt.
lookupValue(curOp.getScaleAData()));
2148 args.push_back(mt.
lookupValue(curOp.getByteIdA()));
2149 args.push_back(mt.
lookupValue(curOp.getThreadIdA()));
2150 args.push_back(mt.
lookupValue(curOp.getScaleBData()));
2151 args.push_back(mt.
lookupValue(curOp.getByteIdB()));
2152 args.push_back(mt.
lookupValue(curOp.getThreadIdB()));
2154 unsigned intId = MmaSpBlockScaleOp::getIntrinsicID(
2155 curOp.getShape().getM(), curOp.getShape().getN(), curOp.getShape().getK(),
2156 *curOp.getMultiplicandAPtxType(), *curOp.getMultiplicandBPtxType(),
2158 curOp.getBlockScaleFormat(), curOp.getKind());
2160 return {intId, args};
2163LogicalResult MmaSpBlockScaleOp::verify() {
2165 if (!getOrderedMetadata()) {
2166 return emitOpError(
"'orderedMetadata' attribute is mandatory");
2174 if (m == 16 && n == 8 && k == 128) {
2175 if (getMultiplicandAPtxType() != NVVM::MMATypes::e2m1 ||
2176 getMultiplicandBPtxType() != NVVM::MMATypes::e2m1)
2178 "unsupported MMATypes attribute for mma.m16n8k128.(mxf4nvf4|mxf4)");
2179 if (getKind() == NVVM::MMABlockScaleKind::MXF4) {
2180 if (getScaleVecSize() != NVVM::ScaleVecSize::X2)
2182 "unsupported ScaleVecSize attribute for mma.m16n8k128.mxf4");
2183 if (getBlockScaleFormat() != NVVM::BlockScaleFormat::UE8M0)
2185 "unsupported BlockScaleFormat attribute for mma.m16n8k128.mxf4");
2186 }
else if (getKind() == NVVM::MMABlockScaleKind::MXF4NVF4) {
2187 if (!((getScaleVecSize() == NVVM::ScaleVecSize::X2 &&
2188 getBlockScaleFormat() == NVVM::BlockScaleFormat::UE8M0) ||
2189 (getScaleVecSize() == NVVM::ScaleVecSize::X4 &&
2190 getBlockScaleFormat() == NVVM::BlockScaleFormat::UE4M3)))
2192 "attributes for mma.m16n8k128.mxf4nvf4");
2196 }
else if (m == 16 && n == 8 && k == 64) {
2197 if (!(getKind() == NVVM::MMABlockScaleKind::MXF8F6F4 &&
2198 getScaleVecSize() == NVVM::ScaleVecSize::X1 &&
2199 getBlockScaleFormat() == NVVM::BlockScaleFormat::UE8M0))
2201 emitOpError(
"unsupported Kind, ScaleVecSize and BlockScaleFormat "
2202 "attributes for mma.m16n8k64");
2209LogicalResult ShflOp::verify() {
2210 auto returnStructType = llvm::dyn_cast<LLVM::LLVMStructType>(
getType());
2212 auto verifyTypeError = [&](Twine desc,
Type expectedType,
2213 Type actualType) -> LogicalResult {
2214 return emitOpError(
"expected " + desc +
" to be of type ")
2215 << expectedType <<
" but got " << actualType <<
" instead";
2218 if (returnStructType) {
2219 if (!getReturnValueAndIsValid())
2220 return emitOpError(
"\"return_value_and_is_valid\" attribute must be "
2221 "specified when the return type is a struct type");
2223 if (returnStructType.getBody().size() != 2)
2224 return emitOpError(
"expected return type to be a two-element struct");
2227 auto resultType = returnStruct[0];
2228 if (resultType != getVal().
getType())
2229 return verifyTypeError(
"first element in the returned struct",
2230 getVal().
getType(), resultType);
2232 auto predicateType = returnStruct[1];
2233 if (!predicateType.isInteger(1))
2234 return verifyTypeError(
"second element in the returned struct",
2238 if (getReturnValueAndIsValid())
2239 return emitOpError(
"expected return type to be a two-element struct");
2242 return verifyTypeError(
"return type", getVal().
getType(),
getType());
2248 NVVM::MMAFrag frag,
int nRow,
2251 unsigned numberElements = 0;
2254 Type f16x2 = VectorType::get(2, builder.getF16Type());
2255 if (type == NVVM::MMATypes::f16) {
2256 elementType = f16x2;
2257 if (frag == NVVM::MMAFrag::a || frag == NVVM::MMAFrag::b)
2261 }
else if (type == NVVM::MMATypes::f32) {
2262 elementType = builder.getF32Type();
2264 }
else if (type == NVVM::MMATypes::f64) {
2265 elementType = builder.getF64Type();
2266 if (frag == NVVM::MMAFrag::a || frag == NVVM::MMAFrag::b)
2270 }
else if (type == NVVM::MMATypes::tf32) {
2271 elementType = builder.getI32Type();
2273 }
else if (type == NVVM::MMATypes::s8 || type == NVVM::MMATypes::u8) {
2274 elementType = builder.getI32Type();
2275 int parallelSize = 0;
2276 if (frag == NVVM::MMAFrag::a)
2277 parallelSize = nRow;
2278 if (frag == NVVM::MMAFrag::b)
2279 parallelSize = nCol;
2282 if (parallelSize == 16)
2285 else if (parallelSize == 8)
2287 else if (parallelSize == 32)
2289 }
else if (type == NVVM::MMATypes::s32) {
2290 elementType = builder.getI32Type();
2293 assert(numberElements != 0 && elementType !=
nullptr);
2294 return std::make_pair(elementType, numberElements);
2297static std::pair<mlir::Type, unsigned>
2301 if (frag == NVVM::MMAFrag::a) {
2304 }
else if (frag == NVVM::MMAFrag::b) {
2311 assert(nRow && nCol);
2315LogicalResult NVVM::WMMALoadOp::verify() {
2316 unsigned addressSpace =
2317 llvm::cast<LLVM::LLVMPointerType>(getPtr().
getType()).getAddressSpace();
2318 if (addressSpace != 0 && addressSpace != NVVMMemorySpace::Global &&
2319 addressSpace != NVVMMemorySpace::Shared)
2320 return emitOpError(
"expected source pointer in memory "
2323 if (NVVM::WMMALoadOp::getIntrinsicID(
getM(),
getN(), getK(), getLayout(),
2324 getEltype(), getFrag()) == 0)
2325 return emitOpError() <<
"invalid attribute combination";
2330 if (typeInfo.first == f64Ty && typeInfo.second == 1) {
2332 return emitOpError(
"expected destination type to be f64");
2336 Type dstType = LLVM::LLVMStructType::getLiteral(
2339 return emitOpError(
"expected destination type is a structure of ")
2340 << typeInfo.second <<
" elements of type " << typeInfo.first;
2344LogicalResult NVVM::WMMAStoreOp::verify() {
2345 unsigned addressSpace =
2346 llvm::cast<LLVM::LLVMPointerType>(getPtr().
getType()).getAddressSpace();
2347 if (addressSpace != 0 && addressSpace != NVVMMemorySpace::Global &&
2348 addressSpace != NVVMMemorySpace::Shared)
2349 return emitOpError(
"expected operands to be a source pointer in memory "
2352 if (NVVM::WMMAStoreOp::getIntrinsicID(
getM(),
getN(), getK(), getLayout(),
2354 return emitOpError() <<
"invalid attribute combination";
2357 if (getArgs().size() != typeInfo.second)
2358 return emitOpError() <<
"expected " << typeInfo.second <<
" data operands";
2359 if (llvm::any_of(getArgs(), [&typeInfo](
Value operands) {
2360 return operands.
getType() != typeInfo.first;
2362 return emitOpError() <<
"expected data operands of type " << typeInfo.first;
2366LogicalResult NVVM::WMMAMmaOp::verify() {
2367 if (NVVM::WMMAMmaOp::getIntrinsicID(
getM(),
getN(), getK(), getLayoutA(),
2368 getLayoutB(), getEltypeA(),
2370 return emitOpError() <<
"invalid attribute combination";
2378 arguments.append(typeInfoA.second, typeInfoA.first);
2379 arguments.append(typeInfoB.second, typeInfoB.first);
2380 arguments.append(typeInfoC.second, typeInfoC.first);
2381 unsigned numArgs = arguments.size();
2382 if (getArgs().size() != numArgs)
2383 return emitOpError() <<
"expected " << numArgs <<
" arguments";
2384 for (
unsigned i = 0; i < numArgs; i++) {
2385 if (getArgs()[i].
getType() != arguments[i])
2386 return emitOpError() <<
"expected argument " << i <<
" to be of type "
2389 Type dstType = LLVM::LLVMStructType::getLiteral(
2392 return emitOpError(
"expected destination type is a structure of ")
2393 << typeInfoC.second <<
" elements of type " << typeInfoC.first;
2397LogicalResult NVVM::LdMatrixOp::verify() {
2399 if (m == 8 && n == 8) {
2400 if (num != 1 && num != 2 && num != 4) {
2401 return emitOpError(
"expected num attribute to be 1, 2 or 4 for 8x8 "
2404 if (getEltType() != LdStMatrixEltType::B16) {
2405 return emitOpError(
"expected element type to be b16 for 8x8 matrix");
2407 }
else if (m == 8 && n == 16) {
2408 if (num != 1 && num != 2 && num != 4) {
2409 return emitOpError(
"expected num attribute to be 1, 2 or 4 for 8x16 "
2412 if (getLayout() != MMALayout::row) {
2413 return emitOpError(
"expected layout to be row for 8x16 matrix");
2415 if (getEltType() != LdStMatrixEltType::B8X16_B4X16_P64 &&
2416 getEltType() != LdStMatrixEltType::B8X16_B6X16_P32) {
2417 return emitOpError(
"expected element type to be b8x16.b4x16_p64 or "
2418 "b8x16.b6x16_p32 for 8x16 matrix");
2420 }
else if (m == 16 && n == 16) {
2421 if (num != 1 && num != 2) {
2422 return emitOpError(
"expected num attribute to be 1 or 2 for 16x16 "
2425 if (getLayout() != MMALayout::col) {
2426 return emitOpError(
"expected layout to be col for 16x16 matrix");
2428 if (getEltType() != LdStMatrixEltType::B8 &&
2429 getEltType() != LdStMatrixEltType::B8X16_B4X16_P64 &&
2430 getEltType() != LdStMatrixEltType::B8X16_B6X16_P32) {
2431 return emitOpError(
"expected element type to be b8, b8x16.b4x16_p64 or "
2432 "b8x16.b6x16_p32 for 16x16 matrix");
2435 return emitOpError(
"expected shape to be 8x8, 8x16 or 16x16");
2439 uint32_t numElements = (m == 16 && n == 16 ? num * 2 : num);
2440 if (numElements == 1 &&
getType() != i32)
2441 return emitOpError(
"expected destination type is i32");
2442 if (numElements == 2 || numElements == 4) {
2443 Type dstType = LLVM::LLVMStructType::getLiteral(
2446 return emitOpError(
"expected destination type is a structure of ")
2447 << numElements <<
" elements of type i32";
2453LogicalResult NVVM::StMatrixOp::verify() {
2454 int numMatrix = getSources().size();
2455 if (numMatrix != 1 && numMatrix != 2 && numMatrix != 4)
2456 return emitOpError(
"expected num attribute to be 1, 2 or 4");
2459 if (m == 8 && n == 8) {
2460 if (getEltType() != NVVM::LdStMatrixEltType::B16) {
2461 return emitOpError(
"expected element type to be B16 for 8x8 matrix");
2463 }
else if (m == 16 && n == 8) {
2464 if (getEltType() != NVVM::LdStMatrixEltType::B8) {
2465 return emitOpError(
"expected element type to be B8 for 16x8 matrix");
2467 if (getLayout() != NVVM::MMALayout::col) {
2468 return emitOpError(
"expected layout to be col for 16x8 matrix");
2471 return emitOpError(
"expected shape to be 8x8 or 16x8");
2478 if (typeA == NVVM::WGMMATypes::tf32)
2480 if (typeA == NVVM::WGMMATypes::f16 || typeA == NVVM::WGMMATypes::bf16)
2482 if (typeA == NVVM::WGMMATypes::s8 || typeA == NVVM::WGMMATypes::u8)
2484 if (typeA == NVVM::WGMMATypes::e4m3 || typeA == NVVM::WGMMATypes::e5m2)
2486 if (typeA == NVVM::WGMMATypes::b1)
2492 NVVM::WGMMATypes typeA,
2493 NVVM::WGMMATypes typeB) {
2495 case NVVM::WGMMATypes::f16:
2496 if ((typeD == NVVM::WGMMATypes::f32 || typeD == NVVM::WGMMATypes::f16) &&
2497 typeB == NVVM::WGMMATypes::f16)
2500 case NVVM::WGMMATypes::tf32:
2501 if (typeD == NVVM::WGMMATypes::f32 && typeB == NVVM::WGMMATypes::tf32)
2504 case NVVM::WGMMATypes::u8:
2505 case NVVM::WGMMATypes::s8:
2506 if (typeD == NVVM::WGMMATypes::s32 &&
2507 (typeB == NVVM::WGMMATypes::u8 || typeB == NVVM::WGMMATypes::s8))
2510 case NVVM::WGMMATypes::b1:
2511 if (typeD == NVVM::WGMMATypes::s32 && typeB == NVVM::WGMMATypes::b1)
2514 case NVVM::WGMMATypes::bf16:
2515 if ((typeD == NVVM::WGMMATypes::f32 || typeD == NVVM::WGMMATypes::f16) &&
2516 typeB == NVVM::WGMMATypes::bf16)
2519 case NVVM::WGMMATypes::e4m3:
2520 case NVVM::WGMMATypes::e5m2:
2521 if ((typeD == NVVM::WGMMATypes::f32 || typeD == NVVM::WGMMATypes::f16) &&
2522 (typeB == NVVM::WGMMATypes::e5m2 || typeB == NVVM::WGMMATypes::e4m3))
2525 case WGMMATypes::f32:
2526 case WGMMATypes::s32:
2527 llvm_unreachable(
"unsupported input types");
2535 72, 80, 88, 96, 104, 112, 120, 128,
2536 136, 144, 152, 160, 168, 176, 184, 192,
2537 200, 208, 216, 224, 232, 240, 248, 256};
2539 80, 96, 112, 128, 144, 160,
2540 176, 192, 208, 224, 240, 256};
2542 case WGMMATypes::f16:
2543 case WGMMATypes::tf32:
2544 case WGMMATypes::bf16:
2545 case WGMMATypes::e4m3:
2546 case WGMMATypes::e5m2:
2547 if (llvm::is_contained(allowedN, sizeN))
2550 case WGMMATypes::u8:
2551 case WGMMATypes::s8:
2552 case WGMMATypes::b1:
2553 if (llvm::is_contained(allowedNshort, sizeN))
2556 case WGMMATypes::f32:
2557 case WGMMATypes::s32:
2558 llvm_unreachable(
"unsupported input types");
2564LogicalResult NVVM::WgmmaMmaAsyncOp::verify() {
2565 Value outValue = getResults();
2566 auto stype = dyn_cast<LLVM::LLVMStructType>(outValue.
getType());
2568 return emitOpError() <<
"expected results to be struct";
2569 int outputSize = stype.getBody().size();
2570 WGMMATypes typeD = getTypeD();
2571 WGMMATypes typeA = getTypeA();
2572 WGMMATypes typeB = getTypeB();
2574 for (
Type t : stype.getBody()) {
2575 if (t != stype.getBody().front())
2577 <<
"all elements in struct must be same type but there is " << t;
2580 if (typeD != WGMMATypes::f32 && typeD != WGMMATypes::f16 &&
2581 typeD != WGMMATypes::s32) {
2582 return emitOpError() <<
"does not support the given output type "
2583 << NVVM::stringifyWGMMATypes(typeD);
2585 if (typeD == WGMMATypes::s32 &&
2586 (getScaleA() == WGMMAScaleIn::neg || getScaleB() == WGMMAScaleIn::neg)) {
2587 return emitOpError() <<
"has s32 output, scaleA and scaleB cannot be neg";
2591 return emitOpError() << NVVM::stringifyWGMMATypes(typeD)
2592 <<
" += " << NVVM::stringifyWGMMATypes(typeA) <<
" * "
2593 << NVVM::stringifyWGMMATypes(typeB)
2594 <<
", it is not supported.";
2604 return emitOpError() <<
"shape 'k' must be " << allowedK.value()
2605 <<
" for input type "
2606 << NVVM::stringifyWGMMATypes(typeA);
2611 << NVVM::stringifyWGMMATypes(typeA) <<
" n is set to "
2612 <<
getShape().getN() <<
", it is not supported.";
2619 if ((typeA != WGMMATypes::f16 && typeA != WGMMATypes::bf16) &&
2620 (getLayoutA() == mlir::NVVM::MMALayout::col ||
2621 getLayoutB() == mlir::NVVM::MMALayout::row)) {
2623 <<
"given layouts layout_a = " << stringifyMMALayout(getLayoutA())
2624 <<
" and layout_b = " << stringifyMMALayout(getLayoutB())
2625 <<
" for input types " << stringifyWGMMATypes(typeA) <<
" and "
2626 << stringifyWGMMATypes(typeB)
2627 <<
" requires transpose. However, this is only supported for: "
2628 << stringifyMMATypes(MMATypes::f16) <<
" and "
2629 << stringifyMMATypes(MMATypes::bf16);
2633 int expectedOutput = 0;
2634 if (typeD == WGMMATypes::f32 || typeD == WGMMATypes::s32)
2635 expectedOutput =
getShape().getN() / 2;
2636 if (typeD == WGMMATypes::f16)
2637 expectedOutput =
getShape().getN() / 4;
2638 if (outputSize != expectedOutput) {
2639 return emitOpError() <<
"results " << expectedOutput
2640 <<
", however output struct has " << outputSize
2644 if (typeD != WGMMATypes::s32 &&
2645 getSatfinite().value_or(NVVM::MMAIntOverflow::wrapped) ==
2646 NVVM::MMAIntOverflow::satfinite) {
2648 <<
" `satfinite` can be only used with s32 accumulator, however "
2649 "the current accumulator is "
2650 << NVVM::stringifyWGMMATypes(typeD);
2656std::string NVVM::WgmmaMmaAsyncOp::getPtx() {
2659 bool isF16 = getTypeA() == WGMMATypes::f16 || getTypeA() == WGMMATypes::bf16;
2661 StringRef outputTypeName = stringifyWGMMATypes(getTypeD());
2663 int expectedOutputRegisters = 0;
2664 if (getTypeD() == WGMMATypes::f16)
2665 expectedOutputRegisters =
getShape().getN() / 4;
2667 expectedOutputRegisters =
getShape().getN() / 2;
2670 llvm::raw_string_ostream ss(ptx);
2675 << ((expectedOutputRegisters * 2) + 2)
2677 "wgmma.mma_async.sync.aligned.m"
2678 << m <<
"n" << n <<
"k" << k <<
"." << outputTypeName <<
"."
2679 << stringifyWGMMATypes(getTypeA()) <<
"."
2680 << stringifyWGMMATypes(getTypeB());
2681 if (getSatfinite().value_or(NVVM::MMAIntOverflow::wrapped) ==
2682 NVVM::MMAIntOverflow::satfinite)
2686 for (; regCnt < expectedOutputRegisters; ++regCnt) {
2687 ss <<
"$" << regCnt;
2688 if (regCnt != expectedOutputRegisters - 1)
2694 regCnt = (regCnt * 2);
2695 ss <<
" $" << (regCnt) <<
","
2696 <<
" $" << (regCnt + 1) <<
","
2698 if (getTypeD() != WGMMATypes::s32) {
2699 ss <<
", $" << (regCnt + 3) <<
", $" << (regCnt + 4);
2703 ss <<
", $" << (regCnt + 5) <<
", $" << (regCnt + 6);
2710bool NVVM::WgmmaMmaAsyncOp::getAsmValues(
2714 bool isF16 = getTypeA() == WGMMATypes::f16 || getTypeA() == WGMMATypes::bf16;
2721 asmValues.push_back({makeConstantI32(rewriter,
static_cast<int>(getScaleD())),
2723 if (getTypeD() != WGMMATypes::s32) {
2724 asmValues.push_back(
2725 {makeConstantI32(rewriter,
2726 getScaleA() == NVVM::WGMMAScaleIn::neg ? -1 : 1),
2728 asmValues.push_back(
2729 {makeConstantI32(rewriter,
2730 getScaleB() == NVVM::WGMMAScaleIn::neg ? -1 : 1),
2734 asmValues.push_back(
2735 {makeConstantI32(rewriter,
static_cast<int>(getLayoutA())),
2737 asmValues.push_back(
2738 {makeConstantI32(rewriter, 1 -
static_cast<int>(getLayoutB())),
2744LogicalResult NVVM::FenceSyncRestrictOp::verify() {
2745 if (getOrder() != NVVM::MemOrderKind::ACQUIRE &&
2746 getOrder() != NVVM::MemOrderKind::RELEASE)
2747 return emitOpError(
"only acquire and release semantics are supported");
2751LogicalResult NVVM::FenceProxyOp::verify() {
2752 if (getKind() == NVVM::ProxyKind::TENSORMAP)
2753 return emitOpError() <<
"tensormap proxy is not a supported proxy kind";
2754 if (getKind() == NVVM::ProxyKind::GENERIC)
2755 return emitOpError() <<
"generic proxy not a supported proxy kind";
2756 if (getKind() == NVVM::ProxyKind::async_shared && !getSpace().has_value()) {
2757 return emitOpError() <<
"async_shared fence requires space attribute";
2759 if (getKind() != NVVM::ProxyKind::async_shared && getSpace().has_value()) {
2760 return emitOpError() <<
"only async_shared fence can have space attribute";
2765LogicalResult NVVM::FenceProxyAcquireOp::verify() {
2766 if (getFromProxy() != NVVM::ProxyKind::GENERIC)
2767 return emitOpError(
"uni-directional proxies only support generic for "
2768 "from_proxy attribute");
2770 if (getToProxy() != NVVM::ProxyKind::TENSORMAP)
2771 return emitOpError(
"uni-directional proxies only support tensormap "
2772 "for to_proxy attribute");
2776LogicalResult NVVM::FenceProxyReleaseOp::verify() {
2777 if (getFromProxy() != NVVM::ProxyKind::GENERIC)
2778 return emitOpError(
"uni-directional proxies only support generic for "
2779 "from_proxy attribute");
2781 if (getToProxy() != NVVM::ProxyKind::TENSORMAP)
2782 return emitOpError(
"uni-directional proxies only support tensormap "
2783 "for to_proxy attribute");
2787LogicalResult NVVM::FenceProxySyncRestrictOp::verify() {
2788 if (getOrder() != NVVM::MemOrderKind::ACQUIRE &&
2789 getOrder() != NVVM::MemOrderKind::RELEASE)
2790 return emitOpError(
"only acquire and release semantics are supported");
2792 if (getFromProxy() != NVVM::ProxyKind::GENERIC)
2793 return emitOpError(
"only generic is support for from_proxy attribute");
2795 if (getToProxy() != NVVM::ProxyKind::async)
2796 return emitOpError(
"only async is supported for to_proxy attribute");
2800LogicalResult NVVM::SetMaxRegisterOp::verify() {
2801 if (getRegCount() % 8)
2802 return emitOpError(
"new register size must be multiple of 8");
2803 if (getRegCount() < 24 || getRegCount() > 256)
2804 return emitOpError(
"new register size must be in between 24 to 256");
2808LogicalResult NVVM::BarrierOp::verify() {
2809 if (getNumberOfThreads() && !getBarrierId())
2811 "barrier id is missing, it should be set between 0 to 15");
2813 if (getBarrierId() && (
getReductionOp() || getReductionPredicate()))
2814 return emitOpError(
"reduction are only available when id is 0");
2818 return emitOpError(
"reduction predicate and reduction operation must be "
2819 "specified together");
2824LogicalResult NVVM::Tcgen05CpOp::verify() {
2825 auto mc = getMulticast();
2827 using SH = Tcgen05CpShape;
2828 using MC = Tcgen05CpMulticast;
2830 case SH::SHAPE_128x256b:
2831 case SH::SHAPE_128x128b:
2832 case SH::SHAPE_4x256b:
2834 return emitError(
"Invalid multicast type for tcgen05.cp Op");
2836 case SH::SHAPE_64x128b:
2837 if (mc != MC::WARPX2_01_23 && mc != MC::WARPX2_02_13)
2838 return emitError(
"Shape 64x128b requires multicast warpx2_01_23 or "
2839 "warpx2_02_13 for tcgen05.cp Op");
2841 case SH::SHAPE_32x128b:
2842 if (mc != MC::WARPX4)
2844 "Shape 32x128b requires multicast warpx4 for tcgen05.cp Op");
2850LogicalResult NVVM::MatchSyncOp::verify() {
2851 if (getKind() == NVVM::MatchSyncKind::all) {
2852 auto type = llvm::dyn_cast<LLVM::LLVMStructType>(
getType());
2853 if (!type || type.getBody().size() != 2 ||
2854 !type.getBody()[0].isInteger(32) || !type.getBody()[1].isInteger(1)) {
2855 return emitOpError(
"match.sync 'all' returns a two element struct with "
2856 "first element as i32 and second element as i1");
2859 if (!
getType().isInteger(32)) {
2860 return emitOpError(
"match.sync 'any' returns an i32");
2866LogicalResult NVVM::VoteSyncOp::verify() {
2867 if (getKind() == NVVM::VoteSyncKind::ballot) {
2868 if (!
getType().isInteger(32)) {
2869 return emitOpError(
"vote.sync 'ballot' returns an i32");
2872 if (!
getType().isInteger(1)) {
2873 return emitOpError(
"vote.sync 'any', 'all' and 'uni' returns an i1");
2879LogicalResult NVVM::PrefetchOp::verify() {
2880 using MemSpace = NVVM::NVVMMemorySpace;
2881 using CacheLevel = NVVM::PrefetchCacheLevel;
2883 unsigned addressSpace =
2884 llvm::cast<LLVM::LLVMPointerType>(getAddr().
getType()).getAddressSpace();
2885 std::optional<NVVM::CacheEvictionPriority> evictPriority = getEvictPriority();
2886 std::optional<NVVM::PrefetchCacheLevel> cacheLevel = getCacheLevel();
2888 if (getTensormap() && cacheLevel)
2889 return emitOpError(
"cannot specify both tensormap and cache level");
2891 if (getTensormap()) {
2892 if (addressSpace != MemSpace::Generic &&
2893 addressSpace != MemSpace::Constant) {
2895 "prefetch tensormap requires a generic or constant pointer");
2898 if (evictPriority) {
2900 "prefetch tensormap does not support eviction priority");
2903 if (getInParamSpace() && addressSpace != MemSpace::Generic) {
2905 "in_param_space can only be specified for a generic pointer");
2908 }
else if (cacheLevel) {
2909 if (addressSpace != MemSpace::Generic && addressSpace != MemSpace::Global &&
2910 addressSpace != MemSpace::Local) {
2911 return emitOpError(
"prefetch to cache level requires a generic, global, "
2912 "or local pointer");
2916 if (*cacheLevel != CacheLevel::L1) {
2918 "unsupported cache level, the only supported uniform "
2919 "cache level is L1");
2922 if (addressSpace != MemSpace::Generic) {
2924 "prefetch to uniform cache requires a generic pointer");
2928 if (evictPriority) {
2929 if (*cacheLevel != CacheLevel::L2)
2931 "cache eviction priority supported only for cache level L2");
2933 if (addressSpace != MemSpace::Global)
2934 return emitOpError(
"cache eviction priority requires a global pointer");
2936 if (*evictPriority != NVVM::CacheEvictionPriority::EvictNormal &&
2937 *evictPriority != NVVM::CacheEvictionPriority::EvictLast)
2939 "unsupported cache eviction priority, only evict_last and "
2940 "evict_normal are supported");
2944 return emitOpError(
"predicate supported only on prefetch tensormap");
2948 "requires specification of either cache level or tensormap");
2954LogicalResult NVVM::ClusterLaunchControlQueryCancelOp::verify() {
2955 switch (getQueryType()) {
2956 case NVVM::ClusterLaunchControlQueryType::IS_CANCELED:
2958 return emitOpError(
"is_canceled query type returns an i1");
2960 case NVVM::ClusterLaunchControlQueryType::GET_FIRST_CTA_ID_X:
2961 case NVVM::ClusterLaunchControlQueryType::GET_FIRST_CTA_ID_Y:
2962 case NVVM::ClusterLaunchControlQueryType::GET_FIRST_CTA_ID_Z:
2963 if (!
getType().isInteger(32)) {
2964 return emitOpError(
"get_first_cta_id_x, get_first_cta_id_y, "
2965 "get_first_cta_id_z query types return an i32");
2972LogicalResult NVVM::ReduxOp::verify() {
2975 if (!reduxType.
isF32()) {
2977 return emitOpError(
"abs attribute is supported only for f32 type");
2979 return emitOpError(
"nan attribute is supported only for f32 type");
2982 NVVM::ReduxKind kind = getKind();
2984 case NVVM::ReduxKind::ADD:
2985 case NVVM::ReduxKind::AND:
2986 case NVVM::ReduxKind::OR:
2987 case NVVM::ReduxKind::XOR:
2988 case NVVM::ReduxKind::MAX:
2989 case NVVM::ReduxKind::MIN:
2990 case NVVM::ReduxKind::UMAX:
2991 case NVVM::ReduxKind::UMIN:
2994 << stringifyEnum(kind) <<
"' redux kind unsupported with "
2995 << reduxType <<
" type. Only supported type is 'i32'.";
2997 case NVVM::ReduxKind::FMIN:
2998 case NVVM::ReduxKind::FMAX:
2999 if (!reduxType.
isF32())
3001 << stringifyEnum(kind) <<
"' redux kind unsupported with "
3002 << reduxType <<
" type. Only supported type is 'f32'.";
3015 unsigned sizeInBits,
3017 field = builder.CreateZExtOrBitCast(field, builder.getInt32Ty());
3019 unsigned mask = (sizeInBits < 32 ? ((1u << sizeInBits) - 1) : 0xffffffffu);
3020 if (mask != 0xffffffffu)
3021 field = builder.CreateAnd(field, builder.getInt32(mask));
3023 field = builder.CreateZExtOrBitCast(field, builder.getInt64Ty());
3024 field = builder.CreateShl(field, start);
3026 return builder.CreateOr(
result, field);
3029void Tcgen05MmaSmemDescOp::createSmemDescriptor(
Operation &op,
3031 llvm::IRBuilderBase &builder) {
3032 auto thisOp = cast<NVVM::Tcgen05MmaSmemDescOp>(op);
3033 llvm::Value *smemDesc = builder.getInt64(0);
3038 builder, smemDesc, mt.
lookupValue(thisOp.getLeadingDimOffset()), 14, 16);
3040 builder, smemDesc, mt.
lookupValue(thisOp.getStrideDimOffset()), 14, 32);
3046 builder, smemDesc, mt.
lookupValue(thisOp.getLeadingDimMode()), 1, 52);
3050 mt.
mapValue(thisOp.getRes()) = smemDesc;
3057std::string NVVM::MBarrierInitOp::getPtx() {
3059 return isShared ? std::string(
"mbarrier.init.shared.b64 [%0], %1;")
3060 : std::string(
"mbarrier.init.b64 [%0], %1;");
3063std::string NVVM::MBarrierArriveExpectTxOp::getPtx() {
3066 ? std::string(
"mbarrier.arrive.expect_tx.shared.b64 _, [%0], %1;")
3067 : std::string(
"mbarrier.arrive.expect_tx.b64 _, [%0], %1;");
3070std::string NVVM::MBarrierTryWaitParityOp::getPtx() {
3072 llvm::StringRef space = isShared ?
".shared" :
"";
3074 return llvm::formatv(
"{\n\t"
3075 ".reg .pred P1; \n\t"
3077 "mbarrier.try_wait.parity{0}.b64 P1, [%0], %1, %2; \n\t"
3078 "@P1 bra.uni DONE; \n\t"
3079 "bra.uni LAB_WAIT; \n\t"
3091 auto thisOp = cast<NVVM::BarrierOp>(op);
3092 llvm::Value *barrierId = thisOp.getBarrierId()
3094 : builder.getInt32(0);
3095 llvm::Intrinsic::ID id;
3097 if (thisOp.getNumberOfThreads()) {
3098 id = llvm::Intrinsic::nvvm_barrier_cta_sync_aligned_count;
3099 args.push_back(barrierId);
3100 args.push_back(mt.
lookupValue(thisOp.getNumberOfThreads()));
3101 }
else if (thisOp.getReductionOp()) {
3102 switch (*thisOp.getReductionOp()) {
3103 case NVVM::BarrierReduction::AND:
3104 id = llvm::Intrinsic::nvvm_barrier0_and;
3106 case NVVM::BarrierReduction::OR:
3107 id = llvm::Intrinsic::nvvm_barrier0_or;
3109 case NVVM::BarrierReduction::POPC:
3110 id = llvm::Intrinsic::nvvm_barrier0_popc;
3113 args.push_back(mt.
lookupValue(thisOp.getReductionPredicate()));
3115 id = llvm::Intrinsic::nvvm_barrier_cta_sync_aligned_all;
3116 args.push_back(barrierId);
3119 return {id, std::move(args)};
3124 llvm::IRBuilderBase &builder) {
3125 auto thisOp = cast<NVVM::PMEventOp>(op);
3129 llvm::Value *maskVal;
3130 if (
auto eventAttr = thisOp.getEventIdAttr()) {
3131 uint16_t mask =
static_cast<uint16_t
>(1u << eventAttr.getInt());
3132 maskVal = llvm::ConstantInt::get(i16Ty, mask);
3135 llvm::ConstantInt::get(i16Ty, thisOp.getMaskedEventIdAttr().getValue());
3138 return {llvm::Intrinsic::nvvm_pm_event_mask, {maskVal}};
3143 auto thisOp = cast<NVVM::MBarrierInitOp>(op);
3145 llvm::Intrinsic::ID
id = isShared ? llvm::Intrinsic::nvvm_mbarrier_init_shared
3146 : llvm::Intrinsic::nvvm_mbarrier_init;
3151 args.push_back(mt.
lookupValue(thisOp.getCount()));
3153 return {id, std::move(args)};
3158 auto thisOp = cast<NVVM::MBarrierInvalOp>(op);
3160 llvm::Intrinsic::ID
id = isShared
3161 ? llvm::Intrinsic::nvvm_mbarrier_inval_shared
3162 : llvm::Intrinsic::nvvm_mbarrier_inval;
3169 auto thisOp = cast<NVVM::MBarrierExpectTxOp>(op);
3172 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3175 size_t index = ((isClusterScope ? 1 : 0) << 1) | (isClusterSpace ? 1 : 0);
3177 static constexpr llvm::Intrinsic::ID IDs[] = {
3178 llvm::Intrinsic::nvvm_mbarrier_expect_tx_scope_cta_space_cta,
3179 llvm::Intrinsic::nvvm_mbarrier_expect_tx_scope_cta_space_cluster,
3180 llvm::Intrinsic::nvvm_mbarrier_expect_tx_scope_cluster_space_cta,
3181 llvm::Intrinsic::nvvm_mbarrier_expect_tx_scope_cluster_space_cluster};
3186 args.push_back(mt.
lookupValue(thisOp.getTxcount()));
3188 return {IDs[
index], std::move(args)};
3193 auto thisOp = cast<NVVM::MBarrierCompleteTxOp>(op);
3196 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3199 size_t index = ((isClusterScope ? 1 : 0) << 1) | (isClusterSpace ? 1 : 0);
3201 static constexpr llvm::Intrinsic::ID IDs[] = {
3202 llvm::Intrinsic::nvvm_mbarrier_complete_tx_scope_cta_space_cta,
3203 llvm::Intrinsic::nvvm_mbarrier_complete_tx_scope_cta_space_cluster,
3204 llvm::Intrinsic::nvvm_mbarrier_complete_tx_scope_cluster_space_cta,
3205 llvm::Intrinsic::nvvm_mbarrier_complete_tx_scope_cluster_space_cluster};
3210 args.push_back(mt.
lookupValue(thisOp.getTxcount()));
3212 return {IDs[
index], std::move(args)};
3217 auto thisOp = cast<NVVM::MBarrierArriveOp>(op);
3220 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3223 size_t index = ((isClusterScope ? 1 : 0) << 1) | (isClusterSpace ? 1 : 0);
3225 static constexpr llvm::Intrinsic::ID IDs[] = {
3226 llvm::Intrinsic::nvvm_mbarrier_arrive_scope_cta_space_cta,
3227 llvm::Intrinsic::nvvm_mbarrier_arrive_scope_cta_space_cluster,
3228 llvm::Intrinsic::nvvm_mbarrier_arrive_scope_cluster_space_cta,
3229 llvm::Intrinsic::nvvm_mbarrier_arrive_scope_cluster_space_cluster};
3230 static constexpr llvm::Intrinsic::ID relaxedIDs[] = {
3231 llvm::Intrinsic::nvvm_mbarrier_arrive_relaxed_scope_cta_space_cta,
3232 llvm::Intrinsic::nvvm_mbarrier_arrive_relaxed_scope_cta_space_cluster,
3233 llvm::Intrinsic::nvvm_mbarrier_arrive_relaxed_scope_cluster_space_cta,
3235 nvvm_mbarrier_arrive_relaxed_scope_cluster_space_cluster};
3236 auto id = thisOp.getRelaxed() ? relaxedIDs[
index] : IDs[
index];
3240 llvm::Value *mbar = mt.
lookupValue(thisOp.getAddr());
3246 bool hasCount =
static_cast<bool>(thisOp.getCount());
3247 llvm::Value *count =
3249 : llvm::ConstantInt::get(llvm::Type::getInt32Ty(ctx), 1);
3251 return {id, {mbar, count}};
3256 auto thisOp = cast<NVVM::MBarrierArriveDropOp>(op);
3259 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3262 size_t index = ((isClusterScope ? 1 : 0) << 1) | (isClusterSpace ? 1 : 0);
3264 static constexpr llvm::Intrinsic::ID IDs[] = {
3265 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_scope_cta_space_cta,
3266 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_scope_cta_space_cluster,
3267 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_scope_cluster_space_cta,
3268 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_scope_cluster_space_cluster};
3269 static constexpr llvm::Intrinsic::ID relaxedIDs[] = {
3270 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_relaxed_scope_cta_space_cta,
3272 nvvm_mbarrier_arrive_drop_relaxed_scope_cta_space_cluster,
3274 nvvm_mbarrier_arrive_drop_relaxed_scope_cluster_space_cta,
3276 nvvm_mbarrier_arrive_drop_relaxed_scope_cluster_space_cluster};
3277 auto id = thisOp.getRelaxed() ? relaxedIDs[
index] : IDs[
index];
3281 llvm::Value *mbar = mt.
lookupValue(thisOp.getAddr());
3287 bool hasCount =
static_cast<bool>(thisOp.getCount());
3288 llvm::Value *count =
3290 : llvm::ConstantInt::get(llvm::Type::getInt32Ty(ctx), 1);
3292 return {id, {mbar, count}};
3295bool MBarrierArriveExpectTxOp::getAsmValues(
3302 for (
auto val : getOperands())
3310 auto thisOp = cast<NVVM::MBarrierArriveExpectTxOp>(op);
3313 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3316 size_t index = ((isClusterScope ? 1 : 0) << 1) | (isClusterSpace ? 1 : 0);
3319 static constexpr llvm::Intrinsic::ID IDs[] = {
3320 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_scope_cta_space_cta,
3321 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_scope_cta_space_cluster,
3322 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_scope_cluster_space_cta,
3323 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_scope_cluster_space_cluster};
3324 static constexpr llvm::Intrinsic::ID relaxedIDs[] = {
3325 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_relaxed_scope_cta_space_cta,
3326 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_relaxed_scope_cta_space_cluster,
3327 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_relaxed_scope_cluster_space_cta,
3328 llvm::Intrinsic::nvvm_mbarrier_arrive_expect_tx_relaxed_scope_cluster_space_cluster};
3330 auto id = thisOp.getRelaxed() ? relaxedIDs[
index] : IDs[
index];
3333 llvm::Value *txcount = mt.
lookupValue(thisOp.getTxcount());
3334 llvm::Value *mbar = mt.
lookupValue(thisOp.getAddr());
3339 return {id, {mbar, txcount}};
3344 auto thisOp = cast<NVVM::MBarrierArriveDropExpectTxOp>(op);
3347 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3350 size_t index = ((isClusterScope ? 1 : 0) << 1) | (isClusterSpace ? 1 : 0);
3353 static constexpr llvm::Intrinsic::ID IDs[] = {
3354 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_scope_cta_space_cta,
3355 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_scope_cta_space_cluster,
3356 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_scope_cluster_space_cta,
3357 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_scope_cluster_space_cluster};
3358 static constexpr llvm::Intrinsic::ID relaxedIDs[] = {
3359 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_relaxed_scope_cta_space_cta,
3360 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_relaxed_scope_cta_space_cluster,
3361 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_relaxed_scope_cluster_space_cta,
3362 llvm::Intrinsic::nvvm_mbarrier_arrive_drop_expect_tx_relaxed_scope_cluster_space_cluster};
3364 auto id = thisOp.getRelaxed() ? relaxedIDs[
index] : IDs[
index];
3367 llvm::Value *txcount = mt.
lookupValue(thisOp.getTxcount());
3368 llvm::Value *mbar = mt.
lookupValue(thisOp.getAddr());
3373 return {id, {mbar, txcount}};
3378 auto thisOp = cast<NVVM::MBarrierArriveNocompleteOp>(op);
3380 llvm::Intrinsic::ID
id =
3381 isShared ? llvm::Intrinsic::nvvm_mbarrier_arrive_noComplete_shared
3382 : llvm::Intrinsic::nvvm_mbarrier_arrive_noComplete;
3386 args.push_back(mt.
lookupValue(thisOp.getCount()));
3388 return {id, std::move(args)};
3393 auto thisOp = cast<NVVM::MBarrierArriveDropNocompleteOp>(op);
3395 llvm::Intrinsic::ID
id =
3396 isShared ? llvm::Intrinsic::nvvm_mbarrier_arrive_drop_noComplete_shared
3397 : llvm::Intrinsic::nvvm_mbarrier_arrive_drop_noComplete;
3401 args.push_back(mt.
lookupValue(thisOp.getCount()));
3403 return {id, std::move(args)};
3408 auto thisOp = cast<NVVM::MBarrierTestWaitOp>(op);
3409 bool isPhaseParity = thisOp.getStateOrPhase().getType().isInteger(32);
3410 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3413 size_t index = ((isClusterScope ? 1 : 0) << 1) | (isPhaseParity ? 1 : 0);
3416 static constexpr llvm::Intrinsic::ID IDs[] = {
3417 llvm::Intrinsic::nvvm_mbarrier_test_wait_scope_cta_space_cta,
3418 llvm::Intrinsic::nvvm_mbarrier_test_wait_parity_scope_cta_space_cta,
3419 llvm::Intrinsic::nvvm_mbarrier_test_wait_scope_cluster_space_cta,
3420 llvm::Intrinsic::nvvm_mbarrier_test_wait_parity_scope_cluster_space_cta};
3421 static constexpr llvm::Intrinsic::ID relaxedIDs[] = {
3422 llvm::Intrinsic::nvvm_mbarrier_test_wait_relaxed_scope_cta_space_cta,
3423 llvm::Intrinsic::nvvm_mbarrier_test_wait_parity_relaxed_scope_cta_space_cta,
3424 llvm::Intrinsic::nvvm_mbarrier_test_wait_relaxed_scope_cluster_space_cta,
3425 llvm::Intrinsic::nvvm_mbarrier_test_wait_parity_relaxed_scope_cluster_space_cta};
3427 auto id = thisOp.getRelaxed() ? relaxedIDs[
index] : IDs[
index];
3430 llvm::Value *mbar = mt.
lookupValue(thisOp.getAddr());
3431 llvm::Value *input = mt.
lookupValue(thisOp.getStateOrPhase());
3436 return {id, {mbar, input}};
3441 auto thisOp = cast<NVVM::MBarrierTryWaitOp>(op);
3442 bool isPhaseParity = thisOp.getStateOrPhase().getType().isInteger(32);
3443 bool isClusterScope = thisOp.getScope() == NVVM::MemScopeKind::CLUSTER;
3444 bool hasTicks =
static_cast<bool>(thisOp.getTicks());
3448 size_t index = ((hasTicks ? 1 : 0) << 2) | ((isClusterScope ? 1 : 0) << 1) |
3449 (isPhaseParity ? 1 : 0);
3452 static constexpr llvm::Intrinsic::ID IDs[] = {
3453 llvm::Intrinsic::nvvm_mbarrier_try_wait_scope_cta_space_cta,
3454 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_scope_cta_space_cta,
3455 llvm::Intrinsic::nvvm_mbarrier_try_wait_scope_cluster_space_cta,
3456 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_scope_cluster_space_cta,
3457 llvm::Intrinsic::nvvm_mbarrier_try_wait_tl_scope_cta_space_cta,
3458 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_tl_scope_cta_space_cta,
3459 llvm::Intrinsic::nvvm_mbarrier_try_wait_tl_scope_cluster_space_cta,
3460 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_tl_scope_cluster_space_cta};
3461 static constexpr llvm::Intrinsic::ID relaxedIDs[] = {
3462 llvm::Intrinsic::nvvm_mbarrier_try_wait_relaxed_scope_cta_space_cta,
3463 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_relaxed_scope_cta_space_cta,
3464 llvm::Intrinsic::nvvm_mbarrier_try_wait_relaxed_scope_cluster_space_cta,
3465 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_relaxed_scope_cluster_space_cta,
3466 llvm::Intrinsic::nvvm_mbarrier_try_wait_tl_relaxed_scope_cta_space_cta,
3467 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_tl_relaxed_scope_cta_space_cta,
3468 llvm::Intrinsic::nvvm_mbarrier_try_wait_tl_relaxed_scope_cluster_space_cta,
3469 llvm::Intrinsic::nvvm_mbarrier_try_wait_parity_tl_relaxed_scope_cluster_space_cta};
3471 auto id = thisOp.getRelaxed() ? relaxedIDs[
index] : IDs[
index];
3474 llvm::Value *mbar = mt.
lookupValue(thisOp.getAddr());
3481 args.push_back(mbar);
3482 args.push_back(mt.
lookupValue(thisOp.getStateOrPhase()));
3484 args.push_back(mt.
lookupValue(thisOp.getTicks()));
3486 return {id, std::move(args)};
3491 auto thisOp = cast<NVVM::CpAsyncMBarrierArriveOp>(op);
3494 llvm::Intrinsic::ID id;
3495 if (thisOp.getNoinc()) {
3496 id = isShared ? llvm::Intrinsic::nvvm_cp_async_mbarrier_arrive_noinc_shared
3497 : llvm::Intrinsic::nvvm_cp_async_mbarrier_arrive_noinc;
3499 id = isShared ? llvm::Intrinsic::nvvm_cp_async_mbarrier_arrive_shared
3500 : llvm::Intrinsic::nvvm_cp_async_mbarrier_arrive;
3506#define CP_ASYNC_ID_IMPL(mod, size, suffix) \
3507 llvm::Intrinsic::nvvm_cp_async_##mod##_shared_global_##size##suffix
3509#define GET_CP_ASYNC_ID(mod, size, has_cpsize) \
3510 has_cpsize ? CP_ASYNC_ID_IMPL(mod, size, _s) : CP_ASYNC_ID_IMPL(mod, size, )
3515 llvm::Intrinsic::ID id;
3517 auto cpAsyncOp = cast<NVVM::CpAsyncOp>(op);
3518 bool hasCpSize =
static_cast<bool>(cpAsyncOp.getCpSize());
3519 switch (cpAsyncOp.getSize()) {
3527 id = (cpAsyncOp.getModifier() == NVVM::LoadCacheModifierKind::CG)
3532 llvm_unreachable(
"Invalid copy size in CpAsyncOp.");
3536 args.push_back(mt.
lookupValue(cpAsyncOp.getDst()));
3537 args.push_back(mt.
lookupValue(cpAsyncOp.getSrc()));
3539 args.push_back(mt.
lookupValue(cpAsyncOp.getCpSize()));
3546 auto thisOp = cast<NVVM::CpAsyncBulkPrefetchOp>(op);
3548 llvm::Intrinsic::ID
id = llvm::Intrinsic::nvvm_cp_async_bulk_prefetch_L2;
3551 args.push_back(mt.
lookupValue(thisOp.getSrcMem()));
3555 const bool hasCacheHint =
static_cast<bool>(cacheHint);
3556 llvm::Value *i64Unused =
3557 llvm::ConstantInt::get(llvm::Type::getInt64Ty(mt.
getLLVMContext()), 0);
3558 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64Unused);
3559 args.push_back(builder.getInt1(hasCacheHint));
3561 return {id, std::move(args)};
3566 auto thisOp = cast<NVVM::CpAsyncBulkGlobalToSharedClusterOp>(op);
3570 args.push_back(mt.
lookupValue(thisOp.getDstMem()));
3572 args.push_back(mt.
lookupValue(thisOp.getSrcMem()));
3576 mlir::Value multicastMask = thisOp.getMulticastMask();
3577 const bool hasMulticastMask =
static_cast<bool>(multicastMask);
3580 llvm::Value *i16Unused = llvm::ConstantInt::get(builder.getInt16Ty(), 0);
3581 args.push_back(hasMulticastMask ? mt.
lookupValue(multicastMask)
3587 const bool hasCacheHint =
static_cast<bool>(cacheHint);
3588 llvm::Value *i64Unused = llvm::ConstantInt::get(builder.getInt64Ty(), 0);
3589 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64Unused);
3593 args.push_back(builder.getInt1(hasMulticastMask));
3594 args.push_back(builder.getInt1(hasCacheHint));
3596 llvm::Intrinsic::ID
id =
3598 ? llvm::Intrinsic::nvvm_cp_async_bulk_global_to_shared_cta
3599 : llvm::Intrinsic::nvvm_cp_async_bulk_global_to_shared_cluster;
3601 return {id, std::move(args)};
3606 auto thisOp = cast<NVVM::CpAsyncBulkSharedCTAToGlobalOp>(op);
3608 llvm::Intrinsic::ID
id =
3609 llvm::Intrinsic::nvvm_cp_async_bulk_shared_cta_to_global;
3612 args.push_back(mt.
lookupValue(thisOp.getDstMem()));
3613 args.push_back(mt.
lookupValue(thisOp.getSrcMem()));
3617 const bool hasCacheHint =
static_cast<bool>(cacheHint);
3618 llvm::Value *i64Unused =
3619 llvm::ConstantInt::get(llvm::Type::getInt64Ty(mt.
getLLVMContext()), 0);
3620 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64Unused);
3621 args.push_back(builder.getInt1(hasCacheHint));
3624 if (
mlir::Value byteMask = thisOp.getByteMask()) {
3626 id = llvm::Intrinsic::nvvm_cp_async_bulk_shared_cta_to_global_bytemask;
3629 return {id, std::move(args)};
3632bool CpAsyncBulkTensorGlobalToSharedClusterOp::getAsmValues(
3639 for (
auto val : getOperands())
3646CpAsyncBulkTensorGlobalToSharedClusterOp::getIntrinsicIDAndArgs(
3648 auto thisOp = cast<NVVM::CpAsyncBulkTensorGlobalToSharedClusterOp>(op);
3649 const bool isCTAOnly = thisOp.getIsCTAOnly();
3653 args.push_back(mt.
lookupValue(thisOp.getDstMem()));
3655 args.push_back(mt.
lookupValue(thisOp.getTmaDescriptor()));
3665 const bool hasMC =
static_cast<bool>(mcMask);
3666 llvm::Value *i16Zero =
3667 llvm::ConstantInt::get(llvm::Type::getInt16Ty(mt.
getLLVMContext()), 0);
3671 const bool hasCacheHint =
static_cast<bool>(cacheHint);
3672 llvm::Value *i64Zero =
3673 llvm::ConstantInt::get(llvm::Type::getInt64Ty(mt.
getLLVMContext()), 0);
3679 thisOp.getGroup() ? (
static_cast<int32_t
>(*thisOp.getGroup()) + 1) : 0;
3681 llvm::ConstantInt::get(llvm::Type::getInt32Ty(mt.
getLLVMContext()), val);
3685 args.push_back(hasMC ? mt.
lookupValue(mcMask) : i16Zero);
3686 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64Zero);
3687 args.push_back(builder.getInt1(hasMC));
3688 args.push_back(builder.getInt1(hasCacheHint));
3692 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64Zero);
3693 args.push_back(builder.getInt1(hasCacheHint));
3696 constexpr size_t numDims = 5;
3697 constexpr size_t numModes = 5;
3698 using rowTy = std::array<llvm::Intrinsic::ID, numDims + 1>;
3699 using TableTy = std::array<rowTy, numModes>;
3700 static constexpr TableTy IDTable{
3701 {{
notIntrinsic, llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_1d,
3702 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_2d,
3703 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_3d,
3704 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_4d,
3705 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_5d},
3707 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_3d,
3708 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_4d,
3709 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_5d},
3711 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_w_3d,
3712 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_w_4d,
3713 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_w_5d},
3715 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_w_128_3d,
3716 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_w_128_4d,
3717 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_w_128_5d},
3719 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_gather4_2d}}};
3721 static constexpr TableTy IDTableCTA{
3723 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_tile_1d,
3724 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_tile_2d,
3725 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_tile_3d,
3726 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_tile_4d,
3727 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_tile_5d},
3729 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_3d,
3730 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_4d,
3731 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_5d},
3733 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_w_3d,
3734 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_w_4d,
3735 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_w_5d},
3737 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_w_128_3d,
3738 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_w_128_4d,
3739 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_im2col_w_128_5d},
3741 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_g2s_cta_tile_gather4_2d}}};
3744 (getMaxEnumValForTMALoadMode() == std::size(IDTable) - 1) &&
3745 (getMaxEnumValForTMALoadMode() == std::size(IDTableCTA) - 1),
3746 "TMALoadModes must match number of rows in IDTable and IDTableCTA");
3747 size_t mode =
static_cast<size_t>(thisOp.getMode());
3748 size_t dim = thisOp.getCoordinates().size();
3749 auto id = isCTAOnly ? IDTableCTA[mode][dim] : IDTable[mode][dim];
3751 "Invalid intrinsic for CpAsyncBulkTensorGlobalToSharedClusterOp.");
3753 return {id, std::move(args)};
3758 auto thisOp = cast<NVVM::CpAsyncBulkTensorPrefetchOp>(op);
3762 args.push_back(mt.
lookupValue(thisOp.getTmaDescriptor()));
3764 for (
auto v : thisOp.getCoordinates())
3766 for (
auto v : thisOp.getIm2colOffsets())
3770 const bool hasCacheHint =
static_cast<bool>(cacheHint);
3771 llvm::Value *i64Unused =
3772 llvm::ConstantInt::get(llvm::Type::getInt64Ty(mt.
getLLVMContext()), 0);
3773 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64Unused);
3774 args.push_back(builder.getInt1(hasCacheHint));
3776 const unsigned NI = llvm::Intrinsic::not_intrinsic;
3777 static constexpr llvm::Intrinsic::ID IDTable[][6] = {
3778 {NI, llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_1d,
3779 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_2d,
3780 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_3d,
3781 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_4d,
3782 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_5d},
3784 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_3d,
3785 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_4d,
3786 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_5d},
3788 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_3d,
3789 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_4d,
3790 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_5d},
3792 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_128_3d,
3793 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_128_4d,
3794 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_w_128_5d},
3795 {NI, NI, NI, NI, NI,
3796 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_gather4_2d}};
3798 static_assert(getMaxEnumValForTMALoadMode() == std::size(IDTable) - 1,
3799 "TMALoadModes must match number of rows in IDTable");
3800 size_t mode =
static_cast<size_t>(thisOp.getMode());
3801 size_t dim = thisOp.getCoordinates().size();
3802 llvm::Intrinsic::ID
id = IDTable[mode][dim];
3803 if (
id == llvm::Intrinsic::not_intrinsic)
3804 llvm_unreachable(
"Invalid intrinsic for CpAsyncBulkTensorPrefetchOp.");
3806 return {id, std::move(args)};
3810CpAsyncBulkTensorSharedCTAToGlobalOp::getIntrinsicIDAndArgs(
3812 auto thisOp = cast<NVVM::CpAsyncBulkTensorSharedCTAToGlobalOp>(op);
3816 args.push_back(mt.
lookupValue(thisOp.getSrcMem()));
3817 args.push_back(mt.
lookupValue(thisOp.getTmaDescriptor()));
3819 for (
auto v : thisOp.getCoordinates())
3823 const bool hasCacheHint =
static_cast<bool>(cacheHint);
3824 llvm::Value *i64Unused =
3825 llvm::ConstantInt::get(llvm::Type::getInt64Ty(mt.
getLLVMContext()), 0);
3826 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64Unused);
3827 args.push_back(builder.getInt1(hasCacheHint));
3829 const unsigned NI = llvm::Intrinsic::not_intrinsic;
3830 static constexpr llvm::Intrinsic::ID IDTable[][6] = {
3831 {NI, llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_1d,
3832 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_2d,
3833 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_3d,
3834 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_4d,
3835 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_5d},
3836 {NI, NI, NI, llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_im2col_3d,
3837 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_im2col_4d,
3838 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_im2col_5d},
3839 {NI, NI, NI, NI, NI,
3840 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_scatter4_2d}};
3842 static_assert(getMaxEnumValForTMAStoreMode() == std::size(IDTable) - 1,
3843 "TMAStoreModes must match number of rows in IDTable");
3844 size_t mode =
static_cast<size_t>(thisOp.getMode());
3845 size_t dim = thisOp.getCoordinates().size();
3846 llvm::Intrinsic::ID
id = IDTable[mode][dim];
3847 if (
id == llvm::Intrinsic::not_intrinsic)
3849 "Invalid intrinsic for CpAsyncBulkTensorSharedCTAToGlobalOp.");
3851 return {id, std::move(args)};
3856 auto thisOp = cast<NVVM::CpAsyncBulkTensorReduceOp>(op);
3864 args.push_back(mt.
lookupValue(thisOp.getSrcMem()));
3865 args.push_back(mt.
lookupValue(thisOp.getTmaDescriptor()));
3867 for (
Value v : thisOp.getCoordinates())
3871 const bool hasCacheHint =
static_cast<bool>(cacheHint);
3872 llvm::Value *i64ZeroValue =
3873 llvm::ConstantInt::get(llvm::Type::getInt64Ty(ctx), 0);
3874 args.push_back(hasCacheHint ? mt.
lookupValue(cacheHint) : i64ZeroValue);
3875 args.push_back(builder.getInt1(hasCacheHint));
3877 const llvm::Intrinsic::ID
notIntrinsic = llvm::Intrinsic::not_intrinsic;
3879 constexpr unsigned numRedKinds = 8;
3880 constexpr unsigned numLayouts = 2;
3881 constexpr unsigned maxDim = 5;
3882 using row = std::array<llvm::Intrinsic::ID, maxDim + 1>;
3883 using layoutTable = std::array<row, numLayouts>;
3884 using fullTable = std::array<layoutTable, numRedKinds>;
3885 static constexpr fullTable IDTable{
3888 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_1d,
3889 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_2d,
3890 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_3d,
3891 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_4d,
3892 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_5d}},
3894 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_3d,
3895 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_4d,
3896 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_5d}}}},
3899 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_1d,
3900 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_2d,
3901 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_3d,
3902 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_4d,
3903 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_5d}},
3905 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_3d,
3906 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_4d,
3907 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_5d}}}},
3910 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_1d,
3911 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_2d,
3912 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_3d,
3913 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_4d,
3914 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_5d}},
3916 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_3d,
3917 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_4d,
3918 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_5d}}}},
3921 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_1d,
3922 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_2d,
3923 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_3d,
3924 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_4d,
3925 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_5d}},
3927 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_3d,
3928 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_4d,
3929 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_5d}}}},
3932 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_1d,
3933 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_2d,
3934 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_3d,
3935 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_4d,
3936 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_5d}},
3938 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_3d,
3939 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_4d,
3940 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_5d}}}},
3943 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_1d,
3944 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_2d,
3945 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_3d,
3946 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_4d,
3947 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_5d}},
3949 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_3d,
3950 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_4d,
3951 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_5d}}}},
3954 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_1d,
3955 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_2d,
3956 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_3d,
3957 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_4d,
3958 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_5d}},
3960 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_3d,
3961 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_4d,
3962 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_5d}}}},
3965 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_1d,
3966 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_2d,
3967 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_3d,
3968 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_4d,
3969 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_5d}},
3971 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_3d,
3972 llvm::Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_4d,
3974 nvvm_cp_async_bulk_tensor_reduce_xor_im2col_5d}}}}}};
3976 static_assert(getMaxEnumValForTMAReduxKind() == std::size(IDTable) - 1,
3977 "TMAReduxKinds must match number of rows in IDTable");
3979 size_t redKind =
static_cast<size_t>(thisOp.getRedKind());
3980 size_t mode =
static_cast<size_t>(thisOp.getMode());
3981 size_t dim = thisOp.getCoordinates().size();
3983 assert(redKind < IDTable.size() &&
3984 "Invalid redKind for CpAsyncBulkTensorReduceOp");
3985 assert(mode < IDTable[redKind].size() &&
3986 "Invalid mode for CpAsyncBulkTensorReduceOp");
3987 assert(dim < IDTable[redKind][mode].size() &&
3988 "Invalid dim for CpAsyncBulkTensorReduceOp");
3990 llvm::Intrinsic::ID intrinsicID = IDTable[redKind][mode][dim];
3993 "Invalid intrinsic for CpAsyncBulkTensorReduceOp.");
3995 return {intrinsicID, std::move(args)};
4000#define CVT_F2TF32_ID_IMPL(rnd, relu, sf) \
4001 hasRelu ? llvm::Intrinsic::nvvm_f2tf32_##rnd##relu##sf \
4002 : llvm::Intrinsic::nvvm_f2tf32_##rnd##sf
4004#define GET_CVT_F2TF32_ID(rnd, relu, sf) \
4005 hasSatFinite ? CVT_F2TF32_ID_IMPL(rnd, relu, sf) \
4006 : CVT_F2TF32_ID_IMPL(rnd, relu, )
4009ConvertFloatToTF32Op::getIntrinsicID(NVVM::FPRoundingMode rnd,
4010 NVVM::SaturationMode sat,
bool hasRelu) {
4011 using RndMode = NVVM::FPRoundingMode;
4012 bool hasSatFinite = (sat == NVVM::SaturationMode::SATFINITE);
4021 llvm_unreachable(
"Invalid RoundingMode for CvtFloatToTF32Op");
4026ConvertF32x2ToF4x2Op::getIntrinsicIDAndArgs(NVVM::ConvertF32x2ToF4x2Op op,
4028 llvm::IRBuilderBase &builder) {
4033 bool hasRelu = op.getRelu();
4035 llvm::Intrinsic::ID intId =
4036 hasRelu ? llvm::Intrinsic::nvvm_ff_to_e2m1x2_rn_relu_satfinite
4037 : llvm::Intrinsic::nvvm_ff_to_e2m1x2_rn_satfinite;
4039 return {intId, std::move(args)};
4042#define GET_F32x2_TO_F6x2_ID(type, has_relu) \
4043 has_relu ? llvm::Intrinsic::nvvm_ff_to_##type##_rn_relu_satfinite \
4044 : llvm::Intrinsic::nvvm_ff_to_##type##_rn_satfinite
4046llvm::Intrinsic::ID ConvertF32x2ToF6x2Op::getIntrinsicID(
mlir::Type dstTy,
4049 .Case<mlir::Float6E2M3FNType>([&](mlir::Float6E2M3FNType) {
4052 .Case<mlir::Float6E3M2FNType>([&](mlir::Float6E3M2FNType) {
4056 llvm_unreachable(
"Invalid conversion in ConvertF32x2ToF6x2Op");
4057 return llvm::Intrinsic::not_intrinsic;
4061#define GET_F32x2_TO_F8X2_US_ID(rnd, has_satf) \
4062 has_satf ? llvm::Intrinsic::nvvm_ff_to_ue8m0x2_##rnd##_satfinite \
4063 : llvm::Intrinsic::nvvm_ff_to_ue8m0x2_##rnd
4065#define GET_F32x2_TO_F8X2_S_ID(type, has_relu) \
4066 has_relu ? llvm::Intrinsic::nvvm_ff_to_##type##_rn_relu \
4067 : llvm::Intrinsic::nvvm_ff_to_##type##_rn
4070ConvertF32x2ToF8x2Op::getIntrinsicID(
mlir::Type dstTy, NVVM::FPRoundingMode rnd,
4071 NVVM::SaturationMode sat,
bool hasRelu) {
4072 bool hasSatFinite = (sat == NVVM::SaturationMode::SATFINITE);
4073 bool hasRoundingModeRZ = (rnd == NVVM::FPRoundingMode::RZ);
4074 bool hasRoundingModeRP = (rnd == NVVM::FPRoundingMode::RP);
4077 .Case<mlir::Float8E4M3FNType>([&](mlir::Float8E4M3FNType) {
4080 .Case<mlir::Float8E5M2Type>([&](mlir::Float8E5M2Type) {
4083 .Case<mlir::Float8E8M0FNUType>([&](mlir::Float8E8M0FNUType) {
4084 if (hasRoundingModeRZ)
4086 else if (hasRoundingModeRP)
4089 llvm_unreachable(
"Invalid conversion in ConvertF32x2ToF8x2Op");
4092 llvm_unreachable(
"Invalid conversion in ConvertF32x2ToF8x2Op");
4093 return llvm::Intrinsic::not_intrinsic;
4097#define GET_F16x2_TO_F8X2_ID(type, has_relu) \
4098 has_relu ? llvm::Intrinsic::nvvm_f16x2_to_##type##_rn_relu \
4099 : llvm::Intrinsic::nvvm_f16x2_to_##type##_rn
4101llvm::Intrinsic::ID ConvertF16x2ToF8x2Op::getIntrinsicID(
mlir::Type dstTy,
4104 .Case<mlir::Float8E4M3FNType>([&](mlir::Float8E4M3FNType) {
4107 .Case<mlir::Float8E5M2Type>([&](mlir::Float8E5M2Type) {
4111 llvm_unreachable(
"Invalid conversion in ConvertF16x2ToF8x2Op");
4112 return llvm::Intrinsic::not_intrinsic;
4116#define GET_BF16X2_TO_F8X2_ID(rnd, has_satf) \
4117 has_satf ? llvm::Intrinsic::nvvm_bf16x2_to_ue8m0x2_##rnd##_satfinite \
4118 : llvm::Intrinsic::nvvm_bf16x2_to_ue8m0x2_##rnd
4121ConvertBF16x2ToF8x2Op::getIntrinsicID(NVVM::FPRoundingMode rnd,
4122 NVVM::SaturationMode sat) {
4123 bool hasSatFinite = (sat == NVVM::SaturationMode::SATFINITE);
4125 case NVVM::FPRoundingMode::RZ:
4127 case NVVM::FPRoundingMode::RP:
4130 llvm_unreachable(
"Invalid rounding mode for CvtBF16x2ToF8x2Op");
4136 auto curOp = cast<NVVM::ConvertF8x2ToF16x2Op>(op);
4138 bool hasRelu = curOp.getRelu();
4140 llvm::Intrinsic::ID intId =
4142 .Case<Float8E4M3FNType>([&](Float8E4M3FNType type) {
4143 return hasRelu ? llvm::Intrinsic::nvvm_e4m3x2_to_f16x2_rn_relu
4144 : llvm::Intrinsic::nvvm_e4m3x2_to_f16x2_rn;
4146 .Case<Float8E5M2Type>([&](Float8E5M2Type type) {
4147 return hasRelu ? llvm::Intrinsic::nvvm_e5m2x2_to_f16x2_rn_relu
4148 : llvm::Intrinsic::nvvm_e5m2x2_to_f16x2_rn;
4151 llvm_unreachable(
"Invalid type for ConvertF8x2ToF16x2Op");
4152 return llvm::Intrinsic::not_intrinsic;
4155 llvm::Value *packedI16 =
4156 builder.CreateBitCast(mt.
lookupValue(curOp.getSrc()),
4157 llvm::Type::getInt16Ty(builder.getContext()));
4159 return {intId, {packedI16}};
4164 auto curOp = cast<NVVM::ConvertF8x2ToBF16x2Op>(op);
4166 llvm::Intrinsic::ID intId = llvm::Intrinsic::nvvm_ue8m0x2_to_bf16x2;
4167 llvm::Value *packedI16 =
4168 builder.CreateBitCast(mt.
lookupValue(curOp.getSrc()),
4169 llvm::Type::getInt16Ty(builder.getContext()));
4171 return {intId, {packedI16}};
4176 auto curOp = cast<NVVM::ConvertF6x2ToF16x2Op>(op);
4178 bool hasRelu = curOp.getRelu();
4180 llvm::Intrinsic::ID intId =
4182 .Case<Float6E2M3FNType>([&](Float6E2M3FNType type) {
4183 return hasRelu ? llvm::Intrinsic::nvvm_e2m3x2_to_f16x2_rn_relu
4184 : llvm::Intrinsic::nvvm_e2m3x2_to_f16x2_rn;
4186 .Case<Float6E3M2FNType>([&](Float6E3M2FNType type) {
4187 return hasRelu ? llvm::Intrinsic::nvvm_e3m2x2_to_f16x2_rn_relu
4188 : llvm::Intrinsic::nvvm_e3m2x2_to_f16x2_rn;
4191 llvm_unreachable(
"Invalid type for ConvertF6x2ToF16x2Op");
4192 return llvm::Intrinsic::not_intrinsic;
4195 llvm::Value *packedI16 =
4196 builder.CreateBitCast(mt.
lookupValue(curOp.getSrc()),
4197 llvm::Type::getInt16Ty(builder.getContext()));
4199 return {intId, {packedI16}};
4204 auto curOp = cast<NVVM::ConvertF4x2ToF16x2Op>(op);
4206 bool hasRelu = curOp.getRelu();
4208 llvm::Intrinsic::ID intId =
4210 .Case<Float4E2M1FNType>([&](Float4E2M1FNType type) {
4211 return hasRelu ? llvm::Intrinsic::nvvm_e2m1x2_to_f16x2_rn_relu
4212 : llvm::Intrinsic::nvvm_e2m1x2_to_f16x2_rn;
4215 llvm_unreachable(
"Invalid type for ConvertF4x2ToF16x2Op");
4216 return llvm::Intrinsic::not_intrinsic;
4219 llvm::Value *extendedI16 =
4220 builder.CreateZExt(mt.
lookupValue(curOp.getSrc()),
4221 llvm::Type::getInt16Ty(builder.getContext()));
4223 return {intId, {extendedI16}};
4227Tcgen05AllocOp::getIntrinsicIDAndArgs(
Operation &op,
4230 auto curOp = cast<NVVM::Tcgen05AllocOp>(op);
4231 unsigned as = llvm::cast<LLVM::LLVMPointerType>(curOp.getAddr().getType())
4233 bool isShared = as == NVVMMemorySpace::Shared;
4234 bool is2CTAMode = curOp.getGroup() == CTAGroupKind::CTA_2;
4236 llvm::Intrinsic::ID id;
4238 id = is2CTAMode ? llvm::Intrinsic::nvvm_tcgen05_alloc_shared_cg2
4239 : llvm::Intrinsic::nvvm_tcgen05_alloc_shared_cg1;
4241 id = is2CTAMode ? llvm::Intrinsic::nvvm_tcgen05_alloc_cg2
4242 : llvm::Intrinsic::nvvm_tcgen05_alloc_cg1;
4252llvm::Intrinsic::ID Tcgen05DeallocOp::getIntrinsicIDAndArgs(
4255 auto curOp = cast<NVVM::Tcgen05DeallocOp>(op);
4256 auto id = (curOp.getGroup() == CTAGroupKind::CTA_1)
4257 ? llvm::Intrinsic::nvvm_tcgen05_dealloc_cg1
4258 : llvm::Intrinsic::nvvm_tcgen05_dealloc_cg2;
4267#define TCGEN05_COMMIT_IMPL(cg, is_shared, mc) \
4268 is_shared ? llvm::Intrinsic::nvvm_tcgen05_commit##mc##_shared##_##cg \
4269 : llvm::Intrinsic::nvvm_tcgen05_commit##mc##_##cg
4271#define GET_TCGEN05_COMMIT_ID(cta_group, is_shared, has_mc) \
4272 has_mc ? TCGEN05_COMMIT_IMPL(cta_group, is_shared, _mc) \
4273 : TCGEN05_COMMIT_IMPL(cta_group, is_shared, )
4276Tcgen05CommitOp::getIntrinsicIDAndArgs(
Operation &op,
4279 auto curOp = cast<NVVM::Tcgen05CommitOp>(op);
4280 unsigned as = llvm::cast<LLVM::LLVMPointerType>(curOp.getAddr().getType())
4282 bool isShared = as == NVVMMemorySpace::Shared;
4283 bool hasMulticast =
static_cast<bool>(curOp.getMulticastMask());
4284 bool is2CTAMode = curOp.getGroup() == CTAGroupKind::CTA_2;
4286 llvm::Intrinsic::ID
id =
4293 args.push_back(mt.
lookupValue(curOp.getMulticastMask()));
4298#define TCGEN05_CP_IMPL(shape_mc, src_fmt, cg) \
4299 llvm::Intrinsic::nvvm_tcgen05_cp##shape_mc##src_fmt##cg
4301#define TCGEN05_CP_2CTA(shape_mc, src_fmt, is_2cta) \
4302 is_2cta ? TCGEN05_CP_IMPL(shape_mc, src_fmt, _cg2) \
4303 : TCGEN05_CP_IMPL(shape_mc, src_fmt, _cg1)
4305#define GET_TCGEN05_CP_ID(shape_mc, src_fmt, is_2cta) \
4307 if ((src_fmt) == Tcgen05CpSrcFormat::B6x16_P32) \
4308 return TCGEN05_CP_2CTA(shape_mc, _b6x16_p32, is_2cta); \
4309 if ((src_fmt) == Tcgen05CpSrcFormat::B4x16_P64) \
4310 return TCGEN05_CP_2CTA(shape_mc, _b4x16_p64, is_2cta); \
4311 return TCGEN05_CP_2CTA(shape_mc, , is_2cta); \
4315ConvertF32x2ToF16x2Op::getIntrinsicIDAndArgs(NVVM::ConvertF32x2ToF16x2Op &op,
4317 llvm::IRBuilderBase &builder) {
4318 static constexpr llvm::Intrinsic::ID rndRNIds[] = {
4319 llvm::Intrinsic::nvvm_ff2f16x2_rn,
4320 llvm::Intrinsic::nvvm_ff2f16x2_rn_relu,
4321 llvm::Intrinsic::nvvm_ff2f16x2_rn_satfinite,
4322 llvm::Intrinsic::nvvm_ff2f16x2_rn_relu_satfinite,
4324 static constexpr llvm::Intrinsic::ID rndRZIds[] = {
4325 llvm::Intrinsic::nvvm_ff2f16x2_rz,
4326 llvm::Intrinsic::nvvm_ff2f16x2_rz_relu,
4327 llvm::Intrinsic::nvvm_ff2f16x2_rz_satfinite,
4328 llvm::Intrinsic::nvvm_ff2f16x2_rz_relu_satfinite,
4330 static constexpr llvm::Intrinsic::ID rndRSIds[] = {
4331 llvm::Intrinsic::nvvm_ff2f16x2_rs,
4332 llvm::Intrinsic::nvvm_ff2f16x2_rs_relu,
4333 llvm::Intrinsic::nvvm_ff2f16x2_rs_satfinite,
4334 llvm::Intrinsic::nvvm_ff2f16x2_rs_relu_satfinite,
4337 unsigned hasRelu = op.getRelu() ? 1 : 0;
4338 unsigned hasSatFinite =
4339 (op.getSat() == NVVM::SaturationMode::SATFINITE) ? 1 : 0;
4342 unsigned idx = (hasSatFinite << 1) | hasRelu;
4347 if (op.getRandomBits())
4348 args.push_back(mt.
lookupValue(op.getRandomBits()));
4350 switch (op.getRnd()) {
4351 case FPRoundingMode::RN:
4352 return {rndRNIds[idx], std::move(args)};
4353 case FPRoundingMode::RZ:
4354 return {rndRZIds[idx], std::move(args)};
4355 case FPRoundingMode::RS:
4356 return {rndRSIds[idx], std::move(args)};
4358 llvm_unreachable(
"Invalid rounding mode for ConvertF32x2ToF16x2Op");
4363ConvertF32x2ToBF16x2Op::getIntrinsicIDAndArgs(NVVM::ConvertF32x2ToBF16x2Op &op,
4365 llvm::IRBuilderBase &builder) {
4366 static constexpr llvm::Intrinsic::ID rndRNIds[] = {
4367 llvm::Intrinsic::nvvm_ff2bf16x2_rn,
4368 llvm::Intrinsic::nvvm_ff2bf16x2_rn_relu,
4369 llvm::Intrinsic::nvvm_ff2bf16x2_rn_satfinite,
4370 llvm::Intrinsic::nvvm_ff2bf16x2_rn_relu_satfinite,
4372 static constexpr llvm::Intrinsic::ID rndRZIds[] = {
4373 llvm::Intrinsic::nvvm_ff2bf16x2_rz,
4374 llvm::Intrinsic::nvvm_ff2bf16x2_rz_relu,
4375 llvm::Intrinsic::nvvm_ff2bf16x2_rz_satfinite,
4376 llvm::Intrinsic::nvvm_ff2bf16x2_rz_relu_satfinite,
4378 static constexpr llvm::Intrinsic::ID rndRSIds[] = {
4379 llvm::Intrinsic::nvvm_ff2bf16x2_rs,
4380 llvm::Intrinsic::nvvm_ff2bf16x2_rs_relu,
4381 llvm::Intrinsic::nvvm_ff2bf16x2_rs_satfinite,
4382 llvm::Intrinsic::nvvm_ff2bf16x2_rs_relu_satfinite,
4385 unsigned hasRelu = op.getRelu() ? 1 : 0;
4386 unsigned hasSatFinite =
4387 (op.getSat() == NVVM::SaturationMode::SATFINITE) ? 1 : 0;
4390 unsigned idx = (hasSatFinite << 1) | hasRelu;
4395 if (op.getRandomBits())
4396 args.push_back(mt.
lookupValue(op.getRandomBits()));
4398 switch (op.getRnd()) {
4399 case FPRoundingMode::RN:
4400 return {rndRNIds[idx], std::move(args)};
4401 case FPRoundingMode::RZ:
4402 return {rndRZIds[idx], std::move(args)};
4403 case FPRoundingMode::RS:
4404 return {rndRSIds[idx], std::move(args)};
4406 llvm_unreachable(
"Invalid rounding mode for ConvertF32x2ToBF16x2Op");
4410llvm::Intrinsic::ID ConvertF32x4ToF8x4Op::getIntrinsicID() {
4412 bool hasRelu = getRelu();
4415 .Case<mlir::Float8E4M3FNType>([&](mlir::Float8E4M3FNType) {
4416 return hasRelu ? llvm::Intrinsic::nvvm_f32x4_to_e4m3x4_rs_relu_satfinite
4417 : llvm::Intrinsic::nvvm_f32x4_to_e4m3x4_rs_satfinite;
4419 .Case<mlir::Float8E5M2Type>([&](mlir::Float8E5M2Type) {
4420 return hasRelu ? llvm::Intrinsic::nvvm_f32x4_to_e5m2x4_rs_relu_satfinite
4421 : llvm::Intrinsic::nvvm_f32x4_to_e5m2x4_rs_satfinite;
4424 llvm_unreachable(
"Invalid F8 type in ConvertF32x4ToF8x4Op");
4425 return llvm::Intrinsic::not_intrinsic;
4429llvm::Intrinsic::ID ConvertF32x4ToF6x4Op::getIntrinsicID() {
4431 bool hasRelu = getRelu();
4434 .Case<mlir::Float6E2M3FNType>([&](mlir::Float6E2M3FNType) {
4435 return hasRelu ? llvm::Intrinsic::nvvm_f32x4_to_e2m3x4_rs_relu_satfinite
4436 : llvm::Intrinsic::nvvm_f32x4_to_e2m3x4_rs_satfinite;
4438 .Case<mlir::Float6E3M2FNType>([&](mlir::Float6E3M2FNType) {
4439 return hasRelu ? llvm::Intrinsic::nvvm_f32x4_to_e3m2x4_rs_relu_satfinite
4440 : llvm::Intrinsic::nvvm_f32x4_to_e3m2x4_rs_satfinite;
4443 llvm_unreachable(
"Invalid F6 type in ConvertF32x4ToF6x4Op");
4444 return llvm::Intrinsic::not_intrinsic;
4448llvm::Intrinsic::ID ConvertF32x4ToF4x4Op::getIntrinsicID() {
4450 bool hasRelu = getRelu();
4453 .Case<mlir::Float4E2M1FNType>([&](mlir::Float4E2M1FNType) {
4454 return hasRelu ? llvm::Intrinsic::nvvm_f32x4_to_e2m1x4_rs_relu_satfinite
4455 : llvm::Intrinsic::nvvm_f32x4_to_e2m1x4_rs_satfinite;
4458 llvm_unreachable(
"Invalid F4 type in ConvertF32x4ToF4x4Op");
4459 return llvm::Intrinsic::not_intrinsic;
4463llvm::Intrinsic::ID Tcgen05CpOp::getIntrinsicID(
Operation &op) {
4464 auto curOp = cast<NVVM::Tcgen05CpOp>(op);
4465 bool is2CTA = curOp.getGroup() == CTAGroupKind::CTA_2;
4466 auto srcFmt = curOp.getSrcFormat();
4467 auto mc = curOp.getMulticast();
4469 switch (curOp.getShape()) {
4470 case Tcgen05CpShape::SHAPE_128x256b:
4472 case Tcgen05CpShape::SHAPE_128x128b:
4474 case Tcgen05CpShape::SHAPE_4x256b:
4476 case Tcgen05CpShape::SHAPE_32x128b:
4478 case Tcgen05CpShape::SHAPE_64x128b:
4479 return (mc == Tcgen05CpMulticast::WARPX2_01_23)
4483 llvm_unreachable(
"Invalid shape in tcgen05 cp Op");
4490 if (
shape == NVVM::Tcgen05LdStShape::SHAPE_16X128B)
4492 if (
shape == NVVM::Tcgen05LdStShape::SHAPE_16X256B)
4497LogicalResult Tcgen05LdOp::verify() {
4499 if (
getShape() == NVVM::Tcgen05LdStShape::SHAPE_16X32BX2 && !getOffset())
4502 if (
getShape() != NVVM::Tcgen05LdStShape::SHAPE_16X32BX2 && getOffset())
4503 result =
emitError(
"offset argument is only supported for shape 16x32bx2");
4505 auto resTy = getRes().getType();
4506 unsigned resLen = isa<VectorType>(resTy)
4507 ? llvm::cast<VectorType>(resTy).getNumElements()
4510 result =
emitError(llvm::formatv(
"invalid result type length {0} for shape "
4511 "{1} in tcgen05.ld Op",
4512 resLen, stringifyEnum(
getShape())));
4517LogicalResult Tcgen05StOp::verify() {
4519 if (
getShape() == NVVM::Tcgen05LdStShape::SHAPE_16X32BX2 && !getOffset())
4522 auto valTy = getVal().getType();
4523 unsigned valLen = isa<VectorType>(valTy)
4524 ? llvm::cast<VectorType>(valTy).getNumElements()
4527 result =
emitError(llvm::formatv(
"invalid input length {0} for shape "
4528 "{1} in tcgen05.st Op",
4529 valLen, stringifyEnum(
getShape())));
4539 if (
auto rangeAttr = op->
getAttrOfType<LLVM::ConstantRangeAttr>(
"range")) {
4540 setResultRanges(
result, {rangeAttr.getLower(), rangeAttr.getUpper(),
4541 rangeAttr.getLower(), rangeAttr.getUpper()});
4549 std::optional<LLVM::ConstantRangeAttr> rangeAttr) {
4553 const llvm::APInt &lower = rangeAttr->getLower();
4554 const llvm::APInt &upper = rangeAttr->getUpper();
4557 if (lower == upper && !lower.isMaxValue() && !lower.isMinValue()) {
4558 unsigned bitWidth = lower.getBitWidth();
4559 llvm::APInt minVal = llvm::APInt::getMinValue(bitWidth);
4560 llvm::APInt maxVal = llvm::APInt::getMaxValue(bitWidth);
4562 "invalid range attribute: Lower == Upper, but they aren't min (")
4563 << llvm::toString(minVal, 10,
false) <<
") or max ("
4564 << llvm::toString(maxVal, 10,
false)
4565 <<
") value! This is an invalid constant range.";
4572 llvm::IRBuilderBase &builder) {
4573 return builder.CreateBitCast(arg,
4574 llvm::Type::getInt32Ty(builder.getContext()));
4579 auto curOp = cast<NVVM::DotAccumulate4WayOp>(op);
4586 bool isASigned = curOp.getAType() == NVVM::DotAccumulateType::SIGNED;
4587 bool isBSigned = curOp.getBType() == NVVM::DotAccumulateType::SIGNED;
4588 unsigned type = (isASigned << 1) | isBSigned;
4589 const llvm::Intrinsic::ID ids[] = {
4590 llvm::Intrinsic::nvvm_idp4a_u_u,
4591 llvm::Intrinsic::nvvm_idp4a_u_s,
4592 llvm::Intrinsic::nvvm_idp4a_s_u,
4593 llvm::Intrinsic::nvvm_idp4a_s_s,
4595 return {ids[type], args};
4600 auto curOp = cast<NVVM::DotAccumulate2WayOp>(op);
4605 args.push_back(builder.getInt1(curOp.getBHi()));
4608 bool isASigned = curOp.getAType() == NVVM::DotAccumulateType::SIGNED;
4609 bool isBSigned = curOp.getBType() == NVVM::DotAccumulateType::SIGNED;
4610 unsigned type = (isASigned << 1) | isBSigned;
4611 const llvm::Intrinsic::ID ids[] = {
4612 llvm::Intrinsic::nvvm_idp2a_u_u,
4613 llvm::Intrinsic::nvvm_idp2a_u_s,
4614 llvm::Intrinsic::nvvm_idp2a_s_u,
4615 llvm::Intrinsic::nvvm_idp2a_s_s,
4617 return {ids[type], args};
4621 llvm::IRBuilderBase &builder) {
4622 return builder.CreateAddrSpaceCast(
4624 llvm::PointerType::get(builder.getContext(),
4625 llvm::NVPTXAS::AddressSpace::ADDRESS_SPACE_PARAM));
4629PrefetchOp::getIntrinsicIDAndArgs(NVVM::PrefetchOp &op,
4631 llvm::IRBuilderBase &builder) {
4632 using MemSpace = NVVM::NVVMMemorySpace;
4633 using CacheLevel = NVVM::PrefetchCacheLevel;
4635 std::optional<NVVM::PrefetchCacheLevel> cacheLevel = op.getCacheLevel();
4636 std::optional<NVVM::CacheEvictionPriority> evictPriority =
4637 op.getEvictPriority();
4638 unsigned addressSpace =
4639 llvm::cast<LLVM::LLVMPointerType>(op.getAddr().getType())
4647 if (op.getTensormap())
4648 return {llvm::Intrinsic::nvvm_prefetch_tensormap, args};
4650 assert(cacheLevel &&
"expected cache level for non-tensormap prefetch");
4652 if (op.getUniform() && *cacheLevel == CacheLevel::L1)
4653 return {llvm::Intrinsic::nvvm_prefetchu_L1, args};
4655 if (evictPriority && *cacheLevel == CacheLevel::L2) {
4656 switch (*evictPriority) {
4657 case NVVM::CacheEvictionPriority::EvictLast:
4658 return {llvm::Intrinsic::nvvm_prefetch_global_L2_evict_last, args};
4659 case NVVM::CacheEvictionPriority::EvictNormal:
4660 return {llvm::Intrinsic::nvvm_prefetch_global_L2_evict_normal, args};
4662 llvm_unreachable(
"Invalid cache eviction priority");
4666 switch (
static_cast<MemSpace
>(addressSpace)) {
4667 case MemSpace::Generic:
4668 return *cacheLevel == CacheLevel::L1
4670 :
NVVM::
IDArgPair({llvm::Intrinsic::nvvm_prefetch_L2, args});
4671 case MemSpace::Global:
4672 return *cacheLevel == CacheLevel::L1
4674 {llvm::Intrinsic::nvvm_prefetch_global_L1, args})
4676 {llvm::Intrinsic::nvvm_prefetch_global_L2, args});
4677 case MemSpace::Local:
4678 return *cacheLevel == CacheLevel::L1
4680 {llvm::Intrinsic::nvvm_prefetch_local_L1, args})
4682 {llvm::Intrinsic::nvvm_prefetch_local_L2, args});
4684 llvm_unreachable(
"Invalid pointer address space");
4688bool NVVM::InlinePtxOp::getAsmValues(
4692 for (
auto arg : getReadWriteArgs())
4694 for (
auto arg : getResults())
4696 for (
auto arg : getReadOnlyArgs())
4703NVVM::IDArgPair ClusterLaunchControlTryCancelOp::getIntrinsicIDAndArgs(
4705 auto curOp = cast<NVVM::ClusterLaunchControlTryCancelOp>(op);
4707 args.push_back(mt.
lookupValue(curOp.getSmemAddress()));
4708 args.push_back(mt.
lookupValue(curOp.getMbarrier()));
4710 llvm::Intrinsic::ID intrinsicID =
4711 curOp.getMulticast()
4713 nvvm_clusterlaunchcontrol_try_cancel_async_multicast_shared
4714 : llvm::Intrinsic::nvvm_clusterlaunchcontrol_try_cancel_async_shared;
4716 return {intrinsicID, args};
4719NVVM::IDArgPair ClusterLaunchControlQueryCancelOp::getIntrinsicIDAndArgs(
4721 auto curOp = cast<NVVM::ClusterLaunchControlQueryCancelOp>(op);
4723 args.push_back(mt.
lookupValue(curOp.getTryCancelResponse()));
4725 llvm::Intrinsic::ID intrinsicID;
4727 switch (curOp.getQueryType()) {
4728 case NVVM::ClusterLaunchControlQueryType::IS_CANCELED:
4730 llvm::Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled;
4732 case NVVM::ClusterLaunchControlQueryType::GET_FIRST_CTA_ID_X:
4733 intrinsicID = llvm::Intrinsic::
4734 nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x;
4736 case NVVM::ClusterLaunchControlQueryType::GET_FIRST_CTA_ID_Y:
4737 intrinsicID = llvm::Intrinsic::
4738 nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y;
4740 case NVVM::ClusterLaunchControlQueryType::GET_FIRST_CTA_ID_Z:
4741 intrinsicID = llvm::Intrinsic::
4742 nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z;
4745 return {intrinsicID, args};
4750 llvm::IRBuilderBase &builder) {
4751 auto thisOp = cast<NVVM::PermuteOp>(op);
4752 NVVM::PermuteMode mode = thisOp.getMode();
4754 static constexpr llvm::Intrinsic::ID IDs[] = {
4755 llvm::Intrinsic::nvvm_prmt, llvm::Intrinsic::nvvm_prmt_f4e,
4756 llvm::Intrinsic::nvvm_prmt_b4e, llvm::Intrinsic::nvvm_prmt_rc8,
4757 llvm::Intrinsic::nvvm_prmt_ecl, llvm::Intrinsic::nvvm_prmt_ecr,
4758 llvm::Intrinsic::nvvm_prmt_rc16};
4760 unsigned modeIndex =
static_cast<unsigned>(mode);
4768 args.push_back(mt.
lookupValue(thisOp.getSelector()));
4770 return {IDs[modeIndex], args};
4779 llvm::IRBuilderBase &builder) {
4781 auto thisOp = cast<NVVM::Tcgen05MMAOp>(op);
4784 args.push_back(mt.
lookupValue(thisOp.getMatrixD()));
4787 const bool isATensor = isa<llvm::PointerType>(
A->getType());
4790 args.push_back(mt.
lookupValue(thisOp.getMatrixB()));
4791 args.push_back(mt.
lookupValue(thisOp.getIdesc()));
4792 args.push_back(mt.
lookupValue(thisOp.getEnableInputD()));
4794 using EnableAShiftArray = std::array<llvm::Intrinsic::ID, 2>;
4795 using CtaGroupArray = std::array<EnableAShiftArray, 2>;
4796 using IsATensorArray = std::array<CtaGroupArray, 2>;
4797 using HasScaleInputDArray = std::array<IsATensorArray, 2>;
4798 using HasDisableOutputLaneArray = std::array<HasScaleInputDArray, 2>;
4801 static constexpr HasDisableOutputLaneArray tcgen05MMAIDs = {
4807 {llvm::Intrinsic::nvvm_tcgen05_mma_shared,
notIntrinsic},
4809 {llvm::Intrinsic::nvvm_tcgen05_mma_shared,
notIntrinsic}}},
4813 llvm::Intrinsic::nvvm_tcgen05_mma_tensor,
4814 llvm::Intrinsic::nvvm_tcgen05_mma_tensor_ashift,
4818 llvm::Intrinsic::nvvm_tcgen05_mma_tensor,
4819 llvm::Intrinsic::nvvm_tcgen05_mma_tensor_ashift,
4825 {llvm::Intrinsic::nvvm_tcgen05_mma_shared_scale_d,
notIntrinsic},
4827 {llvm::Intrinsic::nvvm_tcgen05_mma_shared_scale_d,
notIntrinsic}}},
4831 llvm::Intrinsic::nvvm_tcgen05_mma_tensor_scale_d,
4832 llvm::Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_ashift,
4836 llvm::Intrinsic::nvvm_tcgen05_mma_tensor_scale_d,
4837 llvm::Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_ashift,
4843 {llvm::Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1,
4846 {llvm::Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2,
4851 nvvm_tcgen05_mma_tensor_disable_output_lane_cg1,
4853 nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift,
4858 nvvm_tcgen05_mma_tensor_disable_output_lane_cg2,
4860 nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift,
4866 nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1,
4870 nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2,
4875 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1,
4877 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift},
4881 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2,
4883 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift,
4886 llvm::Value *ScaleInputD = mt.
lookupValue(thisOp.getScaleInputD());
4887 bool hasScaleInputD = ScaleInputD !=
nullptr;
4889 llvm::Value *DisableOutputLane =
4891 bool hasDisableOutputLane = DisableOutputLane !=
nullptr;
4893 const unsigned ctaGroup =
4896 llvm::Intrinsic::ID ID =
4897 tcgen05MMAIDs[hasDisableOutputLane][hasScaleInputD][isATensor]
4898 [ctaGroup - 1][thisOp.getAShift()];
4900 assert(ID !=
notIntrinsic &&
"Invalid intrinsic for Tcgen05MMAOp.");
4903 args.push_back(ScaleInputD);
4905 if (hasDisableOutputLane)
4906 args.push_back(DisableOutputLane);
4908 args.push_back(builder.getInt32(
static_cast<unsigned>(thisOp.getKind())));
4910 if (!hasDisableOutputLane)
4911 args.push_back(builder.getInt32(ctaGroup));
4914 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorOp())));
4921 NVVM::CTAGroupKind ctaGroup,
bool hasAShift,
4922 NVVM::Tcgen05MMACollectorOp collectorOp,
Location loc) {
4924 if (disableOutputLane) {
4925 mlir::VectorType disableOutputLaneType =
4926 cast<mlir::VectorType>(disableOutputLane.
getType());
4927 if ((ctaGroup == NVVM::CTAGroupKind::CTA_1 &&
4928 disableOutputLaneType.getNumElements() != 4) ||
4929 (ctaGroup == NVVM::CTAGroupKind::CTA_2 &&
4930 disableOutputLaneType.getNumElements() != 8))
4931 return emitError(loc) <<
"Disable Output Lane of length "
4932 << disableOutputLaneType.getNumElements()
4933 <<
" is incompatible with CtaGroupAttr";
4936 if (hasAShift && !isATensor)
4938 loc,
"A-shift can be applied only when matrix A is in tensor memory");
4940 if (hasAShift ==
true && (collectorOp == Tcgen05MMACollectorOp::FILL ||
4941 collectorOp == Tcgen05MMACollectorOp::USE))
4943 loc,
"Cannot use collector buffer operation fill or use with ashift");
4948LogicalResult Tcgen05MMAOp::verify() {
4950 getDisableOutputLane(), getCtaGroup(), getAShift(),
4951 getCollectorOp(), getLoc());
4961 auto thisOp = cast<NVVM::Tcgen05MMASparseOp>(op);
4964 args.push_back(mt.
lookupValue(thisOp.getMatrixD()));
4967 bool isATensor = isa<llvm::PointerType>(
A->getType());
4970 args.push_back(mt.
lookupValue(thisOp.getMatrixB()));
4971 args.push_back(mt.
lookupValue(thisOp.getIdesc()));
4972 args.push_back(mt.
lookupValue(thisOp.getEnableInputD()));
4973 args.push_back(mt.
lookupValue(thisOp.getSparseMetadata()));
4975 using EnableAShiftArray = std::array<llvm::Intrinsic::ID, 2>;
4976 using CtaGroupArray = std::array<EnableAShiftArray, 2>;
4977 using IsATensorArray = std::array<CtaGroupArray, 2>;
4978 using HasScaleInputDArray = std::array<IsATensorArray, 2>;
4979 using HasDisableOutputLaneArray = std::array<HasScaleInputDArray, 2>;
4982 static constexpr HasDisableOutputLaneArray tcgen05MMASparseIDs = {
4988 {llvm::Intrinsic::nvvm_tcgen05_mma_sp_shared,
notIntrinsic},
4990 {llvm::Intrinsic::nvvm_tcgen05_mma_sp_shared,
notIntrinsic}}},
4994 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor,
4995 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor_ashift,
4999 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor,
5000 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor_ashift,
5006 {llvm::Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d,
5009 {llvm::Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d,
5014 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d,
5015 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_ashift,
5019 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d,
5020 llvm::Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_ashift,
5027 nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1,
5031 nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2,
5036 nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1,
5038 nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift,
5043 nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2,
5045 nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift,
5051 nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1,
5055 nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2,
5060 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1,
5062 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift},
5066 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2,
5068 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift,
5071 llvm::Value *ScaleInputD = mt.
lookupValue(thisOp.getScaleInputD());
5072 bool hasScaleInputD = ScaleInputD !=
nullptr;
5074 llvm::Value *DisableOutputLane =
5076 bool hasDisableOutputLane = DisableOutputLane !=
nullptr;
5081 llvm::Intrinsic::ID ID =
5082 tcgen05MMASparseIDs[hasDisableOutputLane][hasScaleInputD][isATensor]
5083 [ctaGroup - 1][thisOp.getAShift()];
5085 assert(ID !=
notIntrinsic &&
"Invalid intrinsic for Tcgen05MMASparseOp.");
5088 args.push_back(ScaleInputD);
5090 if (hasDisableOutputLane)
5091 args.push_back(DisableOutputLane);
5093 args.push_back(builder.getInt32(
static_cast<unsigned>(thisOp.getKind())));
5095 if (!hasDisableOutputLane)
5096 args.push_back(builder.getInt32(ctaGroup));
5099 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorOp())));
5104LogicalResult Tcgen05MMASparseOp::verify() {
5106 getDisableOutputLane(), getCtaGroup(), getAShift(),
5107 getCollectorOp(), getLoc());
5117 auto thisOp = cast<NVVM::Tcgen05MMABlockScaleOp>(op);
5120 args.push_back(mt.
lookupValue(thisOp.getMatrixD()));
5123 bool isATensor = isa<llvm::PointerType>(
A->getType());
5126 args.push_back(mt.
lookupValue(thisOp.getMatrixB()));
5127 args.push_back(mt.
lookupValue(thisOp.getIdesc()));
5128 args.push_back(mt.
lookupValue(thisOp.getEnableInputD()));
5129 args.push_back(mt.
lookupValue(thisOp.getScaleA()));
5130 args.push_back(mt.
lookupValue(thisOp.getScaleB()));
5131 args.push_back(builder.getInt32(
5134 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorOp())));
5136 auto kind = thisOp.getKind();
5137 auto blockScale = thisOp.getBlockScale();
5138 llvm::Intrinsic::ID ID = [&]() {
5139 if (kind == NVVM::MMABlockScaleKind::MXF8F6F4) {
5140 if (blockScale == NVVM::Tcgen05MMABlockScale::DEFAULT) {
5141 return isATensor ? llvm::Intrinsic::
5142 nvvm_tcgen05_mma_tensor_mxf8f6f4_block_scale
5144 nvvm_tcgen05_mma_shared_mxf8f6f4_block_scale;
5145 }
else if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK32) {
5148 nvvm_tcgen05_mma_tensor_mxf8f6f4_block_scale_block32
5150 nvvm_tcgen05_mma_shared_mxf8f6f4_block_scale_block32;
5152 }
else if (kind == NVVM::MMABlockScaleKind::MXF4) {
5153 if (blockScale == NVVM::Tcgen05MMABlockScale::DEFAULT) {
5155 ? llvm::Intrinsic::nvvm_tcgen05_mma_tensor_mxf4_block_scale
5156 : llvm::Intrinsic::nvvm_tcgen05_mma_shared_mxf4_block_scale;
5157 }
else if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK32) {
5158 return isATensor ? llvm::Intrinsic::
5159 nvvm_tcgen05_mma_tensor_mxf4_block_scale_block32
5161 nvvm_tcgen05_mma_shared_mxf4_block_scale_block32;
5163 }
else if (kind == NVVM::MMABlockScaleKind::MXF4NVF4) {
5164 if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK32) {
5167 nvvm_tcgen05_mma_tensor_mxf4nvf4_block_scale_block32
5169 nvvm_tcgen05_mma_shared_mxf4nvf4_block_scale_block32;
5171 }
else if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK16) {
5174 nvvm_tcgen05_mma_tensor_mxf4nvf4_block_scale_block16
5176 nvvm_tcgen05_mma_shared_mxf4nvf4_block_scale_block16;
5179 llvm_unreachable(
"Invalid tcgen05.mma.block_scale attributes");
5186 NVVM::Tcgen05MMACollectorOp collectorOp, NVVM::MMABlockScaleKind kind,
5187 NVVM::Tcgen05MMABlockScale blockScale,
Location loc) {
5189 if (blockScale == NVVM::Tcgen05MMABlockScale::DEFAULT &&
5190 kind == MMABlockScaleKind::MXF4NVF4)
5191 return emitError(loc,
"mxf4nvf4 requires block scale attribute");
5193 if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK16 &&
5194 kind != MMABlockScaleKind::MXF4NVF4)
5196 llvm::formatv(
"{} kind does not support block16 attribute",
5197 stringifyEnum(kind)));
5202LogicalResult Tcgen05MMABlockScaleOp::verify() {
5204 getBlockScale(), getLoc());
5214 auto thisOp = cast<NVVM::Tcgen05MMASparseBlockScaleOp>(op);
5217 args.push_back(mt.
lookupValue(thisOp.getMatrixD()));
5220 bool isATensor = isa<llvm::PointerType>(
A->getType());
5223 args.push_back(mt.
lookupValue(thisOp.getMatrixB()));
5224 args.push_back(mt.
lookupValue(thisOp.getIdesc()));
5225 args.push_back(mt.
lookupValue(thisOp.getEnableInputD()));
5226 args.push_back(mt.
lookupValue(thisOp.getSparseMetadata()));
5227 args.push_back(mt.
lookupValue(thisOp.getScaleA()));
5228 args.push_back(mt.
lookupValue(thisOp.getScaleB()));
5229 args.push_back(builder.getInt32(
5232 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorOp())));
5234 auto kind = thisOp.getKind();
5235 auto blockScale = thisOp.getBlockScale();
5236 llvm::Intrinsic::ID ID = [&]() {
5237 if (kind == NVVM::MMABlockScaleKind::MXF8F6F4) {
5238 if (blockScale == NVVM::Tcgen05MMABlockScale::DEFAULT) {
5239 return isATensor ? llvm::Intrinsic::
5240 nvvm_tcgen05_mma_sp_tensor_mxf8f6f4_block_scale
5242 nvvm_tcgen05_mma_sp_shared_mxf8f6f4_block_scale;
5243 }
else if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK32) {
5246 nvvm_tcgen05_mma_sp_tensor_mxf8f6f4_block_scale_block32
5248 nvvm_tcgen05_mma_sp_shared_mxf8f6f4_block_scale_block32;
5250 }
else if (kind == NVVM::MMABlockScaleKind::MXF4) {
5251 if (blockScale == NVVM::Tcgen05MMABlockScale::DEFAULT) {
5252 return isATensor ? llvm::Intrinsic::
5253 nvvm_tcgen05_mma_sp_tensor_mxf4_block_scale
5255 nvvm_tcgen05_mma_sp_shared_mxf4_block_scale;
5256 }
else if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK32) {
5259 nvvm_tcgen05_mma_sp_tensor_mxf4_block_scale_block32
5261 nvvm_tcgen05_mma_sp_shared_mxf4_block_scale_block32;
5263 }
else if (kind == NVVM::MMABlockScaleKind::MXF4NVF4) {
5264 if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK32) {
5267 nvvm_tcgen05_mma_sp_tensor_mxf4nvf4_block_scale_block32
5269 nvvm_tcgen05_mma_sp_shared_mxf4nvf4_block_scale_block32;
5271 }
else if (blockScale == NVVM::Tcgen05MMABlockScale::BLOCK16) {
5274 nvvm_tcgen05_mma_sp_tensor_mxf4nvf4_block_scale_block16
5276 nvvm_tcgen05_mma_sp_shared_mxf4nvf4_block_scale_block16;
5279 llvm_unreachable(
"Invalid tcgen05.mma.sp.block_scale attributes");
5285LogicalResult Tcgen05MMASparseBlockScaleOp::verify() {
5287 getBlockScale(), getLoc());
5297 auto thisOp = cast<NVVM::Tcgen05MMAWsOp>(op);
5300 args.push_back(mt.
lookupValue(thisOp.getMatrixD()));
5303 bool isATensor = isa<llvm::PointerType>(
A->getType());
5306 args.push_back(mt.
lookupValue(thisOp.getMatrixB()));
5307 args.push_back(mt.
lookupValue(thisOp.getIdesc()));
5308 args.push_back(mt.
lookupValue(thisOp.getEnableInputD()));
5310 mlir::Value ZeroColMask = thisOp.getZeroColMask();
5314 ID = isATensor ? llvm::Intrinsic::nvvm_tcgen05_mma_ws_tensor_zero_col_mask
5315 : llvm::Intrinsic::nvvm_tcgen05_mma_ws_shared_zero_col_mask;
5317 ID = isATensor ? llvm::Intrinsic::nvvm_tcgen05_mma_ws_tensor
5318 : llvm::Intrinsic::nvvm_tcgen05_mma_ws_shared;
5320 args.push_back(builder.getInt32(
static_cast<unsigned>(thisOp.getKind())));
5322 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorBBuffer())));
5324 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorOp())));
5336 auto thisOp = cast<NVVM::Tcgen05MMAWsSparseOp>(op);
5339 args.push_back(mt.
lookupValue(thisOp.getMatrixD()));
5342 bool isATensor = isa<llvm::PointerType>(
A->getType());
5345 args.push_back(mt.
lookupValue(thisOp.getMatrixB()));
5346 args.push_back(mt.
lookupValue(thisOp.getIdesc()));
5347 args.push_back(mt.
lookupValue(thisOp.getEnableInputD()));
5348 args.push_back(mt.
lookupValue(thisOp.getSparseMetadata()));
5350 mlir::Value ZeroColMask = thisOp.getZeroColMask();
5355 ? llvm::Intrinsic::nvvm_tcgen05_mma_ws_sp_tensor_zero_col_mask
5356 : llvm::Intrinsic::nvvm_tcgen05_mma_ws_sp_shared_zero_col_mask;
5358 ID = isATensor ? llvm::Intrinsic::nvvm_tcgen05_mma_ws_sp_tensor
5359 : llvm::Intrinsic::nvvm_tcgen05_mma_ws_sp_shared;
5361 args.push_back(builder.getInt32(
static_cast<unsigned>(thisOp.getKind())));
5363 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorBBuffer())));
5365 builder.getInt32(
static_cast<unsigned>(thisOp.getCollectorOp())));
5375void NVVMDialect::initialize() {
5378#include "mlir/Dialect/LLVMIR/NVVMOps.cpp.inc"
5381#define GET_ATTRDEF_LIST
5382#include "mlir/Dialect/LLVMIR/NVVMOpsAttributes.cpp.inc"
5387 allowUnknownOperations();
5388 declarePromisedInterface<ConvertToLLVMPatternInterface, NVVMDialect>();
5389 declarePromisedInterface<gpu::TargetAttrInterface, NVVMTargetAttr>();
5392LogicalResult NVVMDialect::verifyOperationAttribute(
Operation *op,
5394 StringAttr attrName = attr.
getName();
5396 if (attrName == NVVMDialect::getKernelFuncAttrName()) {
5397 if (!isa<LLVM::LLVMFuncOp>(op)) {
5398 return op->
emitError() <<
"'" << NVVMDialect::getKernelFuncAttrName()
5399 <<
"' attribute attached to unexpected op";
5404 if (attrName == NVVMDialect::getMaxntidAttrName() ||
5405 attrName == NVVMDialect::getReqntidAttrName() ||
5406 attrName == NVVMDialect::getClusterDimAttrName()) {
5407 auto values = llvm::dyn_cast<DenseI32ArrayAttr>(attr.
getValue());
5408 if (!values || values.empty() || values.size() > 3) {
5411 <<
"' attribute must be integer array with maximum 3 index";
5416 if (attrName == NVVMDialect::getMinctasmAttrName() ||
5417 attrName == NVVMDialect::getMaxnregAttrName() ||
5418 attrName == NVVMDialect::getClusterMaxBlocksAttrName()) {
5419 if (!llvm::dyn_cast<IntegerAttr>(attr.
getValue())) {
5421 <<
"'" << attrName <<
"' attribute must be integer constant";
5425 if (attrName == NVVMDialect::getBlocksAreClustersAttrName()) {
5426 if (!op->
hasAttr(NVVMDialect::getReqntidAttrName()) ||
5427 !op->
hasAttr(NVVMDialect::getClusterDimAttrName())) {
5429 <<
"'" << attrName <<
"' attribute must be used along with "
5430 <<
"'" << NVVMDialect::getReqntidAttrName() <<
"' and "
5431 <<
"'" << NVVMDialect::getClusterDimAttrName() <<
"'";
5438LogicalResult NVVMDialect::verifyRegionArgAttribute(
Operation *op,
5439 unsigned regionIndex,
5442 auto funcOp = dyn_cast<FunctionOpInterface>(op);
5446 bool isKernel = op->
hasAttr(NVVMDialect::getKernelFuncAttrName());
5447 StringAttr attrName = argAttr.
getName();
5448 if (attrName == NVVM::NVVMDialect::getGridConstantAttrName()) {
5452 <<
"' attribute must be present only on kernel arguments";
5454 if (!isa<UnitAttr>(argAttr.
getValue()))
5455 return op->
emitError() <<
"'" << attrName <<
"' must be a unit attribute";
5456 if (!funcOp.getArgAttr(argIndex, LLVM::LLVMDialect::getByValAttrName())) {
5459 <<
"' attribute requires the argument to also have attribute '"
5460 << LLVM::LLVMDialect::getByValAttrName() <<
"'";
5471unsigned NVVMMemorySpaceAttr::getAddressSpace()
const {
5472 return static_cast<unsigned>(getValue());
5475bool NVVMMemorySpaceAttr::isValidLoad(
5476 Type type, ptr::AtomicOrdering ordering, std::optional<int64_t> alignment,
5477 const ::mlir::DataLayout *dataLayout,
5483bool NVVMMemorySpaceAttr::isValidStore(
5484 Type type, ptr::AtomicOrdering ordering, std::optional<int64_t> alignment,
5485 const ::mlir::DataLayout *dataLayout,
5491bool NVVMMemorySpaceAttr::isValidAtomicOp(
5492 ptr::AtomicBinOp op,
Type type, ptr::AtomicOrdering ordering,
5493 std::optional<int64_t> alignment, const ::mlir::DataLayout *dataLayout,
5496 assert(
false &&
"unimplemented, see TODO in the source.");
5500bool NVVMMemorySpaceAttr::isValidAtomicXchg(
5501 Type type, ptr::AtomicOrdering successOrdering,
5502 ptr::AtomicOrdering failureOrdering, std::optional<int64_t> alignment,
5503 const ::mlir::DataLayout *dataLayout,
5506 assert(
false &&
"unimplemented, see TODO in the source.");
5510bool NVVMMemorySpaceAttr::isValidAddrSpaceCast(
5514 assert(
false &&
"unimplemented, see TODO in the source.");
5518bool NVVMMemorySpaceAttr::isValidPtrIntCast(
5523 assert(
false &&
"unimplemented, see TODO in the source.");
5532 int optLevel, StringRef triple, StringRef chip,
5533 StringRef features, DictionaryAttr flags,
5535 if (optLevel < 0 || optLevel > 3) {
5536 emitError() <<
"The optimization level must be a number between 0 and 3.";
5539 if (triple.empty()) {
5540 emitError() <<
"The target triple cannot be empty.";
5544 emitError() <<
"The target chip cannot be empty.";
5547 if (files && !llvm::all_of(files, [](::mlir::Attribute attr) {
5548 return mlir::isa_and_nonnull<StringAttr>(attr);
5550 emitError() <<
"All the elements in the `link` array must be strings.";
5556LogicalResult NVVMTargetAttr::verifyTarget(
Operation *gpuModule) {
5557 if (!getVerifyTarget())
5560 auto gpuModuleOp = llvm::dyn_cast<gpu::GPUModuleOp>(gpuModule);
5563 "NVVM target attribute must be attached to a GPU module");
5566 const NVVMCheckSMVersion targetSMVersion =
5570 "Minimum NVVM target SM version is sm_20");
5574 ->
walk([&](Operation *op) {
5575 if (
auto reqOp = llvm::dyn_cast<NVVM::RequiresSMInterface>(op)) {
5576 const NVVMCheckSMVersion requirement =
5577 reqOp.getRequiredMinSMVersion();
5579 op->
emitOpError() <<
"is not supported on " << getChip();
5591#define GET_OP_CLASSES
5592#include "mlir/Dialect/LLVMIR/NVVMOps.cpp.inc"
5594#define GET_ATTRDEF_CLASSES
5595#include "mlir/Dialect/LLVMIR/NVVMOpsAttributes.cpp.inc"
p<< " : "<< getMemRefType()<< ", "<< getType();}static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType, VectorType vectorType) { if(memrefType.getElementType() !=vectorType.getElementType()) return op-> emitOpError("requires memref and vector types of the same elemental type")
Given a list of lists of parsed operands, populates uniqueOperands with unique operands.
#define GET_TCGEN05_CP_ID(shape_mc, src_fmt, is_2cta)
static LogicalResult verifyTMALoadParams(size_t tensorDims, size_t numIm2colOff, TMALoadMode mode, Location loc)
static LogicalResult verifyTcgen05MMAOp(bool isATensor, mlir::Value disableOutputLane, NVVM::CTAGroupKind ctaGroup, bool hasAShift, NVVM::Tcgen05MMACollectorOp collectorOp, Location loc)
static bool isPtrInAddrSpace(mlir::Value ptr, NVVMMemorySpace targetAS)
static bool isPtrInSharedCTASpace(mlir::Value ptr)
static LogicalResult isAllowedSizeN(int sizeN, NVVM::WGMMATypes typeA)
static llvm::nvvm::CTAGroupKind getNVVMCtaGroupKind(NVVM::CTAGroupKind ctaGroup)
static void addInferredMultiplicandTypes(MLIRContext *ctx, OperationState &result, ValueRange operandA, ValueRange operandB, std::optional< std::array< MMATypes, 2 > > multiplicandPtxTypes)
#define GET_CVT_F2TF32_ID(rnd, relu, sf)
static void addBlockScaleProperties(OpBuilder &builder, OperationState &result, ArrayRef< int64_t > shape, ScaleVecSize scaleVecSize, BlockScaleFormat blockScaleFormat, MMABlockScaleKind kind)
#define GET_F32x2_TO_F8X2_US_ID(rnd, has_satf)
static llvm::Value * getParamCastedAddr(llvm::Value *addr, llvm::IRBuilderBase &builder)
static LogicalResult verifyTcgen05MMABlockScaleOp(NVVM::Tcgen05MMACollectorOp collectorOp, NVVM::MMABlockScaleKind kind, NVVM::Tcgen05MMABlockScale blockScale, Location loc)
static llvm::Value * packValInto64Bits(llvm::IRBuilderBase &builder, llvm::Value *result, llvm::Value *field, unsigned sizeInBits, unsigned start)
Packs the given field into the result.
static void printOperandList(OpAsmPrinter &p, StringRef name, ArrayRef< Value > operands)
#define GET_F32x2_TO_F6x2_ID(type, has_relu)
static llvm::Value * getAsPackedI32(llvm::Value *arg, llvm::IRBuilderBase &builder)
#define GET_F16x2_TO_F8X2_ID(type, has_relu)
static LogicalResult verifyMBarrierArriveLikeOp(Operation *op, Value addr, NVVM::MemScopeKind scope, Value retVal=nullptr)
static llvm::Value * castPtrToAddrSpace(llvm::IRBuilderBase &builder, llvm::Value *ptr, NVVMMemorySpace targetAS)
static LogicalResult isAllowedWGMMADataType(NVVM::WGMMATypes typeD, NVVM::WGMMATypes typeA, NVVM::WGMMATypes typeB)
#define GET_BF16X2_TO_F8X2_ID(rnd, has_satf)
static void inferAndSetMultiplicandTypes(MLIRContext *ctx, NamedAttrList &attrs, const SmallVectorImpl< Type > &operandTypes)
static LogicalResult parseMmaOperand(OpAsmParser &parser, StringRef operandName, SmallVectorImpl< OpAsmParser::UnresolvedOperand > ®s)
static std::pair< mlir::Type, unsigned > inferMMATypeFromMNK(NVVM::MMATypes type, NVVM::MMAFrag frag, int m, int n, int k, MLIRContext *context)
static bool isInt8PtxType(MMATypes type)
static bool isInt4PtxType(MMATypes type)
static bool isIntegerPtxType(MMATypes type)
#define GET_F32x2_TO_F8X2_S_ID(type, has_relu)
static MMATypes inferPtxTypeFromResult(OpTy op)
static LogicalResult verifyConstantRangeAttr(Operation *op, std::optional< LLVM::ConstantRangeAttr > rangeAttr)
Verify the range attribute satisfies LLVM ConstantRange constructor requirements for NVVM SpecialRang...
static LogicalResult parseMmaTypeSignature(OpAsmParser &parser, SmallVectorImpl< Type > &operandTypes)
static FailureOr< int > getAllowedSizeK(NVVM::WGMMATypes typeA)
static bool isPtrInSharedClusterSpace(mlir::Value ptr)
#define GET_CP_ASYNC_ID(mod, size, has_cpsize)
static unsigned isValidVectorLength(NVVM::Tcgen05LdStShape shape, unsigned vecLen)
#define GET_TCGEN05_COMMIT_ID(cta_group, is_shared, has_mc)
static LogicalResult verifyConvertF32x2ToFP16x2Op(Twine dstType, FPRoundingMode rnd, bool hasRandomBits, Operation *op)
static void nvvmInferResultRanges(Operation *op, Value result, ArrayRef<::mlir::ConstantIntRanges > argRanges, SetIntRangeFn setResultRanges)
Infer the result ranges for the NVVM SpecialRangeableRegisterOp that might have ConstantRangeAttr.
static LogicalResult cpAsyncBulkTensorCommonVerifier(size_t tensorDims, bool isIm2Col, size_t numIm2ColOffsets, Location loc)
static bool isPtrInGenericSpace(mlir::Value ptr)
static void processOperandFragments(Op &op, std::array< MMAOperandFragment, 3 > &frags, SmallVectorImpl< Type > ®Types, SmallVectorImpl< StringRef > &ignoreAttrNames)
static constexpr unsigned notIntrinsic
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
@ OptionalSquare
Square brackets supporting zero or more ops, or nothing.
virtual Builder & getBuilder() const =0
Return a builder which provides useful access to MLIRContext, global objects like types and attribute...
virtual ParseResult parseCommaSeparatedList(Delimiter delimiter, function_ref< ParseResult()> parseElementFn, StringRef contextMessage=StringRef())=0
Parse a list of comma-separated items with an optional delimiter.
virtual ParseResult parseOptionalAttrDict(NamedAttrList &result)=0
Parse a named dictionary into 'result' if it is present.
MLIRContext * getContext() const
virtual ParseResult parseRParen()=0
Parse a ) token.
virtual InFlightDiagnostic emitError(SMLoc loc, const Twine &message={})=0
Emit a diagnostic at the specified location and return failure.
virtual SMLoc getCurrentLocation()=0
Get the location of the next token and store it into the argument.
virtual ParseResult parseColon()=0
Parse a : token.
virtual SMLoc getNameLoc() const =0
Return the location of the original name token.
virtual ParseResult parseArrow()=0
Parse a '->' token.
virtual ParseResult parseLParen()=0
Parse a ( token.
virtual ParseResult parseType(Type &result)=0
Parse a type.
virtual ParseResult parseArrowTypeList(SmallVectorImpl< Type > &result)=0
Parse an arrow followed by a type list.
ParseResult parseTypeList(SmallVectorImpl< Type > &result)
Parse a type list.
ParseResult parseKeyword(StringRef keyword)
Parse a given keyword.
void printArrowTypeList(TypeRange &&types)
This class is a general helper class for creating context-global objects like types,...
DenseI32ArrayAttr getDenseI32ArrayAttr(ArrayRef< int32_t > values)
IntegerType getIntegerType(unsigned width)
MLIRContext * getContext() const
Attr getAttr(Args &&...args)
Get or construct an instance of the attribute Attr with provided arguments.
This class represents a diagnostic that is inflight and set to be reported.
Implementation class for module translation.
llvm::Value * lookupValue(Value value) const
Finds an LLVM IR value corresponding to the given MLIR value.
void mapValue(Value mlir, llvm::Value *llvm)
Stores the mapping between an MLIR value and its LLVM IR counterpart.
llvm::LLVMContext & getLLVMContext() const
Returns the LLVM context in which the IR is being constructed.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
NamedAttrList is array of NamedAttributes that tracks whether it is sorted and does some basic work t...
std::optional< NamedAttribute > getNamed(StringRef name) const
Return the specified named attribute if present, std::nullopt otherwise.
Attribute get(StringAttr name) const
Return the specified attribute if present, null otherwise.
Attribute set(StringAttr name, Attribute value)
If the an attribute exists with the specified name, change it to the new value.
NamedAttribute represents a combination of a name and an Attribute value.
StringAttr getName() const
Return the name of the attribute.
Attribute getValue() const
Return the value of the attribute.
The OpAsmParser has methods for interacting with the asm parser: parsing things from it,...
ParseResult resolveOperands(Operands &&operands, Type type, SmallVectorImpl< Value > &result)
Resolve a list of operands to SSA values, emitting an error on failure, or appending the results to t...
virtual ParseResult parseOperandList(SmallVectorImpl< UnresolvedOperand > &result, Delimiter delimiter=Delimiter::None, bool allowResultNumber=true, int requiredOperandCount=-1)=0
Parse zero or more SSA comma-separated operand references with a specified surrounding delimiter,...
This is a pure-virtual base class that exposes the asmprinter hooks necessary to implement a custom p...
void printOperands(const ContainerType &container)
Print a comma separated list of operands.
virtual void printOptionalAttrDict(ArrayRef< NamedAttribute > attrs, ArrayRef< StringRef > elidedAttrs={})=0
If the specified operation has attributes, print out an attribute dictionary with their values.
This class helps build Operations.
This provides public APIs that all operations should have.
Operation is the basic unit of execution within MLIR.
AttrClass getAttrOfType(StringAttr name)
bool hasAttr(StringAttr name)
Return true if the operation has an attribute with the provided name, false otherwise.
Location getLoc()
The source location the operation was defined or derived from.
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
This class provides an abstraction over the various different ranges of value types.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
MLIRContext * getContext() const
Return the MLIRContext in which this type was uniqued.
bool isInteger() const
Return true if this is an integer type (with the specified width).
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
static WalkResult advance()
static WalkResult interrupt()
bool isValidLoadStoreImpl(Type type, ptr::AtomicOrdering ordering, std::optional< int64_t > alignment, const ::mlir::DataLayout *dataLayout, function_ref< InFlightDiagnostic()> emitError)
Checks whether the given type is an LLVM type that can be loaded or stored.
SmallVector< int64_t, 4 > getCoordinates(ArrayRef< int64_t > basis, unsigned linearIndex)
@ Write
Write register with '=' modifier.
@ ReadWrite
ReadWrite register with '+' modifier.
@ Read
Read register with no modifier.
std::pair< mlir::Type, unsigned > inferMMAType(mlir::NVVM::MMATypes type, mlir::NVVM::MMAFrag frag, int nRow, int nCol, mlir::MLIRContext *context)
Return the element type and number of elements associated with a wmma matrix of given chracteristics.
std::pair< llvm::Intrinsic::ID, llvm::SmallVector< llvm::Value * > > IDArgPair
A pair type of LLVM's Intrinsic ID and args (which are llvm values).
Value getReductionOp(AtomicRMWKind op, OpBuilder &builder, Location loc, Value lhs, Value rhs)
Returns the value obtained by applying the reduction operation kind associated with a binary AtomicRM...
void walk(Operation *op, function_ref< void(Region *)> callback, WalkOrder order)
Walk all of the regions, blocks, or operations nested under (and including) the given operation.
uint64_t getN(LevelType lt)
uint64_t getM(LevelType lt)
Include the generated interface declarations.
llvm::function_ref< void(Value, const ConstantIntRanges &)> SetIntRangeFn
The type of the setResultRanges callback provided to ops implementing InferIntRangeInterface.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
llvm::function_ref< Fn > function_ref
bool isMinimumSMVersion() const
bool isCompatibleWith(const NVVMCheckSMVersion &targetSM) const
static const NVVMCheckSMVersion getTargetSMVersionFromStr(StringRef smVersionString)
This represents an operation in an abstracted form, suitable for use with the builder APIs.