15 #include <type_traits>
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/TypeSwitch.h"
39 #define DEBUG_TYPE "vector-to-gpu"
40 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
41 #define DBGSNL() (llvm::dbgs() << "\n")
44 #define GEN_PASS_DEF_CONVERTVECTORTOGPU
45 #include "mlir/Conversion/Passes.h.inc"
56 template <
typename TransferOpType>
60 indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end());
62 unsigned offsetsIdx = 0;
63 for (
auto expr : xferOp.getPermutationMap().getResults()) {
64 if (
auto dim = dyn_cast<AffineDimExpr>(expr)) {
65 Value prevIdx = indices[dim.getPosition()];
67 dims.push_back(prevIdx);
70 rewriter, loc, d0 + offsetMap.
getResult(offsetsIdx++), dims);
80 auto infer = [&](MapList m) {
85 auto iteratorTypes =
contract.getIteratorTypes().getValue();
94 contract.getIndexingMapsArray() != infer({{m, k}, {k, n}, {m, n}}))
97 contract.getIndexingMapsArray() != infer({{m, k}, {n, k}, {m, n}}))
120 return permutationMap ==
AffineMap::get(nDim, 0, {innerDim, outerDim}, ctx) ||
127 auto memrefType = dyn_cast<MemRefType>(type);
131 if (memrefType.getRank() < 2)
135 if (failed(memrefType.getStridesAndOffset(strides, offset)) ||
138 int64_t stride = strides[strides.size() - 2];
139 if (stride == ShapedType::kDynamic)
146 if (readOp.getMask() || readOp.hasOutOfBoundsDim() ||
147 readOp.getVectorType().getRank() != 2)
153 if (readOp.getVectorType().getElementType().isInteger(8))
154 if (!readOp->hasOneUse() || (!isa<arith::ExtSIOp>(*readOp->user_begin()) &&
155 !isa<arith::ExtUIOp>(*readOp->user_begin())))
162 auto broadcastInnerDim =
172 if (writeOp.getTransferRank() == 0)
175 if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() ||
176 writeOp.getVectorType().getRank() != 2)
181 if (!writeOp.getPermutationMap().isMinorIdentity())
189 auto vecType = dyn_cast<VectorType>(constantOp.getType());
190 if (!vecType || vecType.getRank() != 2)
192 return isa<SplatElementsAttr>(constantOp.getValue());
197 return broadcastOp.getResultVectorType().getRank() == 2;
201 template <
typename ExtOpTy>
203 auto transferReadOp =
204 extOp.getOperand().template getDefiningOp<vector::TransferReadOp>();
207 return llvm::all_of(extOp->getUsers(), llvm::IsaPred<vector::ContractionOp>);
214 static std::optional<gpu::MMAElementwiseOp>
216 if (isa<arith::AddFOp>(op))
217 return gpu::MMAElementwiseOp::ADDF;
218 if (isa<arith::MulFOp>(op))
219 return gpu::MMAElementwiseOp::MULF;
220 if (isa<arith::SubFOp>(op))
221 return gpu::MMAElementwiseOp::SUBF;
222 if (isa<arith::MaximumFOp>(op))
223 return gpu::MMAElementwiseOp::MAXF;
224 if (isa<arith::MinimumFOp>(op))
225 return gpu::MMAElementwiseOp::MINF;
226 if (isa<arith::DivFOp>(op))
227 return gpu::MMAElementwiseOp::DIVF;
228 if (isa<arith::AddIOp>(op))
230 if (isa<arith::MulIOp>(op))
232 if (isa<arith::SubIOp>(op))
234 if (isa<arith::DivSIOp>(op))
235 return gpu::MMAElementwiseOp::DIVS;
236 if (isa<arith::DivUIOp>(op))
237 return gpu::MMAElementwiseOp::DIVU;
238 if (isa<arith::NegFOp>(op))
239 return gpu::MMAElementwiseOp::NEGATEF;
240 if (isa<arith::ExtFOp>(op))
241 return gpu::MMAElementwiseOp::EXTF;
255 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
257 if (failed(warpMatrixInfo))
261 if (failed(contractOp))
268 return (cast<VectorType>(op->getResult(0).getType()) ==
269 cast<VectorType>((*contractOp).getRhs().getType()));
271 return (cast<VectorType>(op->getResult(0).getType()) ==
272 cast<VectorType>((*contractOp).getAcc().getType()));
278 if (isa<scf::ForOp, scf::YieldOp>(op))
280 if (
auto transferRead = dyn_cast<vector::TransferReadOp>(op))
283 if (
auto transferWrite = dyn_cast<vector::TransferWriteOp>(op))
286 if (
auto extractStridedSlice = dyn_cast<vector::ExtractStridedSliceOp>(op))
289 if (
auto contract = dyn_cast<vector::ContractionOp>(op))
291 if (
auto constant = dyn_cast<arith::ConstantOp>(op))
293 if (
auto broadcast = dyn_cast<vector::BroadcastOp>(op))
295 if (
auto signedExtend = dyn_cast<arith::ExtSIOp>(op))
296 return integerExtendSupportsMMAMatrixType<arith::ExtSIOp>(signedExtend);
297 if (
auto unsignedExtend = dyn_cast<arith::ExtUIOp>(op))
298 return integerExtendSupportsMMAMatrixType<arith::ExtUIOp>(unsignedExtend);
299 if (
auto fpExtend = dyn_cast<arith::ExtFOp>(op))
313 unsigned currentIndex = 0;
316 while (currentIndex != slice.size()) {
317 auto *currentOp = (slice)[currentIndex];
319 backwardSlice.clear();
320 LogicalResult result =
322 assert(result.succeeded() &&
"expected a backward slice");
324 slice.insert_range(backwardSlice);
327 forwardSlice.clear();
332 if (
auto forOp = dyn_cast<scf::ForOp>(currentOp)) {
333 for (
Value forOpResult : forOp.getResults())
340 slice.insert_range(forwardSlice);
351 return llvm::any_of(op->
getResultTypes(), llvm::IsaPred<VectorType>);
354 backwardSliceOptions.
filter = hasVectorDest;
360 forwardSliceOptions.
filter = hasVectorSrc;
364 if (opToConvert.contains(
contract.getOperation()))
371 if (llvm::any_of(dependentOps, [useNvGpu](
Operation *op) {
373 LLVM_DEBUG(
DBGS() <<
"cannot convert op: " << *op <<
"\n");
380 opToConvert.insert_range(dependentOps);
389 struct PrepareContractToGPUMMA
393 LogicalResult matchAndRewrite(vector::ContractionOp op,
396 Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc();
400 auto infer = [&](MapList m) {
405 static constexpr std::array<int64_t, 2> perm = {1, 0};
406 auto iteratorTypes = op.getIteratorTypes().getValue();
416 if (maps == infer({{m, k}, {k, n}, {m, n}}))
418 if (maps == infer({{m, k}, {n, k}, {m, n}})) {
419 rhs = rewriter.
create<vector::TransposeOp>(loc, rhs, perm);
420 }
else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
421 lhs = rewriter.
create<vector::TransposeOp>(loc, lhs, perm);
422 }
else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
423 rhs = rewriter.
create<vector::TransposeOp>(loc, rhs, perm);
424 lhs = rewriter.
create<vector::TransposeOp>(loc, lhs, perm);
425 }
else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
427 rhs = rewriter.
create<vector::TransposeOp>(loc, rhs, perm);
428 lhs = rewriter.
create<vector::TransposeOp>(loc, lhs, perm);
429 }
else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
431 rhs = rewriter.
create<vector::TransposeOp>(loc, rhs, perm);
432 }
else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
434 lhs = rewriter.
create<vector::TransposeOp>(loc, lhs, perm);
435 }
else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
444 op.getIteratorTypes());
453 struct CombineTransferReadOpTranspose final
457 LogicalResult matchAndRewrite(vector::TransposeOp op,
460 Value source = op.getVector();
461 Type resultType = op.getType();
469 cast<VectorType>(source.
getType()).getElementType());
472 auto transferReadOp = source.
getDefiningOp<vector::TransferReadOp>();
477 if (transferReadOp.getTransferRank() == 0)
480 if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim())
486 permutationMap.
compose(transferReadOp.getPermutationMap());
488 auto loc = op.getLoc();
491 .
create<vector::TransferReadOp>(
492 loc, resultType, transferReadOp.getBase(),
494 transferReadOp.getPadding(), transferReadOp.getMask(),
495 transferReadOp.getInBoundsAttr())
500 if (isa<arith::ExtSIOp>(extOp))
501 result = rewriter.
create<arith::ExtSIOp>(loc, op.getType(), result)
503 else if (isa<arith::ExtUIOp>(extOp))
504 result = rewriter.
create<arith::ExtUIOp>(loc, op.getType(), result)
507 result = rewriter.
create<arith::ExtFOp>(loc, op.getType(), result)
532 auto contract = dyn_cast<vector::ContractionOp>(users);
550 assert(op.getTransferRank() > 0 &&
"unexpected 0-d transfer");
552 "expected convertible operation");
554 std::optional<int64_t> stride =
556 if (!stride.has_value()) {
557 LLVM_DEBUG(
DBGS() <<
"no stride\n");
565 if (
auto cstExpr = dyn_cast<AffineConstantExpr>(map.
getResult(isTranspose))) {
566 assert(cstExpr.getValue() == 0);
570 Value mappingResult = op.getResult();
571 auto elType = op.getVectorType().getElementType();
573 if (op->hasOneUse()) {
574 auto *user = *op->user_begin();
576 if (isa<arith::ExtSIOp, arith::ExtUIOp>(user)) {
578 op.getContext(), cast<IntegerType>(elType).getWidth(),
580 : IntegerType::Unsigned);
581 mappingResult = user->getResult(0);
586 Value load = rewriter.
create<gpu::SubgroupMmaLoadMatrixOp>(
587 op.getLoc(), type, op.getBase(), op.getIndices(),
589 isTranspose ? rewriter.
getUnitAttr() : UnitAttr());
590 valueMapping[mappingResult] = load;
592 LLVM_DEBUG(
DBGS() <<
"transfer read to: " << load <<
"\n");
603 std::optional<int64_t> stride =
605 if (!stride.has_value()) {
606 LLVM_DEBUG(
DBGS() <<
"no stride\n");
610 auto it = valueMapping.find(op.getVector());
611 if (it == valueMapping.end()) {
612 LLVM_DEBUG(
DBGS() <<
"no mapping\n");
616 Value matrix = it->second;
617 auto store = rewriter.
create<gpu::SubgroupMmaStoreMatrixOp>(
618 op.getLoc(), matrix, op.getBase(), op.getIndices(),
622 LLVM_DEBUG(
DBGS() <<
"transfer write to: " << store <<
"\n");
624 LLVM_DEBUG(
DBGS() <<
"erase: " << op <<
"\n");
635 if (
auto vecType = dyn_cast<VectorType>(elType))
636 elType = vecType.getElementType();
647 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
649 if (failed(warpMatrixInfo)) {
650 LLVM_DEBUG(
DBGS() <<
"no warpMatrixInfo\n");
654 FailureOr<nvgpu::FragmentElementInfo> regInfo =
656 if (failed(regInfo)) {
657 LLVM_DEBUG(
DBGS() <<
"not mma sync reg info\n");
662 auto dense = dyn_cast<SplatElementsAttr>(op.getValue());
664 LLVM_DEBUG(
DBGS() <<
"not a splat\n");
669 op.getLoc(), vectorType,
671 valueMapping[op.getResult()] = result;
686 LLVM_DEBUG(
DBGS() <<
"Failed because the result of `vector.transfer_read` "
687 "is not a 2d operand\n");
696 auto exprM = dyn_cast<AffineDimExpr>(dM);
697 auto exprN = dyn_cast<AffineDimExpr>(dN);
699 if (!exprM || !exprN) {
700 LLVM_DEBUG(
DBGS() <<
"Failed because expressions are not affine dim "
701 "expressions, then transpose cannot be determined.\n");
705 return exprM.getPosition() > exprN.getPosition();
715 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
717 if (failed(warpMatrixInfo)) {
718 LLVM_DEBUG(
DBGS() <<
"no warpMatrixInfo\n");
722 FailureOr<nvgpu::FragmentElementInfo> regInfo =
724 if (failed(regInfo)) {
725 LLVM_DEBUG(
DBGS() <<
"not mma sync reg info\n");
731 LLVM_DEBUG(
DBGS() <<
"failed to determine the transpose\n");
733 op,
"Op should likely not be converted to a nvgpu.ldmatrix call.");
736 FailureOr<nvgpu::LdMatrixParams> params =
739 if (failed(params)) {
742 <<
"failed to convert vector.transfer_read to ldmatrix. "
743 <<
"Op should likely not be converted to a nvgpu.ldmatrix call.\n");
745 op,
"failed to convert vector.transfer_read to ldmatrix; this op "
746 "likely should not be converted to a nvgpu.ldmatrix call.");
750 auto laneId = rewriter.
create<gpu::LaneIdOp>(loc,
nullptr);
751 FailureOr<AffineMap> offsets =
753 if (failed(offsets)) {
754 LLVM_DEBUG(
DBGS() <<
"no offsets\n");
761 getXferIndices<vector::TransferReadOp>(rewriter, op, *offsets, {laneId},
764 nvgpu::LdMatrixOp newOp = rewriter.
create<nvgpu::LdMatrixOp>(
765 loc, vectorType, op.getBase(), indices, *
transpose, params->numTiles);
766 valueMapping[op] = newOp->getResult(0);
777 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
779 if (failed(warpMatrixInfo))
781 FailureOr<nvgpu::FragmentElementInfo> regInfo =
783 if (failed(regInfo)) {
785 op,
"Failed to deduce register fragment type during "
786 "conversion to distributed non-ldmatrix compatible load");
789 Value laneId = rewriter.
create<gpu::LaneIdOp>(loc,
nullptr);
792 Type loadedElType = regInfo->registerLLVMType;
796 op.getLoc(), vectorType.getElementType(),
797 rewriter.
getZeroAttr(vectorType.getElementType()));
799 rewriter.
create<vector::SplatOp>(op.getLoc(), fill, vectorType);
801 bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity();
805 if (!isTransposeLoad) {
806 if (!isa<VectorType>(loadedElType)) {
810 for (
int i = 0; i < vectorType.getShape()[0]; i++) {
812 rewriter, op.getLoc(), *warpMatrixInfo);
816 Value logicalValueId = rewriter.
create<arith::ConstantOp>(
818 rewriter.
getIndexAttr(i * regInfo->elementsPerRegister));
820 getXferIndices<vector::TransferReadOp>(
821 rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
823 Value el = rewriter.
create<vector::LoadOp>(loc, loadedElType,
824 op.getBase(), newIndices);
825 result = rewriter.
create<vector::InsertOp>(loc, el, result, i);
828 if (
auto vecType = dyn_cast<VectorType>(loadedElType)) {
829 loadedElType = vecType.getElementType();
831 for (
int i = 0; i < vectorType.getShape()[0]; i++) {
832 for (
unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1];
835 Value logicalValueId = rewriter.
create<arith::ConstantOp>(
837 rewriter.
getIndexAttr(i * regInfo->elementsPerRegister + innerIdx));
839 rewriter, op.getLoc(), *warpMatrixInfo);
844 getXferIndices<vector::TransferReadOp>(
845 rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
846 Value el = rewriter.
create<memref::LoadOp>(op.getLoc(), loadedElType,
847 op.getBase(), newIndices);
848 result = rewriter.
create<vector::InsertOp>(
854 valueMapping[op.getResult()] = result;
861 dyn_cast_or_null<gpu::AddressSpaceAttr>(type.getMemorySpace());
862 return addressSpace &&
863 addressSpace.getValue() == gpu::GPUDialect::getWorkgroupAddressSpace();
875 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
877 if (failed(warpMatrixInfo))
880 bool isLdMatrixCompatible =
884 VectorType vecTy = op.getVectorType();
885 int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth();
890 if (!op.getPermutationMap().isMinorIdentity() &&
891 (bitWidth != 16 || vecTy.getDimSize(1) < 8 ||
892 vecTy.getDimSize(0) * bitWidth < 128))
893 isLdMatrixCompatible =
false;
895 if (!isLdMatrixCompatible)
908 auto it = valueMapping.find(op.getVector());
909 if (it == valueMapping.end())
911 Value matrix = it->second;
913 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
915 if (failed(warpMatrixInfo))
917 FailureOr<nvgpu::FragmentElementInfo> regInfo =
923 Value laneId = rewriter.
create<gpu::LaneIdOp>(loc,
nullptr);
925 for (
unsigned i = 0; i < vectorType.getShape()[0]; i++) {
926 Value logicalValueId = rewriter.
create<arith::ConstantOp>(
928 rewriter.
getIndexAttr(i * regInfo->elementsPerRegister));
930 rewriter, op.getLoc(), *warpMatrixInfo);
937 getXferIndices<vector::TransferWriteOp>(
938 rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
939 rewriter.
create<vector::StoreOp>(loc, el, op.getBase(), newIndices);
942 LLVM_DEBUG(
DBGS() <<
"erase: " << op <<
"\n");
949 for (
auto attr : arrayAttr)
950 results.push_back(cast<IntegerAttr>(attr).getInt());
955 vector::ExtractStridedSliceOp op,
962 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
964 if (failed(warpMatrixInfo))
967 FailureOr<nvgpu::FragmentElementInfo> mmaSyncFragmentInfo =
969 if (failed(mmaSyncFragmentInfo))
973 auto transferReadOp = op.getVector().getDefiningOp<vector::TransferReadOp>();
978 if (failed(warpMatrixInfo))
981 FailureOr<nvgpu::FragmentElementInfo> ldFragmentInfo =
983 if (failed(ldFragmentInfo))
987 (mmaSyncFragmentInfo->elementsPerRegister ==
988 ldFragmentInfo->elementsPerRegister) &&
989 "Number of elements per register should be same for load and mma.sync");
992 std::array<int64_t, 2> strides = {1,
994 std::array<int64_t, 2> sliceShape = {
995 mmaSyncFragmentInfo->numRegistersPerFragment,
996 mmaSyncFragmentInfo->elementsPerRegister};
997 auto it = valueMapping.find(transferReadOp);
998 if (it == valueMapping.end())
1000 auto sourceVector = it->second;
1013 std::array<int64_t, 2> sliceOffset = {0, 0};
1015 if (offsets[0] && offsets[1])
1016 return op->emitError() <<
"Slicing fragments in 2D is not supported. ";
1018 sliceOffset[0] = (warpVectorShape[0] / offsets[0]);
1019 else if (offsets[1])
1020 sliceOffset[0] = (warpVectorShape[1] / offsets[1]);
1022 Value newOp = rewriter.
create<vector::ExtractStridedSliceOp>(
1023 loc, sourceVector, sliceOffset, sliceShape, strides);
1025 valueMapping[op] = newOp;
1029 static LogicalResult
1035 auto itA = valueMapping.find(op.getLhs());
1036 auto itB = valueMapping.find(op.getRhs());
1037 auto itC = valueMapping.find(op.getAcc());
1038 if (itA == valueMapping.end() || itB == valueMapping.end() ||
1039 itC == valueMapping.end())
1041 Value opA = itA->second, opB = itB->second, opC = itC->second;
1042 Value matmul = rewriter.
create<gpu::SubgroupMmaComputeOp>(
1043 op.getLoc(), opC.getType(), opA, opB, opC, UnitAttr(),
1045 valueMapping[op.getResult()] = matmul;
1049 static LogicalResult
1055 auto itA = valueMapping.find(op.getLhs());
1056 auto itB = valueMapping.find(op.getRhs());
1057 auto itC = valueMapping.find(op.getAcc());
1058 if (itA == valueMapping.end() || itB == valueMapping.end() ||
1059 itC == valueMapping.end())
1061 Value opA = itA->second, opB = itB->second, opC = itC->second;
1062 int64_t m = cast<VectorType>(op.getLhs().getType()).getShape()[0];
1063 int64_t n = cast<VectorType>(op.getRhs().getType()).getShape()[0];
1064 int64_t k = cast<VectorType>(op.getLhs().getType()).getShape()[1];
1067 valueMapping[op.getResult()] = matmul;
1072 static LogicalResult
1081 cast<SplatElementsAttr>(op.getValue()).getSplatValue<TypedAttr>();
1082 auto scalarConstant =
1083 rewriter.
create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat);
1085 auto vecType = cast<VectorType>(op.getType());
1087 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
1088 auto matrix = rewriter.
create<gpu::SubgroupMmaConstantMatrixOp>(
1089 op.getLoc(), type, scalarConstant);
1090 valueMapping[op.getResult()] = matrix;
1095 static LogicalResult
1104 auto vecType = op.getResultVectorType();
1106 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
1107 auto matrix = rewriter.
create<gpu::SubgroupMmaConstantMatrixOp>(
1108 op.getLoc(), type, op.getSource());
1109 valueMapping[op.getResult()] = matrix;
1123 auto operands = llvm::to_vector<4>(loop.getInitArgs());
1124 llvm::append_range(operands, newInitArgs);
1125 scf::ForOp newLoop = rewriter.
create<scf::ForOp>(
1126 loop.getLoc(), loop.getLowerBound(), loop.getUpperBound(), loop.getStep(),
1130 newLoop.getRegion().getBlocks().splice(
1131 newLoop.getRegion().getBlocks().begin(), loop.getRegion().getBlocks());
1132 for (
Value operand : newInitArgs)
1133 newLoop.getBody()->addArgument(operand.getType(), operand.getLoc());
1135 for (
auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
1136 loop.getNumResults())))
1139 LLVM_DEBUG(
DBGS() <<
"newLoop now: " << newLoop <<
"\n");
1140 LLVM_DEBUG(
DBGS() <<
"stripped scf.for: " << loop <<
"\n");
1141 LLVM_DEBUG(
DBGS() <<
"erase: " << loop);
1155 auto it = valueMapping.find(operand.value());
1156 if (it == valueMapping.end()) {
1157 LLVM_DEBUG(
DBGS() <<
"no value mapping for: " << operand.value() <<
"\n");
1160 argMapping.push_back(std::make_pair(
1161 operand.index(), op.getInitArgs().size() + newOperands.size()));
1162 newOperands.push_back(it->second);
1166 Block &loopBody = *newForOp.getBody();
1167 for (
auto mapping : argMapping) {
1168 valueMapping[newForOp.getResult(mapping.first)] =
1169 newForOp.getResult(mapping.second);
1171 newForOp.getNumInductionVars())] =
1172 loopBody.
getArgument(mapping.second + newForOp.getNumInductionVars());
1175 LLVM_DEBUG(
DBGS() <<
"scf.for to: " << newForOp <<
"\n");
1179 static LogicalResult
1185 auto loop = cast<scf::ForOp>(op->getParentOp());
1186 auto yieldOperands = llvm::to_vector<4>(op.getOperands());
1188 auto it = valueMapping.find(operand.value());
1189 if (it == valueMapping.end())
1193 yieldOperands[operand.index()] = loop.getInitArgs()[operand.index()];
1194 yieldOperands.push_back(it->second);
1196 rewriter.
create<scf::YieldOp>(op.getLoc(), yieldOperands);
1198 LLVM_DEBUG(
DBGS() <<
"erase: " << op <<
"\n");
1204 static LogicalResult
1206 gpu::MMAElementwiseOp opType,
1213 auto it = valueMapping.find(operand);
1214 if (it == valueMapping.end())
1216 matrixOperands.push_back(it->second);
1218 auto resultType = cast<gpu::MMAMatrixType>(matrixOperands[0].
getType());
1219 if (opType == gpu::MMAElementwiseOp::EXTF) {
1223 vectorType.getElementType(),
1224 resultType.getOperand());
1227 Value newOp = rewriter.
create<gpu::SubgroupMmaElementwiseOp>(
1228 op->
getLoc(), resultType, matrixOperands, opType);
1236 patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>(
1249 auto globalRes = LogicalResult::success();
1251 LLVM_DEBUG(
DBGS() <<
"Process op: " << *op <<
"\n");
1253 auto res = LogicalResult::success();
1254 if (
auto transferRead = dyn_cast<vector::TransferReadOp>(op)) {
1256 }
else if (
auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) {
1258 }
else if (
auto contractOp = dyn_cast<vector::ContractionOp>(op)) {
1260 }
else if (
auto constantOp = dyn_cast<arith::ConstantOp>(op)) {
1262 }
else if (
auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) {
1264 }
else if (
auto forOp = dyn_cast<scf::ForOp>(op)) {
1266 }
else if (
auto yieldOp = dyn_cast<scf::YieldOp>(op)) {
1272 globalRes = failure();
1283 .Case([&](vector::TransferReadOp transferReadOp) {
1287 .Case([&](vector::TransferWriteOp transferWriteOp) {
1291 .Case([&](vector::ExtractStridedSliceOp extractStridedSliceOp) {
1295 .Case([&](vector::ContractionOp contractionOp) {
1299 .Case([&](scf::ForOp forOp) {
1302 .Case([&](scf::YieldOp yieldOp) {
1305 .Case([&](arith::ConstantOp constOp) {
1309 return op->
emitError() <<
"unhandled vector to mma type: " << *op;
1313 <<
"failed to convert op during vector-to-nvgpu conversion";
1321 struct ConvertVectorToGPUPass
1322 :
public impl::ConvertVectorToGPUBase<ConvertVectorToGPUPass> {
1324 explicit ConvertVectorToGPUPass(
bool useNvGpu_) {
1325 useNvGpu.setValue(useNvGpu_);
1328 void runOnOperation()
override {
1332 return signalPassFailure();
1338 return signalPassFailure();
1348 return std::make_unique<ConvertVectorToGPUPass>(useNvGpu);
static MLIRContext * getContext(OpFoldResult val)
static void contract(RootOrderingGraph &graph, ArrayRef< Value > cycle, const DenseMap< Value, unsigned > &parentDepths, DenseMap< Value, Value > &actualSource, DenseMap< Value, Value > &actualTarget)
Contracts the specified cycle in the given graph in-place.
static Value broadcast(Location loc, Value toBroadcast, unsigned numElements, const TypeConverter &typeConverter, ConversionPatternRewriter &rewriter)
Broadcasts the value to vector with numElements number of elements.
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
static LogicalResult convertTransferWriteOp(RewriterBase &rewriter, vector::TransferWriteOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertForOp(RewriterBase &rewriter, scf::ForOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertContractOp(RewriterBase &rewriter, vector::ContractionOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertContractOpToMmaSync(RewriterBase &rewriter, vector::ContractionOp op, llvm::DenseMap< Value, Value > &valueMapping)
static bool isSharedMemory(MemRefType type)
Return true if this is a shared memory memref type.
static VectorType getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo ®Info)
Returns the vector type which represents a matrix fragment.
static const char * inferFragType(Operation *op)
static bool fpExtendSupportsMMAMatrixType(arith::ExtFOp extOp)
static bool supportsMMaMatrixType(Operation *op, bool useNvGpu)
static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp)
Return true if the constant is a splat to a 2D vector so that it can be converted to a MMA constant m...
static bool contractSupportsMMAMatrixType(vector::ContractionOp contract, bool useNvGpu)
static void populateFromInt64AttrArray(ArrayAttr arrayAttr, SmallVectorImpl< int64_t > &results)
static bool isTransposeMatrixLoadMap(AffineMap permutationMap)
static SetVector< Operation * > getSliceContract(Operation *op, const BackwardSliceOptions &backwardSliceOptions, const ForwardSliceOptions &forwardSliceOptions)
Return an unsorted slice handling scf.for region differently than getSlice.
static LogicalResult convertTransferReadOp(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
static bool integerExtendSupportsMMAMatrixType(ExtOpTy extOp)
Return true if this integer extend op can be folded into a contract op.
static LogicalResult convertTransferReadToLoads(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
Converts a vector.transfer_read operation directly to either a vector.load or a nvgpu....
static LogicalResult convertBroadcastOp(RewriterBase &rewriter, vector::BroadcastOp op, llvm::DenseMap< Value, Value > &valueMapping)
Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op.
static LogicalResult creatLdMatrixCompatibleLoads(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
static FailureOr< bool > isTransposed(vector::TransferReadOp op)
Check if the loaded matrix operand requires transposed.
static scf::ForOp replaceForOpWithNewSignature(RewriterBase &rewriter, scf::ForOp loop, ValueRange newInitArgs)
static bool transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp)
static std::optional< gpu::MMAElementwiseOp > convertElementwiseOpToMMA(Operation *op)
Return the MMA elementwise enum associated with op if it is supported.
static LogicalResult convertElementwiseOp(RewriterBase &rewriter, Operation *op, gpu::MMAElementwiseOp opType, llvm::DenseMap< Value, Value > &valueMapping)
Convert an elementwise op to the equivalent elementwise op on MMA matrix.
static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp)
static bool extractStridedSliceSupportsMMAMatrixType(vector::ExtractStridedSliceOp op)
Returns true if the extract strided slice op is supported with mma.sync path.
static LogicalResult convertConstantOpMmaSync(RewriterBase &rewriter, arith::ConstantOp op, llvm::DenseMap< Value, Value > &valueMapping)
Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static bool elementwiseSupportsMMAMatrixType(Operation *op)
Return true if the op is supported as elementwise op on MMAMatrix type.
static SetVector< Operation * > getOpToConvert(mlir::Operation *op, bool useNvGpu)
static LogicalResult convertConstantOp(RewriterBase &rewriter, arith::ConstantOp op, llvm::DenseMap< Value, Value > &valueMapping)
Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static LogicalResult convertYieldOp(RewriterBase &rewriter, scf::YieldOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertTransferWriteToStores(RewriterBase &rewriter, vector::TransferWriteOp op, llvm::DenseMap< Value, Value > &valueMapping)
static std::optional< int64_t > getStaticallyKnownRowStride(ShapedType type)
static void getXferIndices(RewriterBase &rewriter, TransferOpType xferOp, AffineMap offsetMap, ArrayRef< Value > dimValues, SmallVector< Value, 4 > &indices)
For a vector TransferOpType xferOp, an empty indices vector, and an AffineMap representing offsets to...
static LogicalResult convertExtractStridedSlice(RewriterBase &rewriter, vector::ExtractStridedSliceOp op, llvm::DenseMap< Value, Value > &valueMapping)
static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp)
Return true if this is a broadcast from scalar to a 2D vector.
static LogicalResult createNonLdMatrixLoads(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
Base type for affine expression.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
MLIRContext * getContext() const
bool isMinorIdentity() const
Returns true if this affine map is a minor identity, i.e.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumDims() const
unsigned getNumResults() const
AffineExpr getResult(unsigned idx) const
static AffineMap getPermutationMap(ArrayRef< unsigned > permutation, MLIRContext *context)
Returns an AffineMap representing a permutation.
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
static SmallVector< AffineMap, 4 > inferFromExprList(ArrayRef< ArrayRef< AffineExpr >> exprsList, MLIRContext *context)
Returns a vector of AffineMaps; each with as many results as exprs.size(), as many dims as the larges...
Attributes are known-constant values of operations.
This class represents an argument of a Block.
Block represents an ordered list of Operations.
BlockArgument getArgument(unsigned i)
IntegerAttr getIndexAttr(int64_t value)
AffineExpr getAffineConstantExpr(int64_t constant)
TypedAttr getZeroAttr(Type type)
AffineExpr getAffineDimExpr(unsigned position)
MLIRContext * getContext() const
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
ArrayAttr getAffineMapArrayAttr(ArrayRef< AffineMap > values)
static DenseElementsAttr get(ShapedType type, ArrayRef< Attribute > values)
Constructs a dense elements attribute from an array of element values.
This class coordinates rewriting a piece of IR outside of a pattern rewrite, providing a way to keep ...
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Operation is the basic unit of execution within MLIR.
Value getOperand(unsigned idx)
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
bool hasOneUse()
Returns true if this operation has exactly one use.
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Location getLoc()
The source location the operation was defined or derived from.
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
operand_type_range getOperandTypes()
result_type_range getResultTypes()
operand_range getOperands()
Returns an iterator on the underlying Value's.
user_range getUsers()
Returns a range of all users.
user_iterator user_begin()
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
unsigned getNumResults()
Return the number of results held by this operation.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
virtual void eraseBlock(Block *block)
This method erases all operations in a block.
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
void replaceAllUsesWith(Value from, Value to)
Find uses of from and replace them with to.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
MMAMatrix represents a matrix held by a subgroup for matrix-matrix multiply accumulate operations.
static MMAMatrixType get(ArrayRef< int64_t > shape, Type elementType, StringRef operand)
Get MMAMatrixType and verify construction Invariants.
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
int64_t inferTileWidthInBits(const WarpMatrixInfo &type)
Returns the number of bits in a single tile row.
FailureOr< vector::ContractionOp > getUserContract(Operation *op)
Returns the first user of the op that is vector.contract.
FailureOr< AffineMap > getLaneIdAndValueIdToOperandCoord(OpBuilder &builder, Location loc, const WarpMatrixInfo &fragmentType)
Returns an AffineMap which maps a two dimensions representing (laneId, logicalValueId) and returns tw...
FailureOr< WarpMatrixInfo > getWarpMatrixInfo(Operation *op)
If op is a vector.transfer_write, return the WarpMatrixInfo for the vector operand.
FailureOr< AffineMap > getLaneIdToLdMatrixMatrixCoord(OpBuilder &builder, Location loc, const LdMatrixParams ¶ms)
Returns an AffineMap which maps a single dimension representing the laneId to two results representin...
FailureOr< LdMatrixParams > getLdMatrixParams(const WarpMatrixInfo &type, bool transpose)
Given type that contains info for a warp-matrix operand and whether or not the load is a transposed l...
FailureOr< FragmentElementInfo > getMmaSyncRegisterType(const WarpMatrixInfo &type)
Returns a FragmentElementInfo struct describing the register types for the given matrix fragment type...
bool canLowerToWarpMatrixOperation(vector::TransferReadOp op)
Returns whether the vector.transfer_read instruction can be interpreted as a warp-level cooperative m...
bool isReductionIterator(Attribute attr)
Returns true if attr has "reduction" iterator type semantics.
bool isParallelIterator(Attribute attr)
Returns true if attr has "parallel" iterator type semantics.
void populateVectorContractCanonicalizeMatmulToMMT(RewritePatternSet &patterns, std::function< LogicalResult(vector::ContractionOp)> constraint=[](vector::ContractionOp) { return success();}, PatternBenefit=1)
Canonicalization of a vector.contraction a, b, c with row-major matmul semantics to a contraction wit...
static void transpose(llvm::ArrayRef< int64_t > trans, SmallVector< int64_t > &shape)
Include the generated interface declarations.
void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns, bool useNvGpu=false)
Patterns to transform vector ops into a canonical form to convert to MMA matrix operations.
LogicalResult getBackwardSlice(Operation *op, SetVector< Operation * > *backwardSlice, const BackwardSliceOptions &options={})
Fills backwardSlice with the computed backward slice (i.e.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
LogicalResult applyPatternsGreedily(Region ®ion, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
const FrozenRewritePatternSet & patterns
LogicalResult convertVectorToNVVMCompatibleMMASync(RewriterBase &rewriter, Operation *rootOp)
Convert vector ops ops nested under rootOp to vector and GPU operaitons compatible with the nvvm....
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
std::unique_ptr< Pass > createConvertVectorToGPUPass(bool useNvGpu=false)
Convert from vector to GPU ops.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
LogicalResult convertVectorToMMAOps(RewriterBase &rewriter, Operation *rootOp)
Convert vector ops to MMA matrix operations nested under rootOp.
SetVector< Operation * > topologicalSort(const SetVector< Operation * > &toSort)
Sorts all operations in toSort topologically while also considering region semantics.
void getForwardSlice(Operation *op, SetVector< Operation * > *forwardSlice, const ForwardSliceOptions &options={})
Fills forwardSlice with the computed forward slice (i.e.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
This trait tags element-wise ops on vectors or tensors.
Specifies information about the registers which compose a matrix fragment according to the PTX docume...
int64_t elementsPerRegister
int64_t numRegistersPerFragment