32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/TypeSwitch.h"
34 #include "llvm/Support/DebugLog.h"
36 #define DEBUG_TYPE "vector-to-gpu"
39 #define GEN_PASS_DEF_CONVERTVECTORTOGPU
40 #include "mlir/Conversion/Passes.h.inc"
51 template <
typename TransferOpType>
55 indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end());
57 unsigned offsetsIdx = 0;
58 for (
auto expr : xferOp.getPermutationMap().getResults()) {
59 if (
auto dim = dyn_cast<AffineDimExpr>(expr)) {
60 Value prevIdx = indices[dim.getPosition()];
62 dims.push_back(prevIdx);
65 rewriter, loc, d0 + offsetMap.
getResult(offsetsIdx++), dims);
75 auto infer = [&](MapList m) {
80 auto iteratorTypes =
contract.getIteratorTypes().getValue();
89 contract.getIndexingMapsArray() != infer({{m, k}, {k, n}, {m, n}}))
92 contract.getIndexingMapsArray() != infer({{m, k}, {n, k}, {m, n}}))
115 return permutationMap ==
AffineMap::get(nDim, 0, {innerDim, outerDim}, ctx) ||
122 auto memrefType = dyn_cast<MemRefType>(type);
126 if (memrefType.getRank() < 2)
130 if (
failed(memrefType.getStridesAndOffset(strides, offset)) ||
133 int64_t stride = strides[strides.size() - 2];
134 if (stride == ShapedType::kDynamic)
141 if (readOp.getMask() || readOp.hasOutOfBoundsDim() ||
142 readOp.getVectorType().getRank() != 2)
148 if (readOp.getVectorType().getElementType().isInteger(8))
149 if (!readOp->hasOneUse() || (!isa<arith::ExtSIOp>(*readOp->user_begin()) &&
150 !isa<arith::ExtUIOp>(*readOp->user_begin())))
157 auto broadcastInnerDim =
167 if (writeOp.getTransferRank() == 0)
170 if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() ||
171 writeOp.getVectorType().getRank() != 2)
176 if (!writeOp.getPermutationMap().isMinorIdentity())
184 auto vecType = dyn_cast<VectorType>(constantOp.getType());
185 if (!vecType || vecType.getRank() != 2)
187 return isa<SplatElementsAttr>(constantOp.getValue());
192 return broadcastOp.getResultVectorType().getRank() == 2;
196 template <
typename ExtOpTy>
198 auto transferReadOp =
199 extOp.getOperand().template getDefiningOp<vector::TransferReadOp>();
202 return llvm::all_of(extOp->getUsers(), llvm::IsaPred<vector::ContractionOp>);
209 static std::optional<gpu::MMAElementwiseOp>
211 if (isa<arith::AddFOp>(op))
212 return gpu::MMAElementwiseOp::ADDF;
213 if (isa<arith::MulFOp>(op))
214 return gpu::MMAElementwiseOp::MULF;
215 if (isa<arith::SubFOp>(op))
216 return gpu::MMAElementwiseOp::SUBF;
217 if (isa<arith::MaximumFOp>(op))
218 return gpu::MMAElementwiseOp::MAXF;
219 if (isa<arith::MinimumFOp>(op))
220 return gpu::MMAElementwiseOp::MINF;
221 if (isa<arith::DivFOp>(op))
222 return gpu::MMAElementwiseOp::DIVF;
223 if (isa<arith::AddIOp>(op))
225 if (isa<arith::MulIOp>(op))
227 if (isa<arith::SubIOp>(op))
229 if (isa<arith::DivSIOp>(op))
230 return gpu::MMAElementwiseOp::DIVS;
231 if (isa<arith::DivUIOp>(op))
232 return gpu::MMAElementwiseOp::DIVU;
233 if (isa<arith::NegFOp>(op))
234 return gpu::MMAElementwiseOp::NEGATEF;
235 if (isa<arith::ExtFOp>(op))
236 return gpu::MMAElementwiseOp::EXTF;
250 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
252 if (
failed(warpMatrixInfo))
263 return (cast<VectorType>(op->getResult(0).getType()) ==
264 cast<VectorType>((*contractOp).getRhs().getType()));
266 return (cast<VectorType>(op->getResult(0).getType()) ==
267 cast<VectorType>((*contractOp).getAcc().getType()));
273 if (isa<scf::ForOp, scf::YieldOp>(op))
275 if (
auto transferRead = dyn_cast<vector::TransferReadOp>(op))
278 if (
auto transferWrite = dyn_cast<vector::TransferWriteOp>(op))
281 if (
auto extractStridedSlice = dyn_cast<vector::ExtractStridedSliceOp>(op))
284 if (
auto contract = dyn_cast<vector::ContractionOp>(op))
286 if (
auto constant = dyn_cast<arith::ConstantOp>(op))
288 if (
auto broadcast = dyn_cast<vector::BroadcastOp>(op))
290 if (
auto signedExtend = dyn_cast<arith::ExtSIOp>(op))
291 return integerExtendSupportsMMAMatrixType<arith::ExtSIOp>(signedExtend);
292 if (
auto unsignedExtend = dyn_cast<arith::ExtUIOp>(op))
293 return integerExtendSupportsMMAMatrixType<arith::ExtUIOp>(unsignedExtend);
294 if (
auto fpExtend = dyn_cast<arith::ExtFOp>(op))
308 unsigned currentIndex = 0;
311 while (currentIndex != slice.size()) {
312 auto *currentOp = (slice)[currentIndex];
314 backwardSlice.clear();
315 LogicalResult result =
317 assert(result.succeeded() &&
"expected a backward slice");
319 slice.insert_range(backwardSlice);
322 forwardSlice.clear();
327 if (
auto forOp = dyn_cast<scf::ForOp>(currentOp)) {
328 for (
Value forOpResult : forOp.getResults())
335 slice.insert_range(forwardSlice);
346 return llvm::any_of(op->
getResultTypes(), llvm::IsaPred<VectorType>);
349 backwardSliceOptions.
filter = hasVectorDest;
355 forwardSliceOptions.
filter = hasVectorSrc;
359 if (!isa<vector::ContractionOp>(nestedOp) &&
362 if (opToConvert.contains(nestedOp))
369 if (llvm::any_of(dependentOps, [useNvGpu](
Operation *op) {
371 LDBG() <<
"cannot convert op: " << *op;
378 opToConvert.insert_range(dependentOps);
387 struct PrepareContractToGPUMMA
391 LogicalResult matchAndRewrite(vector::ContractionOp op,
394 Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc();
398 auto infer = [&](MapList m) {
403 static constexpr std::array<int64_t, 2> perm = {1, 0};
404 auto iteratorTypes = op.getIteratorTypes().getValue();
414 if (maps == infer({{m, k}, {k, n}, {m, n}}))
416 if (maps == infer({{m, k}, {n, k}, {m, n}})) {
417 rhs = vector::TransposeOp::create(rewriter, loc, rhs, perm);
418 }
else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
419 lhs = vector::TransposeOp::create(rewriter, loc, lhs, perm);
420 }
else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
421 rhs = vector::TransposeOp::create(rewriter, loc, rhs, perm);
422 lhs = vector::TransposeOp::create(rewriter, loc, lhs, perm);
423 }
else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
425 rhs = vector::TransposeOp::create(rewriter, loc, rhs, perm);
426 lhs = vector::TransposeOp::create(rewriter, loc, lhs, perm);
427 }
else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
429 rhs = vector::TransposeOp::create(rewriter, loc, rhs, perm);
430 }
else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
432 lhs = vector::TransposeOp::create(rewriter, loc, lhs, perm);
433 }
else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
442 op.getIteratorTypes());
451 struct CombineTransferReadOpTranspose final
455 LogicalResult matchAndRewrite(vector::TransposeOp op,
458 Value source = op.getVector();
459 Type resultType = op.getType();
467 cast<VectorType>(source.
getType()).getElementType());
470 auto transferReadOp = source.
getDefiningOp<vector::TransferReadOp>();
475 if (transferReadOp.getTransferRank() == 0)
478 if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim())
484 permutationMap.
compose(transferReadOp.getPermutationMap());
486 auto loc = op.getLoc();
487 Value result = vector::TransferReadOp::create(
488 rewriter, loc, resultType, transferReadOp.getBase(),
490 transferReadOp.getPadding(), transferReadOp.getMask(),
491 transferReadOp.getInBoundsAttr())
496 if (isa<arith::ExtSIOp>(extOp))
497 result = arith::ExtSIOp::create(rewriter, loc, op.getType(), result)
499 else if (isa<arith::ExtUIOp>(extOp))
500 result = arith::ExtUIOp::create(rewriter, loc, op.getType(), result)
503 result = arith::ExtFOp::create(rewriter, loc, op.getType(), result)
528 auto contract = dyn_cast<vector::ContractionOp>(users);
546 assert(op.getTransferRank() > 0 &&
"unexpected 0-d transfer");
548 "expected convertible operation");
550 std::optional<int64_t> stride =
552 if (!stride.has_value()) {
553 LDBG() <<
"no stride";
561 if (
auto cstExpr = dyn_cast<AffineConstantExpr>(map.
getResult(isTranspose))) {
562 assert(cstExpr.getValue() == 0);
566 Value mappingResult = op.getResult();
567 auto elType = op.getVectorType().getElementType();
569 if (op->hasOneUse()) {
570 auto *user = *op->user_begin();
572 if (isa<arith::ExtSIOp, arith::ExtUIOp>(user)) {
574 op.getContext(), cast<IntegerType>(elType).getWidth(),
576 : IntegerType::Unsigned);
577 mappingResult = user->getResult(0);
582 Value load = gpu::SubgroupMmaLoadMatrixOp::create(
583 rewriter, op.getLoc(), type, op.getBase(), op.getIndices(),
585 isTranspose ? rewriter.
getUnitAttr() : UnitAttr());
586 valueMapping[mappingResult] = load;
588 LDBG() <<
"transfer read to: " << load;
599 std::optional<int64_t> stride =
601 if (!stride.has_value()) {
602 LDBG() <<
"no stride";
606 auto it = valueMapping.find(op.getVector());
607 if (it == valueMapping.end()) {
608 LDBG() <<
"no mapping";
612 Value matrix = it->second;
613 auto store = gpu::SubgroupMmaStoreMatrixOp::create(
614 rewriter, op.getLoc(), matrix, op.getBase(), op.getIndices(),
618 LDBG() <<
"transfer write to: " << store;
620 LDBG() <<
"erase: " << op;
631 if (
auto vecType = dyn_cast<VectorType>(elType))
632 elType = vecType.getElementType();
643 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
645 if (
failed(warpMatrixInfo)) {
646 LDBG() <<
"no warpMatrixInfo";
650 FailureOr<nvgpu::FragmentElementInfo> regInfo =
653 LDBG() <<
"not mma sync reg info";
658 auto dense = dyn_cast<SplatElementsAttr>(op.getValue());
660 LDBG() <<
"not a splat";
664 Value result = arith::ConstantOp::create(
665 rewriter, op.getLoc(), vectorType,
667 valueMapping[op.getResult()] = result;
682 LDBG() <<
"Failed because the result of `vector.transfer_read` "
683 "is not a 2d operand";
692 auto exprM = dyn_cast<AffineDimExpr>(dM);
693 auto exprN = dyn_cast<AffineDimExpr>(dN);
695 if (!exprM || !exprN) {
696 LDBG() <<
"Failed because expressions are not affine dim "
697 "expressions, then transpose cannot be determined.";
701 return exprM.getPosition() > exprN.getPosition();
711 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
713 if (
failed(warpMatrixInfo)) {
714 LDBG() <<
"no warpMatrixInfo";
718 FailureOr<nvgpu::FragmentElementInfo> regInfo =
721 LDBG() <<
"not mma sync reg info";
727 LDBG() <<
"failed to determine the transpose";
729 op,
"Op should likely not be converted to a nvgpu.ldmatrix call.");
732 FailureOr<nvgpu::LdMatrixParams> params =
736 LDBG() <<
"failed to convert vector.transfer_read to ldmatrix. "
737 <<
"Op should likely not be converted to a nvgpu.ldmatrix call.";
739 op,
"failed to convert vector.transfer_read to ldmatrix; this op "
740 "likely should not be converted to a nvgpu.ldmatrix call.");
744 auto laneId = gpu::LaneIdOp::create(rewriter, loc,
nullptr);
745 FailureOr<AffineMap> offsets =
748 LDBG() <<
"no offsets";
755 getXferIndices<vector::TransferReadOp>(rewriter, op, *offsets, {laneId},
758 nvgpu::LdMatrixOp newOp =
759 nvgpu::LdMatrixOp::create(rewriter, loc, vectorType, op.getBase(),
760 indices, *transpose, params->numTiles);
761 valueMapping[op] = newOp->getResult(0);
772 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
774 if (
failed(warpMatrixInfo))
776 FailureOr<nvgpu::FragmentElementInfo> regInfo =
780 op,
"Failed to deduce register fragment type during "
781 "conversion to distributed non-ldmatrix compatible load");
784 Value laneId = gpu::LaneIdOp::create(rewriter, loc,
nullptr);
787 Type loadedElType = regInfo->registerLLVMType;
790 Value fill = arith::ConstantOp::create(
791 rewriter, op.getLoc(), vectorType.getElementType(),
792 rewriter.
getZeroAttr(vectorType.getElementType()));
794 vector::BroadcastOp::create(rewriter, op.getLoc(), vectorType, fill);
796 bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity();
800 if (!isTransposeLoad) {
801 if (!isa<VectorType>(loadedElType)) {
805 for (
int i = 0; i < vectorType.getShape()[0]; i++) {
807 rewriter, op.getLoc(), *warpMatrixInfo);
811 Value logicalValueId = arith::ConstantOp::create(
813 rewriter.
getIndexAttr(i * regInfo->elementsPerRegister));
815 getXferIndices<vector::TransferReadOp>(
816 rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
818 Value el = vector::LoadOp::create(rewriter, loc, loadedElType,
819 op.getBase(), newIndices);
820 result = vector::InsertOp::create(rewriter, loc, el, result, i);
823 if (
auto vecType = dyn_cast<VectorType>(loadedElType)) {
824 loadedElType = vecType.getElementType();
826 for (
int i = 0; i < vectorType.getShape()[0]; i++) {
827 for (
unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1];
830 Value logicalValueId = arith::ConstantOp::create(
832 rewriter.
getIndexAttr(i * regInfo->elementsPerRegister + innerIdx));
834 rewriter, op.getLoc(), *warpMatrixInfo);
839 getXferIndices<vector::TransferReadOp>(
840 rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
841 Value el = memref::LoadOp::create(rewriter, op.getLoc(), loadedElType,
842 op.getBase(), newIndices);
843 result = vector::InsertOp::create(rewriter, op.getLoc(), el, result,
849 valueMapping[op.getResult()] = result;
856 dyn_cast_or_null<gpu::AddressSpaceAttr>(type.getMemorySpace());
857 return addressSpace &&
858 addressSpace.getValue() == gpu::GPUDialect::getWorkgroupAddressSpace();
870 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
872 if (
failed(warpMatrixInfo))
875 bool isLdMatrixCompatible =
879 VectorType vecTy = op.getVectorType();
880 int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth();
885 if (!op.getPermutationMap().isMinorIdentity() &&
886 (bitWidth != 16 || vecTy.getDimSize(1) < 8 ||
887 vecTy.getDimSize(0) * bitWidth < 128))
888 isLdMatrixCompatible =
false;
890 if (!isLdMatrixCompatible)
903 auto it = valueMapping.find(op.getVector());
904 if (it == valueMapping.end())
906 Value matrix = it->second;
908 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
910 if (
failed(warpMatrixInfo))
912 FailureOr<nvgpu::FragmentElementInfo> regInfo =
918 Value laneId = gpu::LaneIdOp::create(rewriter, loc,
nullptr);
920 for (
unsigned i = 0; i < vectorType.getShape()[0]; i++) {
921 Value logicalValueId = arith::ConstantOp::create(
923 rewriter.
getIndexAttr(i * regInfo->elementsPerRegister));
925 rewriter, op.getLoc(), *warpMatrixInfo);
932 getXferIndices<vector::TransferWriteOp>(
933 rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
934 vector::StoreOp::create(rewriter, loc, el, op.getBase(), newIndices);
937 LDBG() <<
"erase: " << op;
944 for (
auto attr : arrayAttr)
945 results.push_back(cast<IntegerAttr>(attr).getInt());
950 vector::ExtractStridedSliceOp op,
957 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
959 if (
failed(warpMatrixInfo))
962 FailureOr<nvgpu::FragmentElementInfo> mmaSyncFragmentInfo =
964 if (
failed(mmaSyncFragmentInfo))
968 auto transferReadOp = op.getSource().getDefiningOp<vector::TransferReadOp>();
973 if (
failed(warpMatrixInfo))
976 FailureOr<nvgpu::FragmentElementInfo> ldFragmentInfo =
978 if (
failed(ldFragmentInfo))
982 (mmaSyncFragmentInfo->elementsPerRegister ==
983 ldFragmentInfo->elementsPerRegister) &&
984 "Number of elements per register should be same for load and mma.sync");
987 std::array<int64_t, 2> strides = {1,
989 std::array<int64_t, 2> sliceShape = {
990 mmaSyncFragmentInfo->numRegistersPerFragment,
991 mmaSyncFragmentInfo->elementsPerRegister};
992 auto it = valueMapping.find(transferReadOp);
993 if (it == valueMapping.end())
995 auto sourceVector = it->second;
1008 std::array<int64_t, 2> sliceOffset = {0, 0};
1010 if (offsets[0] && offsets[1])
1011 return op->emitError() <<
"Slicing fragments in 2D is not supported. ";
1013 sliceOffset[0] = (warpVectorShape[0] / offsets[0]);
1014 else if (offsets[1])
1015 sliceOffset[0] = (warpVectorShape[1] / offsets[1]);
1017 Value newOp = vector::ExtractStridedSliceOp::create(
1018 rewriter, loc, sourceVector, sliceOffset, sliceShape, strides);
1020 valueMapping[op] = newOp;
1024 static LogicalResult
1030 auto itA = valueMapping.find(op.getLhs());
1031 auto itB = valueMapping.find(op.getRhs());
1032 auto itC = valueMapping.find(op.getAcc());
1033 if (itA == valueMapping.end() || itB == valueMapping.end() ||
1034 itC == valueMapping.end())
1036 Value opA = itA->second, opB = itB->second, opC = itC->second;
1037 Value matmul = gpu::SubgroupMmaComputeOp::create(rewriter, op.getLoc(),
1041 valueMapping[op.getResult()] = matmul;
1045 static LogicalResult
1051 auto itA = valueMapping.find(op.getLhs());
1052 auto itB = valueMapping.find(op.getRhs());
1053 auto itC = valueMapping.find(op.getAcc());
1054 if (itA == valueMapping.end() || itB == valueMapping.end() ||
1055 itC == valueMapping.end())
1057 Value opA = itA->second, opB = itB->second, opC = itC->second;
1058 int64_t m = cast<VectorType>(op.getLhs().getType()).getShape()[0];
1059 int64_t n = cast<VectorType>(op.getRhs().getType()).getShape()[0];
1060 int64_t k = cast<VectorType>(op.getLhs().getType()).getShape()[1];
1061 Value matmul = nvgpu::MmaSyncOp::create(rewriter, op.getLoc(), opA, opB, opC,
1063 valueMapping[op.getResult()] = matmul;
1068 static LogicalResult
1077 cast<SplatElementsAttr>(op.getValue()).getSplatValue<TypedAttr>();
1078 auto scalarConstant =
1079 arith::ConstantOp::create(rewriter, op.getLoc(), splat.
getType(), splat);
1081 auto vecType = cast<VectorType>(op.getType());
1083 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
1084 auto matrix = gpu::SubgroupMmaConstantMatrixOp::create(rewriter, op.getLoc(),
1085 type, scalarConstant);
1086 valueMapping[op.getResult()] = matrix;
1091 static LogicalResult
1100 auto vecType = op.getResultVectorType();
1102 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
1103 auto matrix = gpu::SubgroupMmaConstantMatrixOp::create(rewriter, op.getLoc(),
1104 type, op.getSource());
1105 valueMapping[op.getResult()] = matrix;
1119 auto operands = llvm::to_vector<4>(loop.getInitArgs());
1120 llvm::append_range(operands, newInitArgs);
1121 scf::ForOp newLoop =
1122 scf::ForOp::create(rewriter, loop.getLoc(), loop.getLowerBound(),
1123 loop.getUpperBound(), loop.getStep(), operands);
1126 newLoop.getRegion().getBlocks().splice(
1127 newLoop.getRegion().getBlocks().begin(), loop.getRegion().getBlocks());
1128 for (
Value operand : newInitArgs)
1129 newLoop.getBody()->addArgument(operand.getType(), operand.getLoc());
1131 for (
auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
1132 loop.getNumResults())))
1135 LDBG() <<
"newLoop now: " << newLoop;
1136 LDBG() <<
"stripped scf.for: " << loop;
1137 LDBG() <<
"erase: " << loop;
1151 auto it = valueMapping.find(operand.value());
1152 if (it == valueMapping.end()) {
1153 LDBG() <<
"no value mapping for: " << operand.value();
1156 argMapping.push_back(std::make_pair(
1157 operand.index(), op.getInitArgs().size() + newOperands.size()));
1158 newOperands.push_back(it->second);
1162 Block &loopBody = *newForOp.getBody();
1163 for (
auto mapping : argMapping) {
1164 valueMapping[newForOp.getResult(mapping.first)] =
1165 newForOp.getResult(mapping.second);
1167 newForOp.getNumInductionVars())] =
1168 loopBody.
getArgument(mapping.second + newForOp.getNumInductionVars());
1171 LDBG() <<
"scf.for to: " << newForOp;
1175 static LogicalResult
1181 auto loop = cast<scf::ForOp>(op->getParentOp());
1182 auto yieldOperands = llvm::to_vector<4>(op.getOperands());
1184 auto it = valueMapping.find(operand.value());
1185 if (it == valueMapping.end())
1189 yieldOperands[operand.index()] = loop.getInitArgs()[operand.index()];
1190 yieldOperands.push_back(it->second);
1192 scf::YieldOp::create(rewriter, op.getLoc(), yieldOperands);
1194 LDBG() <<
"erase: " << op;
1200 static LogicalResult
1202 gpu::MMAElementwiseOp opType,
1209 auto it = valueMapping.find(operand);
1210 if (it == valueMapping.end())
1212 matrixOperands.push_back(it->second);
1214 auto resultType = cast<gpu::MMAMatrixType>(matrixOperands[0].
getType());
1215 if (opType == gpu::MMAElementwiseOp::EXTF) {
1219 vectorType.getElementType(),
1220 resultType.getOperand());
1223 Value newOp = gpu::SubgroupMmaElementwiseOp::create(
1224 rewriter, op->
getLoc(), resultType, matrixOperands, opType);
1232 patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>(
1245 auto globalRes = LogicalResult::success();
1247 LDBG() <<
"Process op: " << *op;
1249 auto res = LogicalResult::success();
1250 if (
auto transferRead = dyn_cast<vector::TransferReadOp>(op)) {
1252 }
else if (
auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) {
1254 }
else if (
auto contractOp = dyn_cast<vector::ContractionOp>(op)) {
1256 }
else if (
auto constantOp = dyn_cast<arith::ConstantOp>(op)) {
1258 }
else if (
auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) {
1260 }
else if (
auto forOp = dyn_cast<scf::ForOp>(op)) {
1262 }
else if (
auto yieldOp = dyn_cast<scf::YieldOp>(op)) {
1268 globalRes = failure();
1279 .Case([&](vector::TransferReadOp transferReadOp) {
1283 .Case([&](vector::TransferWriteOp transferWriteOp) {
1287 .Case([&](vector::ExtractStridedSliceOp extractStridedSliceOp) {
1291 .Case([&](vector::ContractionOp contractionOp) {
1295 .Case([&](scf::ForOp forOp) {
1298 .Case([&](scf::YieldOp yieldOp) {
1301 .Case([&](arith::ConstantOp constOp) {
1305 return op->
emitError() <<
"unhandled vector to mma type: " << *op;
1309 <<
"failed to convert op during vector-to-nvgpu conversion";
1317 struct ConvertVectorToGPUPass
1318 :
public impl::ConvertVectorToGPUBase<ConvertVectorToGPUPass> {
1320 explicit ConvertVectorToGPUPass(
bool useNvGpu_) {
1321 useNvGpu.setValue(useNvGpu_);
1324 void runOnOperation()
override {
1328 return signalPassFailure();
1334 return signalPassFailure();
1344 return std::make_unique<ConvertVectorToGPUPass>(useNvGpu);
static MLIRContext * getContext(OpFoldResult val)
static void contract(RootOrderingGraph &graph, ArrayRef< Value > cycle, const DenseMap< Value, unsigned > &parentDepths, DenseMap< Value, Value > &actualSource, DenseMap< Value, Value > &actualTarget)
Contracts the specified cycle in the given graph in-place.
static Value broadcast(Location loc, Value toBroadcast, unsigned numElements, const TypeConverter &typeConverter, ConversionPatternRewriter &rewriter)
Broadcasts the value to vector with numElements number of elements.
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
static LogicalResult convertTransferWriteOp(RewriterBase &rewriter, vector::TransferWriteOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertForOp(RewriterBase &rewriter, scf::ForOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertContractOp(RewriterBase &rewriter, vector::ContractionOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertContractOpToMmaSync(RewriterBase &rewriter, vector::ContractionOp op, llvm::DenseMap< Value, Value > &valueMapping)
static bool isSharedMemory(MemRefType type)
Return true if this is a shared memory memref type.
static VectorType getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo ®Info)
Returns the vector type which represents a matrix fragment.
static const char * inferFragType(Operation *op)
static bool fpExtendSupportsMMAMatrixType(arith::ExtFOp extOp)
static bool supportsMMaMatrixType(Operation *op, bool useNvGpu)
static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp)
Return true if the constant is a splat to a 2D vector so that it can be converted to a MMA constant m...
static bool contractSupportsMMAMatrixType(vector::ContractionOp contract, bool useNvGpu)
static void populateFromInt64AttrArray(ArrayAttr arrayAttr, SmallVectorImpl< int64_t > &results)
static bool isTransposeMatrixLoadMap(AffineMap permutationMap)
static SetVector< Operation * > getSliceContract(Operation *op, const BackwardSliceOptions &backwardSliceOptions, const ForwardSliceOptions &forwardSliceOptions)
Return an unsorted slice handling scf.for region differently than getSlice.
static LogicalResult convertTransferReadOp(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
static bool integerExtendSupportsMMAMatrixType(ExtOpTy extOp)
Return true if this integer extend op can be folded into a contract op.
static LogicalResult convertTransferReadToLoads(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
Converts a vector.transfer_read operation directly to either a vector.load or a nvgpu....
static LogicalResult convertBroadcastOp(RewriterBase &rewriter, vector::BroadcastOp op, llvm::DenseMap< Value, Value > &valueMapping)
Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op.
static LogicalResult creatLdMatrixCompatibleLoads(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
static FailureOr< bool > isTransposed(vector::TransferReadOp op)
Check if the loaded matrix operand requires transposed.
static scf::ForOp replaceForOpWithNewSignature(RewriterBase &rewriter, scf::ForOp loop, ValueRange newInitArgs)
static bool transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp)
static std::optional< gpu::MMAElementwiseOp > convertElementwiseOpToMMA(Operation *op)
Return the MMA elementwise enum associated with op if it is supported.
static LogicalResult convertElementwiseOp(RewriterBase &rewriter, Operation *op, gpu::MMAElementwiseOp opType, llvm::DenseMap< Value, Value > &valueMapping)
Convert an elementwise op to the equivalent elementwise op on MMA matrix.
static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp)
static bool extractStridedSliceSupportsMMAMatrixType(vector::ExtractStridedSliceOp op)
Returns true if the extract strided slice op is supported with mma.sync path.
static LogicalResult convertConstantOpMmaSync(RewriterBase &rewriter, arith::ConstantOp op, llvm::DenseMap< Value, Value > &valueMapping)
Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static bool elementwiseSupportsMMAMatrixType(Operation *op)
Return true if the op is supported as elementwise op on MMAMatrix type.
static SetVector< Operation * > getOpToConvert(mlir::Operation *op, bool useNvGpu)
static LogicalResult convertConstantOp(RewriterBase &rewriter, arith::ConstantOp op, llvm::DenseMap< Value, Value > &valueMapping)
Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static LogicalResult convertYieldOp(RewriterBase &rewriter, scf::YieldOp op, llvm::DenseMap< Value, Value > &valueMapping)
static LogicalResult convertTransferWriteToStores(RewriterBase &rewriter, vector::TransferWriteOp op, llvm::DenseMap< Value, Value > &valueMapping)
static std::optional< int64_t > getStaticallyKnownRowStride(ShapedType type)
static void getXferIndices(RewriterBase &rewriter, TransferOpType xferOp, AffineMap offsetMap, ArrayRef< Value > dimValues, SmallVector< Value, 4 > &indices)
For a vector TransferOpType xferOp, an empty indices vector, and an AffineMap representing offsets to...
static LogicalResult convertExtractStridedSlice(RewriterBase &rewriter, vector::ExtractStridedSliceOp op, llvm::DenseMap< Value, Value > &valueMapping)
static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp)
Return true if this is a broadcast from scalar to a 2D vector.
static LogicalResult createNonLdMatrixLoads(RewriterBase &rewriter, vector::TransferReadOp op, llvm::DenseMap< Value, Value > &valueMapping)
Base type for affine expression.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
MLIRContext * getContext() const
bool isMinorIdentity() const
Returns true if this affine map is a minor identity, i.e.
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
unsigned getNumDims() const
unsigned getNumResults() const
AffineExpr getResult(unsigned idx) const
static AffineMap getPermutationMap(ArrayRef< unsigned > permutation, MLIRContext *context)
Returns an AffineMap representing a permutation.
AffineMap compose(AffineMap map) const
Returns the AffineMap resulting from composing this with map.
static SmallVector< AffineMap, 4 > inferFromExprList(ArrayRef< ArrayRef< AffineExpr >> exprsList, MLIRContext *context)
Returns a vector of AffineMaps; each with as many results as exprs.size(), as many dims as the larges...
Attributes are known-constant values of operations.
This class represents an argument of a Block.
Block represents an ordered list of Operations.
BlockArgument getArgument(unsigned i)
IntegerAttr getIndexAttr(int64_t value)
AffineExpr getAffineConstantExpr(int64_t constant)
Ty getType(Args &&...args)
Get or construct an instance of the type Ty with provided arguments.
TypedAttr getZeroAttr(Type type)
AffineExpr getAffineDimExpr(unsigned position)
MLIRContext * getContext() const
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
ArrayAttr getAffineMapArrayAttr(ArrayRef< AffineMap > values)
static DenseElementsAttr get(ShapedType type, ArrayRef< Attribute > values)
Constructs a dense elements attribute from an array of element values.
This class coordinates rewriting a piece of IR outside of a pattern rewrite, providing a way to keep ...
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Operation is the basic unit of execution within MLIR.
Value getOperand(unsigned idx)
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
bool hasOneUse()
Returns true if this operation has exactly one use.
OpResult getResult(unsigned idx)
Get the 'idx'th result of this operation.
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Location getLoc()
The source location the operation was defined or derived from.
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
operand_type_range getOperandTypes()
result_type_range getResultTypes()
operand_range getOperands()
Returns an iterator on the underlying Value's.
user_range getUsers()
Returns a range of all users.
user_iterator user_begin()
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
unsigned getNumResults()
Return the number of results held by this operation.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
virtual void eraseBlock(Block *block)
This method erases all operations in a block.
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
virtual void replaceAllUsesWith(Value from, Value to)
Find uses of from and replace them with to.
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class provides an abstraction over the different types of ranges over Values.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
MMAMatrix represents a matrix held by a subgroup for matrix-matrix multiply accumulate operations.
static MMAMatrixType get(ArrayRef< int64_t > shape, Type elementType, StringRef operand)
Get MMAMatrixType and verify construction Invariants.
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands, bool composeAffineMin=false)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
int64_t inferTileWidthInBits(const WarpMatrixInfo &type)
Returns the number of bits in a single tile row.
FailureOr< vector::ContractionOp > getUserContract(Operation *op)
Returns the first user of the op that is vector.contract.
FailureOr< AffineMap > getLaneIdAndValueIdToOperandCoord(OpBuilder &builder, Location loc, const WarpMatrixInfo &fragmentType)
Returns an AffineMap which maps a two dimensions representing (laneId, logicalValueId) and returns tw...
FailureOr< WarpMatrixInfo > getWarpMatrixInfo(Operation *op)
If op is a vector.transfer_write, return the WarpMatrixInfo for the vector operand.
FailureOr< AffineMap > getLaneIdToLdMatrixMatrixCoord(OpBuilder &builder, Location loc, const LdMatrixParams ¶ms)
Returns an AffineMap which maps a single dimension representing the laneId to two results representin...
FailureOr< LdMatrixParams > getLdMatrixParams(const WarpMatrixInfo &type, bool transpose)
Given type that contains info for a warp-matrix operand and whether or not the load is a transposed l...
FailureOr< FragmentElementInfo > getMmaSyncRegisterType(const WarpMatrixInfo &type)
Returns a FragmentElementInfo struct describing the register types for the given matrix fragment type...
bool canLowerToWarpMatrixOperation(vector::TransferReadOp op)
Returns whether the vector.transfer_read instruction can be interpreted as a warp-level cooperative m...
bool isReductionIterator(Attribute attr)
Returns true if attr has "reduction" iterator type semantics.
bool isParallelIterator(Attribute attr)
Returns true if attr has "parallel" iterator type semantics.
void populateVectorContractCanonicalizeMatmulToMMT(RewritePatternSet &patterns, std::function< LogicalResult(vector::ContractionOp)> constraint=[](vector::ContractionOp) { return success();}, PatternBenefit=1)
Canonicalization of a vector.contraction a, b, c with row-major matmul semantics to a contraction wit...
Include the generated interface declarations.
void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns, bool useNvGpu=false)
Patterns to transform vector ops into a canonical form to convert to MMA matrix operations.
LogicalResult getBackwardSlice(Operation *op, SetVector< Operation * > *backwardSlice, const BackwardSliceOptions &options={})
Fills backwardSlice with the computed backward slice (i.e.
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
LogicalResult applyPatternsGreedily(Region ®ion, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
const FrozenRewritePatternSet & patterns
LogicalResult convertVectorToNVVMCompatibleMMASync(RewriterBase &rewriter, Operation *rootOp)
Convert vector ops ops nested under rootOp to vector and GPU operaitons compatible with the nvvm....
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
std::unique_ptr< Pass > createConvertVectorToGPUPass(bool useNvGpu=false)
Convert from vector to GPU ops.
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
LogicalResult convertVectorToMMAOps(RewriterBase &rewriter, Operation *rootOp)
Convert vector ops to MMA matrix operations nested under rootOp.
SetVector< Operation * > topologicalSort(const SetVector< Operation * > &toSort)
Sorts all operations in toSort topologically while also considering region semantics.
void getForwardSlice(Operation *op, SetVector< Operation * > *forwardSlice, const ForwardSliceOptions &options={})
Fills forwardSlice with the computed forward slice (i.e.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
This trait tags element-wise ops on vectors or tensors.
Specifies information about the registers which compose a matrix fragment according to the PTX docume...
int64_t elementsPerRegister
int64_t numRegistersPerFragment