MLIR 22.0.0git
KernelOutlining.cpp
Go to the documentation of this file.
1//===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the GPU dialect kernel outlining pass.
10//
11//===----------------------------------------------------------------------===//
12
14
22#include "mlir/IR/Builders.h"
24#include "mlir/IR/IRMapping.h"
25#include "mlir/IR/Matchers.h"
26#include "mlir/IR/SymbolTable.h"
27#include "mlir/Support/LLVM.h"
29#include <limits>
30
31namespace mlir {
32#define GEN_PASS_DEF_GPULAUNCHSINKINDEXCOMPUTATIONSPASS
33#define GEN_PASS_DEF_GPUKERNELOUTLININGPASS
34#include "mlir/Dialect/GPU/Transforms/Passes.h.inc"
35} // namespace mlir
36
37using namespace mlir;
38
39template <typename OpTy>
40static void createForAllDimensions(OpBuilder &builder, Location loc,
41 SmallVectorImpl<Value> &values) {
42 for (auto dim : {gpu::Dimension::x, gpu::Dimension::y, gpu::Dimension::z})
43 values.push_back(OpTy::create(builder, loc, builder.getIndexType(), dim));
44}
45
46/// Adds operations generating block/thread ids and grid/block dimensions at the
47/// beginning of the `launchFuncOpBody` region. Add mapping from argument in
48/// entry block of `launchOpBody`, to the corresponding result value of the
49/// added operations.
50static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
51 Region &launchOpBody, IRMapping &map,
52 bool hasCluster = false) {
53 OpBuilder builder(loc->getContext());
54 Block &firstBlock = launchOpBody.front();
55 builder.setInsertionPointToStart(&launchFuncOpBody.front());
56 SmallVector<Value> indexOps;
57 // The order is important here, as it must match the order of the arguments
58 createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
59 createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
60 createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
61 createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
62 if (hasCluster) {
63 createForAllDimensions<gpu::ClusterIdOp>(builder, loc, indexOps);
64 createForAllDimensions<gpu::ClusterDimOp>(builder, loc, indexOps);
65 }
66 // Replace the leading 12 function args with the respective thread/block index
67 // operations. Iterate backwards since args are erased and indices change.
68 for (const auto &indexOp : enumerate(indexOps))
69 map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
70}
71
72/// Identifies operations that are beneficial to sink into kernels. These
73/// operations may not have side-effects, as otherwise sinking (and hence
74/// duplicating them) is not legal.
76 return matchPattern(op, m_Constant()) ||
77 isa<memref::DimOp, arith::SelectOp, arith::CmpIOp>(op);
78}
79
80/// For a given operation `op`, computes whether it is beneficial to sink the
81/// operation into the kernel. An operation can be sunk if doing so does not
82/// introduce new kernel arguments. Whether a value is already available in the
83/// kernel (and hence does not introduce new arguments) is checked by
84/// querying `existingDependencies` and `availableValues`.
85/// If an operand is not yet available, we recursively check whether it can be
86/// made available by siking its defining op.
87/// Operations that are indentified for sinking are added to `beneficiaryOps` in
88/// the order they should appear in the kernel. Furthermore, `availableValues`
89/// is updated with results that will be available after sinking the identified
90/// ops.
92 Operation *op, const SetVector<Value> &existingDependencies,
93 SetVector<Operation *> &beneficiaryOps,
94 llvm::SmallPtrSetImpl<Value> &availableValues,
95 llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) {
96 if (beneficiaryOps.count(op))
97 return true;
98
99 if (!isSinkingBeneficiary(op))
100 return false;
101
102 for (Value operand : op->getOperands()) {
103 // It is already visible in the kernel, keep going.
104 if (availableValues.count(operand))
105 continue;
106 // Else check whether it can be made available via sinking or already is a
107 // dependency.
108 Operation *definingOp = operand.getDefiningOp();
109 if ((!definingOp || !extractBeneficiaryOps(definingOp, existingDependencies,
110 beneficiaryOps, availableValues,
111 isSinkingBeneficiary)) &&
112 !existingDependencies.count(operand))
113 return false;
114 }
115 // We will sink the operation, mark its results as now available.
116 beneficiaryOps.insert(op);
117 for (Value result : op->getResults())
118 availableValues.insert(result);
119 return true;
120}
121
123 gpu::LaunchOp launchOp,
124 llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) {
125 assert(isSinkingBeneficiary);
126 Region &launchOpBody = launchOp.getBody();
127
128 // Identify uses from values defined outside of the scope of the launch
129 // operation.
130 SetVector<Value> sinkCandidates;
131 getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);
132
133 SetVector<Operation *> toBeSunk;
134 llvm::SmallPtrSet<Value, 4> availableValues;
135 for (Value operand : sinkCandidates) {
136 Operation *operandOp = operand.getDefiningOp();
137 if (!operandOp)
138 continue;
139 extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues,
140 isSinkingBeneficiary);
141 }
142
143 // Insert operations so that the defs get cloned before uses.
144 IRMapping map;
145 OpBuilder builder(launchOpBody);
146 for (Operation *op : toBeSunk) {
147 Operation *clonedOp = builder.clone(*op, map);
148 // Only replace uses within the launch op.
149 for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
150 replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
151 launchOp.getBody());
152 }
153 return success();
154}
155
156/// Return the provided KernelDim3 as an array of i32 constants if possible.
158 SmallVector<int32_t, 3> constants;
159 MLIRContext *ctx = dims.x.getContext();
160 for (Value v : {dims.x, dims.y, dims.z}) {
161 APInt constValue;
162 if (!matchPattern(v, m_ConstantInt(&constValue)))
163 return nullptr;
164 // In the event someone called for a too-large block or grid dimension,
165 // don't set bounds as it is likely to cause more confusing behavior.
166 if (constValue.ugt(std::numeric_limits<uint32_t>::max()))
167 return nullptr;
168 constants.push_back(
169 constValue.getLimitedValue(std::numeric_limits<uint32_t>::max()));
170 }
171 return DenseI32ArrayAttr::get(ctx, constants);
172}
173
174/// Outline the `gpu.launch` operation body into a kernel function. Replace
175/// `gpu.terminator` operations by `gpu.return` in the generated function.
176/// Set block and grid size bounds if known.
177static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
178 StringRef kernelFnName,
179 SetVector<Value> &operands) {
180 Location loc = launchOp.getLoc();
181 // Create a builder with no insertion point, insertion will happen separately
182 // due to symbol table manipulation.
183 OpBuilder builder(launchOp.getContext());
184 Region &launchOpBody = launchOp.getBody();
185
186 // Identify uses from values defined outside of the scope of the launch
187 // operation.
188 getUsedValuesDefinedAbove(launchOpBody, operands);
189
190 // Create the gpu.func operation.
191 SmallVector<Type, 4> kernelOperandTypes;
192 kernelOperandTypes.reserve(operands.size());
193 for (Value operand : operands) {
194 kernelOperandTypes.push_back(operand.getType());
195 }
196 FunctionType type =
197 FunctionType::get(launchOp.getContext(), kernelOperandTypes, {});
198 auto outlinedFunc = gpu::GPUFuncOp::create(
199 builder, loc, kernelFnName, type,
200 TypeRange(ValueRange(launchOp.getWorkgroupAttributions())),
201 TypeRange(ValueRange(launchOp.getPrivateAttributions())));
202 outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
203 builder.getUnitAttr());
204
205 // If we can infer bounds on the grid and/or block sizes from the arguments
206 // to the launch op, propagate them to the generated kernel. This is safe
207 // because multiple launches with the same body are not deduplicated.
208 if (auto blockBounds =
209 maybeConstantDimsAttr(launchOp.getBlockSizeOperandValues()))
210 outlinedFunc.setKnownBlockSizeAttr(blockBounds);
211 if (auto gridBounds =
212 maybeConstantDimsAttr(launchOp.getGridSizeOperandValues()))
213 outlinedFunc.setKnownGridSizeAttr(gridBounds);
214
215 IRMapping map;
216
217 // Map the arguments corresponding to the launch parameters like blockIdx,
218 // threadIdx, etc. If cluster is present, then we also generate clusterIdx and
219 // clusterDim.
220 Region &outlinedFuncBody = outlinedFunc.getBody();
221 injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map,
222 launchOp.hasClusterSize());
223
224 // Map memory attributions from the LaunOp op to the GPUFuncOp attributions.
225 for (const auto &[launchArg, funcArg] :
226 llvm::zip(launchOp.getWorkgroupAttributions(),
227 outlinedFunc.getWorkgroupAttributions()))
228 map.map(launchArg, funcArg);
229 for (const auto &[launchArg, funcArg] :
230 llvm::zip(launchOp.getPrivateAttributions(),
231 outlinedFunc.getPrivateAttributions()))
232 map.map(launchArg, funcArg);
233
234 // Map arguments from gpu.launch region to the arguments of the gpu.func
235 // operation.
236 Block &entryBlock = outlinedFuncBody.front();
237 for (const auto &operand : enumerate(operands))
238 map.map(operand.value(), entryBlock.getArgument(operand.index()));
239
240 // Clone the region of the gpu.launch operation into the gpu.func operation.
241 launchOpBody.cloneInto(&outlinedFuncBody, map);
242
243 // Replace the terminator op with returns.
244 for (Block &block : launchOpBody) {
245 Block *clonedBlock = map.lookup(&block);
246 auto terminator = dyn_cast<gpu::TerminatorOp>(clonedBlock->getTerminator());
247 if (!terminator)
248 continue;
249 OpBuilder replacer(terminator);
250 gpu::ReturnOp::create(replacer, terminator->getLoc());
251 terminator->erase();
252 }
253
254 // Splice now the entry block of the gpu.launch operation at the end of the
255 // gpu.func entry block and erase the redundant block.
256 Block *clonedLaunchOpEntry = map.lookup(&launchOpBody.front());
257 entryBlock.getOperations().splice(entryBlock.getOperations().end(),
258 clonedLaunchOpEntry->getOperations());
259 clonedLaunchOpEntry->erase();
260
261 return outlinedFunc;
262}
263
264gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
265 StringRef kernelFnName,
267 DenseSet<Value> inputOperandSet;
268 inputOperandSet.insert_range(operands);
269 SetVector<Value> operandSet(llvm::from_range, operands);
270 auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
271 for (auto operand : operandSet) {
272 if (!inputOperandSet.count(operand))
273 operands.push_back(operand);
275 return funcOp;
278/// Replace `gpu.launch` operations with an `gpu.launch_func` operation
279/// launching `kernelFunc`. The kernel func contains the body of the
280/// `gpu.launch` with constant region arguments inlined.
281static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
282 gpu::GPUFuncOp kernelFunc,
283 ValueRange operands) {
284 OpBuilder builder(launchOp);
285 // The launch op has an optional dynamic shared memory size. If it doesn't
286 // exist, we use zero.
287 Value asyncToken = launchOp.getAsyncToken();
288 std::optional<gpu::KernelDim3> clusterSize =
289 launchOp.getClusterSizeOperandValues();
290 auto launchFunc = gpu::LaunchFuncOp::create(
291 builder, launchOp.getLoc(), kernelFunc,
292 launchOp.getGridSizeOperandValues(), launchOp.getBlockSizeOperandValues(),
293 launchOp.getDynamicSharedMemorySize(), operands,
294 asyncToken ? asyncToken.getType() : nullptr,
295 launchOp.getAsyncDependencies(), clusterSize);
296 launchOp.replaceAllUsesWith(launchFunc);
297 launchOp.erase();
299
300namespace {
301/// Pass that moves ops which are likely an index computation into gpu.launch
302/// body.
303class GpuLaunchSinkIndexComputationsPass
305 GpuLaunchSinkIndexComputationsPass> {
306public:
307 void runOnOperation() override {
309 if (op->walk([](gpu::LaunchOp launch) {
310 // Pull in instructions that can be sunk
311 if (failed(sinkOperationsIntoLaunchOp(launch,
312 isLikelyAnIndexComputation)))
313 return WalkResult::interrupt();
314
315 return WalkResult::advance();
316 }).wasInterrupted())
319};
320
321/// Pass that moves the kernel of each LaunchOp into its separate nested module.
322///
323/// This pass moves the kernel code of each LaunchOp into a function created
324/// inside a nested module. It also creates an external function of the same
325/// name in the parent module.
326///
327/// The gpu.modules are intended to be compiled to a cubin blob independently in
328/// a separate pass. The external functions can then be annotated with the
329/// symbol of the cubin accessor function.
330class GpuKernelOutliningPass
331 : public impl::GpuKernelOutliningPassBase<GpuKernelOutliningPass> {
332public:
333 using Base::Base;
334
335 LogicalResult initialize(MLIRContext *context) override {
336 // Initialize the data layout specification from the data layout string.
337 if (!dataLayoutStr.empty()) {
338 Attribute resultAttr = mlir::parseAttribute(dataLayoutStr, context);
339 if (!resultAttr)
340 return failure();
341
342 dataLayoutSpec = dyn_cast<DataLayoutSpecInterface>(resultAttr);
343 if (!dataLayoutSpec)
344 return failure();
345 }
346
347 return success();
348 }
349
350 void runOnOperation() override {
351 SymbolTable symbolTable(getOperation());
352 bool modified = false;
353 for (auto func : getOperation().getOps<SymbolOpInterface>()) {
354 // Insert just after the function.
355 Block::iterator insertPt(func->getNextNode());
356 auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
357 SetVector<Value> operands;
358 std::string kernelFnName;
359 if (op.getFunction()) {
360 kernelFnName = op.getFunction()->str();
361 } else {
362 kernelFnName =
363 Twine(op->getParentOfType<SymbolOpInterface>().getName(),
364 "_kernel")
365 .str();
368 gpu::GPUFuncOp outlinedFunc =
369 outlineKernelFuncImpl(op, kernelFnName, operands);
370
371 // Create nested module and insert outlinedFunc. The module will
372 // originally get the same name as the function, but may be renamed on
373 // insertion into the parent module.
374 auto kernelModule = createKernelModule(op, outlinedFunc, symbolTable);
375 symbolTable.insert(kernelModule, insertPt);
376
377 // Potentially changes signature, pulling in constants.
378 convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
379 modified = true;
381 });
382 if (funcWalkResult.wasInterrupted())
384 }
385
386 // If any new module was inserted in this module, annotate this module as
387 // a container module.
388 if (modified)
389 getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
390 UnitAttr::get(&getContext()));
392
393private:
394 /// Returns a gpu.module containing kernelFunc and all callees (recursive).
395 gpu::GPUModuleOp createKernelModule(gpu::LaunchOp gpuLaunchOp,
396 gpu::GPUFuncOp kernelFunc,
397 const SymbolTable &parentSymbolTable) {
398 // TODO: This code cannot use an OpBuilder because it must be inserted into
399 // a SymbolTable by the caller. SymbolTable needs to be refactored to
400 // prevent manual building of Ops with symbols in code using SymbolTables
401 // and then this needs to use the OpBuilder.
402 auto *context = getOperation().getContext();
403 OpBuilder builder(context);
404 std::string kernelModuleName;
405 gpu::GPUModuleOp kernelModule;
406 if (gpuLaunchOp.getModule()) {
407 kernelModuleName = gpuLaunchOp.getModule()->str();
408 kernelModule =
409 parentSymbolTable.lookup<gpu::GPUModuleOp>(kernelModuleName);
410 } else {
411 kernelModuleName = kernelFunc.getName();
412 }
413
414 // Check if the module already exists in the symbol table
415 if (!kernelModule) {
416 // If not found, create a new GPU module
417 kernelModule = gpu::GPUModuleOp::create(builder, kernelFunc.getLoc(),
418 kernelModuleName);
419 }
420
421 // If a valid data layout spec was provided, attach it to the kernel module.
422 // Otherwise, the default data layout will be used.
423 if (dataLayoutSpec)
424 kernelModule->setAttr(DLTIDialect::kDataLayoutAttrName, dataLayoutSpec);
425
426 SymbolTable symbolTable(kernelModule);
427 symbolTable.insert(kernelFunc);
428
429 SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
430 while (!symbolDefWorklist.empty()) {
431 if (std::optional<SymbolTable::UseRange> symbolUses =
432 SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
433 for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
434 StringAttr symbolName = symbolUse.getSymbolRef().getLeafReference();
435 if (symbolTable.lookup(symbolName))
436 continue;
437
438 Operation *symbolDefClone =
439 parentSymbolTable.lookup(symbolName)->clone();
440 symbolDefWorklist.push_back(symbolDefClone);
441 symbolTable.insert(symbolDefClone);
442 }
443 }
444 }
445
446 return kernelModule;
447 }
448
449 DataLayoutSpecInterface dataLayoutSpec;
450};
451
452} // namespace
return success()
LogicalResult initialize(unsigned origNumLoops, ArrayRef< ReassociationIndices > foldedIterationDims)
static DenseI32ArrayAttr maybeConstantDimsAttr(gpu::KernelDim3 dims)
Return the provided KernelDim3 as an array of i32 constants if possible.
static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp, StringRef kernelFnName, SetVector< Value > &operands)
Outline the gpu.launch operation body into a kernel function.
static bool isLikelyAnIndexComputation(Operation *op)
Identifies operations that are beneficial to sink into kernels.
static void convertToLaunchFuncOp(gpu::LaunchOp launchOp, gpu::GPUFuncOp kernelFunc, ValueRange operands)
Replace gpu.launch operations with an gpu.launch_func operation launching kernelFunc.
static void createForAllDimensions(OpBuilder &builder, Location loc, SmallVectorImpl< Value > &values)
static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody, Region &launchOpBody, IRMapping &map, bool hasCluster=false)
Adds operations generating block/thread ids and grid/block dimensions at the beginning of the launchF...
static bool extractBeneficiaryOps(Operation *op, const SetVector< Value > &existingDependencies, SetVector< Operation * > &beneficiaryOps, llvm::SmallPtrSetImpl< Value > &availableValues, llvm::function_ref< bool(Operation *)> isSinkingBeneficiary)
For a given operation op, computes whether it is beneficial to sink the operation into the kernel.
b getContext())
Attributes are known-constant values of operations.
Definition Attributes.h:25
MLIRContext * getContext() const
Return the context this attribute belongs to.
Block represents an ordered list of Operations.
Definition Block.h:33
OpListType::iterator iterator
Definition Block.h:140
BlockArgument getArgument(unsigned i)
Definition Block.h:129
void erase()
Unlink this Block from its parent region and delete it.
Definition Block.cpp:66
OpListType & getOperations()
Definition Block.h:137
Operation * getTerminator()
Get the terminator operation of this block.
Definition Block.cpp:244
UnitAttr getUnitAttr()
Definition Builders.cpp:98
IndexType getIndexType()
Definition Builders.cpp:51
This is a utility class for mapping one set of IR entities to another.
Definition IRMapping.h:26
auto lookup(T from) const
Lookup a mapped value within the map.
Definition IRMapping.h:72
void map(Value from, Value to)
Inserts a new mapping for 'from' to 'to'.
Definition IRMapping.h:30
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition Location.h:76
MLIRContext is the top-level object for a collection of MLIR operations.
Definition MLIRContext.h:63
This class helps build Operations.
Definition Builders.h:207
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition Builders.cpp:562
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition Builders.h:431
Operation is the basic unit of execution within MLIR.
Definition Operation.h:88
Operation * clone(IRMapping &mapper, CloneOptions options=CloneOptions::all())
Create a deep copy of this operation, remapping any operands that use values outside of the operation...
operand_range getOperands()
Returns an iterator on the underlying Value's.
Definition Operation.h:378
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Definition Operation.h:797
result_range getResults()
Definition Operation.h:415
virtual void runOnOperation()=0
The polymorphic API that runs the pass over the currently held operation.
void signalPassFailure()
Signal that some invariant was broken when running.
Definition Pass.h:225
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Definition Region.h:26
Block & front()
Definition Region.h:65
void cloneInto(Region *dest, IRMapping &mapper)
Clone the internal blocks from this region into dest.
Definition Region.cpp:70
This class allows for representing and managing the symbol table used by operations with the 'SymbolT...
Definition SymbolTable.h:24
Operation * lookup(StringRef name) const
Look up a symbol with the specified name, returning null if no such name exists.
static std::optional< UseRange > getSymbolUses(Operation *from)
Get an iterator range for all of the uses, for any symbol, that are nested within the given operation...
This class provides an abstraction over the various different ranges of value types.
Definition TypeRange.h:37
This class provides an abstraction over the different types of ranges over Values.
Definition ValueRange.h:387
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
MLIRContext * getContext() const
Utility to get the associated MLIRContext that this value is defined in.
Definition Value.h:108
Type getType() const
Return the type of this value.
Definition Value.h:105
static WalkResult advance()
Definition WalkResult.h:47
static DenseArrayAttrImpl get(MLIRContext *context, ArrayRef< int32_t > content)
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition Matchers.h:490
detail::constant_int_value_binder m_ConstantInt(IntegerAttr::ValueType *bind_value)
Matches a constant holding a scalar/vector/tensor integer (splat) and writes the integer value to bin...
Definition Matchers.h:527
void replaceAllUsesInRegionWith(Value orig, Value replacement, Region &region)
Replace all uses of orig within the given region with replacement.
llvm::DenseSet< ValueT, ValueInfoT > DenseSet
Definition LLVM.h:128
Attribute parseAttribute(llvm::StringRef attrStr, MLIRContext *context, Type type={}, size_t *numRead=nullptr, bool isKnownNullTerminated=false)
This parses a single MLIR attribute to an MLIR context if it was valid.
llvm::SetVector< T, Vector, Set, N > SetVector
Definition LLVM.h:131
detail::DenseArrayAttrImpl< int32_t > DenseI32ArrayAttr
void getUsedValuesDefinedAbove(Region &region, Region &limit, SetVector< Value > &values)
Fill values with a list of values defined at the ancestors of the limit region and used within region...
LogicalResult sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp, llvm::function_ref< bool(Operation *)> isSinkingBeneficiary)
Sink operations into the launchOp to reduce the number of values that are used within the region of t...
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
Definition Matchers.h:369
gpu::GPUFuncOp outlineKernelFunc(gpu::LaunchOp launchOp, StringRef kernelFnName, SmallVectorImpl< Value > &operands)
Get a gpu.func created from outlining the region of a gpu.launch op with the given kernelFnName.
Utility class for the GPU dialect to represent triples of Values accessible through ....
Definition GPUDialect.h:39