27 #include "llvm/ADT/SetOperations.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/TypeSwitch.h"
30 #include "llvm/Support/raw_ostream.h"
35 #include "mlir/Dialect/Shape/IR/ShapeOpsDialect.cpp.inc"
38 #include "ShapeCanonicalization.inc"
46 auto ranked = llvm::dyn_cast<RankedTensorType>(type);
47 return ranked && ranked.getRank() == 1 && ranked.getElementType().isIndex();
53 auto type = llvm::cast<ShapedType>(inputOp.getArg().getType());
56 llvm::append_range(shapeValues, type.getShape());
61 llvm::append_range(shapeValues, attr.getValues<int64_t>());
68 return llvm::any_of(operandTypes,
69 llvm::IsaPred<SizeType, ShapeType, ValueShapeType>);
76 if (!llvm::isa<SizeType>(resultTy))
78 <<
"if at least one of the operands can hold error values then "
79 "the result must be of type `size` to propagate them";
88 if (!llvm::isa<ShapeType>(resultTy))
90 <<
"if at least one of the operands can hold error values then "
91 "the result must be of type `shape` to propagate them";
96 template <
typename... Ty>
98 return typeRange.size() == 1 && llvm::isa<Ty...>(typeRange.front());
101 template <
typename... Ty,
typename... ranges>
132 void ShapeDialect::initialize() {
135 #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"
138 #define GET_TYPEDEF_LIST
139 #include "mlir/Dialect/Shape/IR/ShapeOpsTypes.cpp.inc"
141 addInterfaces<ShapeInlinerInterface>();
145 allowUnknownOperations();
146 declarePromisedInterfaces<bufferization::BufferizableOpInterface, AssumingOp,
153 if (
auto poison = dyn_cast<ub::PoisonAttr>(value))
154 return builder.
create<ub::PoisonOp>(loc, type, poison);
157 return builder.
create<ConstShapeOp>(
158 loc, type, llvm::cast<DenseIntElementsAttr>(value));
159 if (llvm::isa<SizeType>(type))
160 return builder.
create<ConstSizeOp>(loc, type,
161 llvm::cast<IntegerAttr>(value));
162 if (llvm::isa<WitnessType>(type))
163 return builder.
create<ConstWitnessOp>(loc, type,
164 llvm::cast<BoolAttr>(value));
166 return arith::ConstantOp::materialize(builder, value, type, loc);
169 LogicalResult ShapeDialect::verifyOperationAttribute(
Operation *op,
172 if (attribute.
getName() ==
"shape.lib") {
175 "shape.lib attribute may only be on op implementing SymbolTable");
177 if (
auto symbolRef = llvm::dyn_cast<SymbolRefAttr>(attribute.
getValue())) {
180 return op->
emitError(
"shape function library ")
181 << symbolRef <<
" not found";
182 return isa<shape::FunctionLibraryOp>(symbol)
185 << symbolRef <<
" required to be shape function library";
188 if (
auto arr = llvm::dyn_cast<ArrayAttr>(attribute.
getValue())) {
192 for (
auto it : arr) {
193 if (!llvm::isa<SymbolRefAttr>(it))
195 "only SymbolRefAttr allowed in shape.lib attribute array");
197 auto shapeFnLib = dyn_cast<shape::FunctionLibraryOp>(
201 << it <<
" does not refer to FunctionLibraryOp";
202 for (
auto mapping : shapeFnLib.getMapping()) {
203 if (!key.insert(mapping.getName()).second) {
204 return op->
emitError(
"only one op to shape mapping allowed, found "
206 << mapping.getName() <<
"`";
213 return op->
emitError(
"only SymbolRefAttr or array of SymbolRefAttrs "
214 "allowed as shape.lib attribute");
227 if (adaptor.getInputs().back())
228 return adaptor.getInputs().back();
264 bool yieldsResults = !getResults().empty();
266 p <<
" " << getWitness();
268 p <<
" -> (" << getResultTypes() <<
")";
281 LogicalResult matchAndRewrite(AssumingOp op,
283 auto witness = op.getWitness().getDefiningOp<ConstWitnessOp>();
284 if (!witness || !witness.getPassingAttr())
287 AssumingOp::inlineRegionIntoParent(op, rewriter);
292 struct AssumingOpRemoveUnusedResults :
public OpRewritePattern<AssumingOp> {
295 LogicalResult matchAndRewrite(AssumingOp op,
297 Block *body = op.getBody();
298 auto yieldOp = llvm::cast<AssumingYieldOp>(body->
getTerminator());
302 for (
auto [opResult, yieldOperand] :
303 llvm::zip(op.getResults(), yieldOp.getOperands())) {
304 if (!opResult.getUses().empty()) {
305 newYieldOperands.push_back(yieldOperand);
310 if (newYieldOperands.size() == yieldOp->getNumOperands())
319 auto newOp = rewriter.
create<AssumingOp>(
320 op.getLoc(), newYieldOp->getOperandTypes(), op.getWitness());
321 newOp.getDoRegion().takeBody(op.getDoRegion());
325 auto src = newOp.getResults().begin();
326 for (
auto it : op.getResults()) {
327 if (it.getUses().empty())
328 replacementValues.push_back(
nullptr);
330 replacementValues.push_back(*src++);
332 rewriter.
replaceOp(op, replacementValues);
340 patterns.add<AssumingOpRemoveUnusedResults, AssumingWithTrue>(context);
344 void AssumingOp::getSuccessorRegions(
357 void AssumingOp::inlineRegionIntoParent(AssumingOp &op,
360 auto *assumingBlock = op.getBody();
362 auto *blockAfterAssuming =
363 rewriter.
splitBlock(blockBeforeAssuming, initPosition);
366 auto &yieldOp = assumingBlock->
back();
368 rewriter.
replaceOp(op, yieldOp.getOperands());
373 rewriter.
mergeBlocks(assumingBlock, blockBeforeAssuming);
374 rewriter.
mergeBlocks(blockAfterAssuming, blockBeforeAssuming);
377 void AssumingOp::build(
391 for (
Value v : yieldValues)
392 assumingTypes.push_back(v.getType());
400 LogicalResult mlir::shape::AddOp::inferReturnTypes(
401 MLIRContext *context, std::optional<Location> location,
403 if (llvm::isa<SizeType>(adaptor.getLhs().getType()) ||
404 llvm::isa<SizeType>(adaptor.getRhs().getType()))
413 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
416 OpFoldResult mlir::shape::AddOp::fold(FoldAdaptor adaptor) {
421 return constFoldBinaryOp<IntegerAttr>(
422 adaptor.getOperands(),
423 [](APInt a,
const APInt &b) { return std::move(a) + b; });
445 LogicalResult matchAndRewrite(AssumingAllOp op,
449 for (
Value operand : op.getInputs()) {
450 if (
auto assumeAll = operand.getDefiningOp<AssumingAllOp>())
451 operands.append(assumeAll.operand_begin(), assumeAll->operand_end());
453 operands.push_back(operand);
457 if (operands.size() == op.getNumOperands())
487 struct AssumingAllOfCstrBroadcastable :
public OpRewritePattern<AssumingAllOp> {
490 LogicalResult matchAndRewrite(AssumingAllOp op,
494 for (
Value operand : op.getInputs()) {
497 auto broadcastable = operand.getDefiningOp<CstrBroadcastableOp>();
501 operands.insert(broadcastable);
505 if (operands.size() <= 1)
510 for (
auto cstr : operands) {
512 shapes.emplace_back(cstr, std::move(shapesSet));
516 llvm::sort(shapes, [](
auto a,
auto b) {
517 return a.first.getNumOperands() > b.first.getNumOperands();
526 for (
unsigned i = 0; i < shapes.size(); ++i) {
527 auto isSubset = [&](
auto pair) {
528 return llvm::set_is_subset(pair.second, shapes[i].second);
532 auto *it = std::remove_if(shapes.begin() + i + 1, shapes.end(), isSubset);
533 for (
auto *it0 = it; it0 < shapes.end(); ++it0)
534 markedForErase.push_back(it0->first);
535 shapes.erase(it, shapes.end());
539 if (markedForErase.empty())
544 for (
auto &shape : shapes)
545 uniqueConstraints.push_back(shape.first.getResult());
551 for (
auto &op : markedForErase)
559 struct AssumingAllToCstrEqCanonicalization
563 LogicalResult matchAndRewrite(AssumingAllOp op,
566 for (
Value w : op.getInputs()) {
567 auto cstrEqOp = w.getDefiningOp<CstrEqOp>();
570 bool disjointShapes = llvm::none_of(cstrEqOp.getShapes(), [&](
Value s) {
571 return llvm::is_contained(shapes, s);
573 if (!shapes.empty() && !cstrEqOp.getShapes().empty() && disjointShapes)
575 shapes.append(cstrEqOp.getShapes().begin(), cstrEqOp.getShapes().end());
582 template <
typename OpTy>
586 LogicalResult matchAndRewrite(OpTy op,
592 if (unique.size() < op.getNumOperands()) {
594 unique.takeVector(), op->getAttrs());
606 .add<MergeAssumingAllOps, AssumingAllOneOp,
607 AssumingAllOfCstrBroadcastable, AssumingAllToCstrEqCanonicalization,
608 RemoveDuplicateOperandsPattern<AssumingAllOp>>(context);
614 for (
int idx = adaptor.getInputs().size() - 1; idx >= 0; idx--) {
622 getOperation()->eraseOperand(idx);
625 if (!llvm::cast<BoolAttr>(a).getValue())
634 if (getNumOperands() == 0)
635 return emitOpError(
"no operands specified");
645 if (getShapes().size() == 1) {
649 return getShapes().front();
653 if (getShapes().size() > 2)
656 if (!adaptor.getShapes()[0] || !adaptor.getShapes()[1])
658 auto lhsShape = llvm::to_vector<6>(
659 llvm::cast<DenseIntElementsAttr>(adaptor.getShapes()[0])
660 .getValues<int64_t>());
661 auto rhsShape = llvm::to_vector<6>(
662 llvm::cast<DenseIntElementsAttr>(adaptor.getShapes()[1])
663 .getValues<int64_t>());
680 template <
typename OpTy>
684 LogicalResult matchAndRewrite(OpTy op,
686 auto isPotentiallyNonEmptyShape = [](
Value shape) {
687 if (
auto extentTensorTy =
688 llvm::dyn_cast<RankedTensorType>(shape.getType())) {
689 if (extentTensorTy.getDimSize(0) == 0)
692 if (
auto constShape = shape.getDefiningOp<ConstShapeOp>()) {
693 if (constShape.getShape().empty())
698 auto newOperands = llvm::filter_to_vector<8>(op->getOperands(),
699 isPotentiallyNonEmptyShape);
703 if (newOperands.empty()) {
710 if (newOperands.size() < op.getNumOperands()) {
720 struct BroadcastForwardSingleOperandPattern
724 LogicalResult matchAndRewrite(BroadcastOp op,
726 if (op.getNumOperands() != 1)
728 Value replacement = op.getShapes().front();
731 if (replacement.
getType() != op.getType()) {
733 if (llvm::isa<ShapeType>(op.getType())) {
734 replacement = rewriter.
create<FromExtentTensorOp>(loc, replacement);
736 assert(!llvm::isa<ShapeType>(op.getType()) &&
737 !llvm::isa<ShapeType>(replacement.
getType()) &&
738 "expect extent tensor cast");
740 rewriter.
create<tensor::CastOp>(loc, op.getType(), replacement);
749 struct BroadcastFoldConstantOperandsPattern
753 LogicalResult matchAndRewrite(BroadcastOp op,
757 for (
Value shape : op.getShapes()) {
758 if (
auto constShape = shape.getDefiningOp<ConstShapeOp>()) {
762 llvm::to_vector<8>(constShape.getShape().getValues<int64_t>()),
763 newFoldedConstantShape)) {
764 foldedConstantShape = newFoldedConstantShape;
768 newShapeOperands.push_back(shape);
772 if (op.getNumOperands() - newShapeOperands.size() < 2)
776 {
static_cast<int64_t
>(foldedConstantShape.size())},
778 newShapeOperands.push_back(rewriter.
create<ConstShapeOp>(
779 op.getLoc(), foldedConstantOperandsTy,
787 template <
typename OpTy>
788 struct CanonicalizeCastExtentTensorOperandsPattern
792 LogicalResult matchAndRewrite(OpTy op,
795 bool anyChange =
false;
796 auto canonicalizeOperand = [&](
Value operand) ->
Value {
797 if (
auto castOp = operand.getDefiningOp<tensor::CastOp>()) {
799 bool isInformationLoosingCast =
800 llvm::cast<RankedTensorType>(castOp.getType()).isDynamicDim(0);
801 if (isInformationLoosingCast) {
803 return castOp.getSource();
808 auto newOperands = llvm::to_vector<8>(
809 llvm::map_range(op.getOperands(), canonicalizeOperand));
819 struct BroadcastConcretizeResultTypePattern
823 LogicalResult matchAndRewrite(BroadcastOp op,
826 auto resultTy = llvm::dyn_cast<RankedTensorType>(op.getType());
827 if (!resultTy || !resultTy.isDynamicDim(0))
832 for (
Value shape : op.getShapes()) {
833 if (
auto extentTensorTy =
834 llvm::dyn_cast<RankedTensorType>(shape.getType())) {
837 if (extentTensorTy.isDynamicDim(0))
839 maxRank =
std::max(maxRank, extentTensorTy.getDimSize(0));
843 auto newOp = rewriter.
create<BroadcastOp>(
854 patterns.add<BroadcastConcretizeResultTypePattern,
855 BroadcastFoldConstantOperandsPattern,
856 BroadcastForwardSingleOperandPattern,
857 CanonicalizeCastExtentTensorOperandsPattern<BroadcastOp>,
858 RemoveDuplicateOperandsPattern<BroadcastOp>,
859 RemoveEmptyShapeOperandsPattern<BroadcastOp>>(context);
867 if (!adaptor.getLhs() || !adaptor.getRhs())
869 auto lhsShape = llvm::to_vector<6>(
870 llvm::cast<DenseIntElementsAttr>(adaptor.getLhs()).getValues<int64_t>());
871 auto rhsShape = llvm::to_vector<6>(
872 llvm::cast<DenseIntElementsAttr>(adaptor.getRhs()).getValues<int64_t>());
874 resultShape.append(lhsShape.begin(), lhsShape.end());
875 resultShape.append(rhsShape.begin(), rhsShape.end());
888 interleaveComma(
getShape().getValues<int64_t>(), p);
903 auto extentsArray = llvm::dyn_cast<ArrayAttr>(extentsRaw);
908 IntegerAttr attr = llvm::dyn_cast<IntegerAttr>(extent);
911 ints.push_back(attr.getInt());
918 result.
types.push_back(resultTy);
922 OpFoldResult ConstShapeOp::fold(FoldAdaptor) {
return getShapeAttr(); }
926 patterns.add<TensorCastConstShape>(context);
929 LogicalResult mlir::shape::ConstShapeOp::inferReturnTypes(
930 MLIRContext *context, std::optional<Location> location,
933 const Properties prop = adaptor.getProperties();
935 {
static_cast<int64_t
>(prop.shape.size())}, b.getIndexType())});
939 bool mlir::shape::ConstShapeOp::isCompatibleReturnTypes(
TypeRange l,
941 if (l.size() != 1 || r.size() != 1)
944 Type lhs = l.front();
945 Type rhs = r.front();
947 if (llvm::isa<ShapeType>(lhs) || llvm::isa<ShapeType>(rhs))
957 void CstrBroadcastableOp::getCanonicalizationPatterns(
962 patterns.add<CanonicalizeCastExtentTensorOperandsPattern<CstrBroadcastableOp>,
963 CstrBroadcastableEqOps,
964 RemoveDuplicateOperandsPattern<CstrBroadcastableOp>,
965 RemoveEmptyShapeOperandsPattern<CstrBroadcastableOp>>(context);
971 bool nonScalarSeen =
false;
973 if (!a || llvm::cast<DenseIntElementsAttr>(a).
getNumElements() != 0) {
976 nonScalarSeen =
true;
982 OpFoldResult CstrBroadcastableOp::fold(FoldAdaptor adaptor) {
989 for (
const auto &operand : adaptor.getShapes()) {
992 extents.push_back(llvm::to_vector<6>(
993 llvm::cast<DenseIntElementsAttr>(operand).getValues<int64_t>()));
1003 for (
auto shapeValue : getShapes()) {
1004 extents.emplace_back();
1005 if (failed(
getShapeVec(shapeValue, extents.back())))
1019 if (getNumOperands() < 2)
1020 return emitOpError(
"required at least 2 input shapes");
1031 patterns.add<CstrEqEqOps>(context);
1035 if (llvm::all_of(adaptor.getShapes(), [&](
Attribute a) {
1036 return a && a == adaptor.getShapes().front();
1055 OpFoldResult ConstSizeOp::fold(FoldAdaptor) {
return getValueAttr(); }
1057 void ConstSizeOp::getAsmResultNames(
1060 llvm::raw_svector_ostream os(buffer);
1061 os <<
"c" << getValue();
1062 setNameFn(getResult(), os.str());
1069 OpFoldResult ConstWitnessOp::fold(FoldAdaptor) {
return getPassingAttr(); }
1075 OpFoldResult CstrRequireOp::fold(FoldAdaptor adaptor) {
1076 return adaptor.getPred();
1083 std::optional<int64_t> DimOp::getConstantIndex() {
1084 if (
auto constSizeOp =
getIndex().getDefiningOp<ConstSizeOp>())
1085 return constSizeOp.getValue().getLimitedValue();
1086 if (
auto constantOp =
getIndex().getDefiningOp<arith::ConstantOp>())
1087 return llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
1088 return std::nullopt;
1092 Type valType = getValue().getType();
1093 auto valShapedType = llvm::dyn_cast<ShapedType>(valType);
1094 if (!valShapedType || !valShapedType.hasRank())
1096 std::optional<int64_t> index = getConstantIndex();
1097 if (!index.has_value())
1099 if (index.value() < 0 || index.value() >= valShapedType.getRank())
1101 auto extent = valShapedType.getDimSize(*index);
1102 if (ShapedType::isDynamic(extent))
1107 LogicalResult mlir::shape::DimOp::inferReturnTypes(
1108 MLIRContext *context, std::optional<Location> location,
1110 inferredReturnTypes.assign({adaptor.getIndex().
getType()});
1115 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1123 auto lhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getLhs());
1126 auto rhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getRhs());
1132 APInt quotient, remainder;
1133 APInt::sdivrem(lhs.getValue(), rhs.getValue(), quotient, remainder);
1134 if (quotient.isNegative() && !remainder.isZero()) {
1142 LogicalResult mlir::shape::DivOp::inferReturnTypes(
1143 MLIRContext *context, std::optional<Location> location,
1145 if (llvm::isa<SizeType>(adaptor.getLhs().getType()) ||
1146 llvm::isa<SizeType>(adaptor.getRhs().getType()))
1155 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1165 bool allSame =
true;
1166 if (!adaptor.getShapes().empty() && !adaptor.getShapes().front())
1168 for (
Attribute operand : adaptor.getShapes().drop_front()) {
1171 allSame = allSame && operand == adaptor.getShapes().front();
1180 OpFoldResult IndexToSizeOp::fold(FoldAdaptor adaptor) {
1190 patterns.add<SizeToIndexToSizeCanonicalization>(context);
1197 OpFoldResult FromExtentsOp::fold(FoldAdaptor adaptor) {
1198 if (llvm::any_of(adaptor.getExtents(), [](
Attribute a) { return !a; }))
1201 for (
auto attr : adaptor.getExtents())
1202 extents.push_back(llvm::cast<IntegerAttr>(attr).getInt());
1217 FuncOp FunctionLibraryOp::getShapeFunction(
Operation *op) {
1218 auto attr = llvm::dyn_cast_or_null<FlatSymbolRefAttr>(
1222 return lookupSymbol<FuncOp>(attr);
1228 StringAttr nameAttr;
1243 DictionaryAttr mappingAttr;
1255 (*this)->getAttrs(), {mlir::SymbolTable::getSymbolAttrName(),
"mapping"});
1267 FuncOp FuncOp::create(
Location location, StringRef name, FunctionType type,
1271 FuncOp::build(builder, state, name, type, attrs);
1274 FuncOp FuncOp::create(
Location location, StringRef name, FunctionType type,
1279 FuncOp FuncOp::create(
Location location, StringRef name, FunctionType type,
1282 FuncOp func = create(location, name, type, attrs);
1283 func.setAllArgAttrs(argAttrs);
1290 state.addAttribute(FuncOp::getSymNameAttrName(state.name),
1292 state.addAttribute(FuncOp::getFunctionTypeAttrName(state.name),
1294 state.attributes.append(attrs.begin(), attrs.end());
1297 if (argAttrs.empty())
1299 assert(type.getNumInputs() == argAttrs.size());
1301 builder, state, argAttrs, std::nullopt,
1302 getArgAttrsAttrName(state.name), getResAttrsAttrName(state.name));
1306 auto buildFuncType =
1309 std::string &) {
return builder.
getFunctionType(argTypes, results); };
1312 parser, result,
false,
1313 getFunctionTypeAttrName(result.
name), buildFuncType,
1314 getArgAttrsAttrName(result.
name), getResAttrsAttrName(result.
name));
1319 p, *
this,
false, getFunctionTypeAttrName(),
1320 getArgAttrsAttrName(), getResAttrsAttrName());
1327 std::optional<int64_t> GetExtentOp::getConstantDim() {
1328 if (
auto constSizeOp = getDim().getDefiningOp<ConstSizeOp>())
1329 return constSizeOp.getValue().getLimitedValue();
1330 if (
auto constantOp = getDim().getDefiningOp<arith::ConstantOp>())
1331 return llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
1332 return std::nullopt;
1336 auto elements = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getShape());
1339 std::optional<int64_t> dim = getConstantDim();
1340 if (!dim.has_value())
1342 if (dim.value() >= elements.getNumElements())
1344 return elements.getValues<
Attribute>()[(uint64_t)dim.value()];
1351 if (llvm::isa<ShapeType>(shape.
getType())) {
1352 Value dim = builder.
create<ConstSizeOp>(loc, dimAttr);
1353 build(builder, result, builder.
getType<SizeType>(), shape, dim);
1357 build(builder, result, builder.
getIndexType(), shape, dim);
1361 LogicalResult mlir::shape::GetExtentOp::inferReturnTypes(
1362 MLIRContext *context, std::optional<Location> location,
1368 bool mlir::shape::GetExtentOp::isCompatibleReturnTypes(
TypeRange l,
1371 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1382 patterns.add<RemoveDuplicateOperandsPattern<IsBroadcastableOp>>(context);
1385 OpFoldResult IsBroadcastableOp::fold(FoldAdaptor adaptor) {
1387 if (adaptor.getShapes().size() < 2) {
1398 LogicalResult mlir::shape::MeetOp::inferReturnTypes(
1399 MLIRContext *context, std::optional<Location> location,
1401 if (adaptor.getOperands().empty())
1404 auto isShapeType = [](
Type arg) {
1405 if (llvm::isa<ShapeType>(arg))
1411 Type acc = types.front();
1412 for (
auto t : drop_begin(types)) {
1413 Type l = acc, r = t;
1414 if (!llvm::isa<ShapeType, SizeType>(l))
1418 if (llvm::isa<SizeType>(l)) {
1419 if (llvm::isa<SizeType, IndexType>(r))
1423 }
else if (llvm::isa<IndexType>(l)) {
1424 if (llvm::isa<IndexType>(r))
1428 }
else if (llvm::isa<ShapeType>(l)) {
1435 auto rank1 = llvm::cast<RankedTensorType>(l).getShape()[0];
1436 auto rank2 = llvm::cast<RankedTensorType>(r).getShape()[0];
1437 if (ShapedType::isDynamic(rank1))
1439 else if (ShapedType::isDynamic(rank2))
1441 else if (rank1 != rank2)
1447 inferredReturnTypes.assign({acc});
1452 if (l.size() != 1 || r.size() != 1)
1457 Type lhs = l.front();
1458 Type rhs = r.front();
1460 if (!llvm::isa<ShapeType, SizeType>(lhs))
1461 std::swap(lhs, rhs);
1463 if (llvm::isa<SizeType>(lhs))
1464 return llvm::isa<SizeType, IndexType>(rhs);
1465 if (llvm::isa<ShapeType>(lhs))
1466 return llvm::isa<ShapeType, TensorType>(rhs);
1477 OpFoldResult shape::RankOp::fold(FoldAdaptor adaptor) {
1478 auto shape = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getShape());
1481 int64_t rank = shape.getNumElements();
1501 struct RankShapeOfCanonicalizationPattern
1505 LogicalResult matchAndRewrite(shape::RankOp op,
1507 auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>();
1510 auto rankedTensorType =
1511 llvm::dyn_cast<RankedTensorType>(shapeOfOp.getArg().getType());
1512 if (!rankedTensorType)
1514 int64_t rank = rankedTensorType.getRank();
1515 if (llvm::isa<IndexType>(op.getType())) {
1518 }
else if (llvm::isa<shape::SizeType>(op.getType())) {
1530 patterns.add<RankShapeOfCanonicalizationPattern>(context);
1533 LogicalResult mlir::shape::RankOp::inferReturnTypes(
1534 MLIRContext *context, std::optional<Location> location,
1536 if (llvm::isa<ShapeType>(adaptor.getShape().getType()))
1545 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1554 OpFoldResult NumElementsOp::fold(FoldAdaptor adaptor) {
1562 for (
auto value : llvm::cast<DenseIntElementsAttr>(shape))
1568 LogicalResult mlir::shape::NumElementsOp::inferReturnTypes(
1569 MLIRContext *context, std::optional<Location> location,
1570 NumElementsOp::Adaptor adaptor,
1572 if (llvm::isa<ShapeType>(adaptor.getShape().getType()))
1579 bool mlir::shape::NumElementsOp::isCompatibleReturnTypes(
TypeRange l,
1582 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1595 if (getLhs() == getRhs())
1600 LogicalResult mlir::shape::MaxOp::inferReturnTypes(
1601 MLIRContext *context, std::optional<Location> location,
1603 if (adaptor.getLhs().getType() == adaptor.getRhs().getType())
1604 inferredReturnTypes.assign({adaptor.getLhs().
getType()});
1611 if (l.size() != 1 || r.size() != 1)
1613 if (llvm::isa<ShapeType>(l.front()) && llvm::isa<ShapeType>(r.front()))
1615 if (llvm::isa<SizeType>(l.front()) && llvm::isa<SizeType>(r.front()))
1626 if (getLhs() == getRhs())
1631 LogicalResult mlir::shape::MinOp::inferReturnTypes(
1632 MLIRContext *context, std::optional<Location> location,
1634 if (adaptor.getLhs().getType() == adaptor.getRhs().getType())
1635 inferredReturnTypes.assign({adaptor.getLhs().
getType()});
1642 if (l.size() != 1 || r.size() != 1)
1644 if (llvm::isa<ShapeType>(l.front()) && llvm::isa<ShapeType>(r.front()))
1646 if (llvm::isa<SizeType>(l.front()) && llvm::isa<SizeType>(r.front()))
1656 auto lhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getLhs());
1659 auto rhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getRhs());
1662 APInt folded = lhs.getValue() * rhs.getValue();
1667 LogicalResult mlir::shape::MulOp::inferReturnTypes(
1668 MLIRContext *context, std::optional<Location> location,
1670 if (llvm::isa<SizeType>(adaptor.getLhs().getType()) ||
1671 llvm::isa<SizeType>(adaptor.getRhs().getType()))
1680 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1691 struct ShapeOfOpToConstShapeOp :
public OpRewritePattern<shape::ShapeOfOp> {
1694 LogicalResult matchAndRewrite(shape::ShapeOfOp op,
1696 auto type = llvm::dyn_cast<ShapedType>(op.getArg().getType());
1697 if (!type || !type.hasStaticShape())
1702 .
create<ConstShapeOp>(loc,
1705 if (constShape.
getType() != op.getResult().getType())
1706 constShape = rewriter.
create<tensor::CastOp>(
1707 loc, op.getResult().getType(), constShape);
1726 LogicalResult matchAndRewrite(shape::ShapeOfOp op,
1728 auto tensorReshapeOp = op.getArg().getDefiningOp<tensor::ReshapeOp>();
1729 if (!tensorReshapeOp)
1731 if (!isa<TensorType>(op.getType()))
1738 Value shape = tensorReshapeOp.getShape();
1739 if (op.getType() != shape.
getType())
1740 shape = rewriter.
create<tensor::CastOp>(op.getLoc(), op.getType(), shape);
1759 LogicalResult matchAndRewrite(tensor::CastOp op,
1761 auto ty = llvm::dyn_cast<RankedTensorType>(op.getType());
1762 if (!ty || ty.getRank() != 1)
1765 auto shapeOfOp = op.getSource().getDefiningOp<ShapeOfOp>();
1770 auto argTy = llvm::dyn_cast<RankedTensorType>(shapeOfOp.getArg().getType());
1771 if (!argTy || (!ty.isDynamicDim(0) && ty.getDimSize(0) != argTy.getRank()))
1782 patterns.add<ShapeOfCastExtentTensor, ShapeOfFromReshape,
1783 ExtractFromShapeOfExtentTensor, ShapeOfOpToConstShapeOp>(
1787 LogicalResult mlir::shape::ShapeOfOp::inferReturnTypes(
1788 MLIRContext *context, std::optional<Location> location,
1790 if (llvm::isa<ValueShapeType>(adaptor.getArg().getType()))
1793 auto shapedTy = llvm::cast<ShapedType>(adaptor.getArg().getType());
1795 shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamic;
1798 inferredReturnTypes.assign({extentTensorTy});
1804 if (l.size() != 1 || r.size() != 1)
1809 Type lhs = l.front();
1810 Type rhs = r.front();
1812 if (!llvm::isa<ShapeType, ShapedType>(lhs) ||
1813 !llvm::isa<ShapeType, ShapedType>(rhs))
1816 if (llvm::isa<ShapeType>(lhs) || llvm::isa<ShapeType>(rhs))
1833 OpFoldResult SizeToIndexOp::fold(FoldAdaptor adaptor) {
1843 patterns.add<IndexToSizeToIndexCanonicalization>(context);
1847 if (inputs.size() != 1 || outputs.size() != 1)
1849 return llvm::isa<IndexType, SizeType>(inputs[0]) &&
1850 llvm::isa<IndexType>(outputs[0]);
1858 auto *parentOp = (*this)->getParentOp();
1859 auto results = parentOp->getResults();
1860 auto operands = getOperands();
1862 if (parentOp->getNumResults() != getNumOperands())
1863 return emitOpError() <<
"number of operands does not match number of "
1864 "results of its parent";
1865 for (
auto e : llvm::zip(results, operands))
1867 return emitOpError() <<
"types mismatch between yield op and its parent";
1876 LogicalResult SplitAtOp::fold(FoldAdaptor adaptor,
1878 if (!adaptor.getOperand() || !adaptor.getIndex())
1880 auto shapeVec = llvm::to_vector<6>(
1881 llvm::cast<DenseIntElementsAttr>(adaptor.getOperand()).getValues<int64_t>());
1883 auto splitPoint = llvm::cast<IntegerAttr>(adaptor.getIndex()).getInt();
1886 int64_t rank = shape.size();
1887 if (-rank > splitPoint || splitPoint > rank)
1890 splitPoint += shape.size();
1891 Builder builder(adaptor.getOperand().getContext());
1901 OpFoldResult ToExtentTensorOp::fold(FoldAdaptor adaptor) {
1902 if (!adaptor.getInput())
1905 auto shape = llvm::to_vector<6>(
1906 llvm::cast<DenseIntElementsAttr>(adaptor.getInput()).getValues<int64_t>());
1913 if (inputs.size() != 1 || outputs.size() != 1)
1915 if (
auto inputTensor = llvm::dyn_cast<RankedTensorType>(inputs[0])) {
1916 if (!llvm::isa<IndexType>(inputTensor.getElementType()) ||
1917 inputTensor.getRank() != 1)
1919 }
else if (!llvm::isa<ShapeType>(inputs[0])) {
1923 TensorType outputTensor = llvm::dyn_cast<TensorType>(outputs[0]);
1924 return outputTensor && llvm::isa<IndexType>(outputTensor.
getElementType());
1942 if (
auto tensorType = llvm::dyn_cast<TensorType>(shape.
getType()))
1943 elementType = tensorType.getElementType();
1948 for (
Value initVal : initVals) {
1949 bodyBlock->
addArgument(initVal.getType(), initVal.getLoc());
1950 result.
addTypes(initVal.getType());
1959 auto blockArgsCount = getInitVals().size() + 2;
1961 return emitOpError() <<
"ReduceOp body is expected to have "
1962 << blockArgsCount <<
" arguments";
1967 "argument 0 of ReduceOp body is expected to be of IndexType");
1974 if (!llvm::isa<SizeType>(extentTy))
1975 return emitOpError(
"argument 1 of ReduceOp body is expected to be of "
1976 "SizeType if the ReduceOp operates on a ShapeType");
1978 if (!llvm::isa<IndexType>(extentTy))
1980 "argument 1 of ReduceOp body is expected to be of IndexType if the "
1981 "ReduceOp operates on an extent tensor");
1986 return emitOpError() <<
"type mismatch between argument "
1988 <<
" of ReduceOp body and initial value "
1996 Type shapeOrExtentTensorType;
2005 if (parser.
resolveOperand(operands.front(), shapeOrExtentTensorType,
2024 p <<
'(' <<
getShape() <<
", " << getInitVals()
2032 #define GET_OP_CLASSES
2033 #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"
2035 #define GET_TYPEDEF_CLASSES
2036 #include "mlir/Dialect/Shape/IR/ShapeOpsTypes.cpp.inc"
static bool isErrorPropagationPossible(TypeRange operandTypes)
static bool hasAtMostSingleNonScalar(ArrayRef< Attribute > attributes)
static LogicalResult verifyShapeOrExtentTensorOp(Operation *op)
static bool eachHasOnlyOneOfTypes(TypeRange typeRange)
static LogicalResult verifySizeOrIndexOp(Operation *op)
static Operation * materializeConstant(Dialect *dialect, OpBuilder &builder, Attribute value, Type type, Location loc)
A utility function used to materialize a constant for a given attribute and type.
static int64_t product(ArrayRef< int64_t > vals)
static MLIRContext * getContext(OpFoldResult val)
static bool isLegalToInline(InlinerInterface &interface, Region *src, Region *insertRegion, bool shouldCloneInlinedRegion, IRMapping &valueMapping)
Utility to check that all of the operations within 'src' can be inlined.
static int64_t getNumElements(Type t)
Compute the total number of elements in the given type, also taking into account nested types.
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static void print(spirv::VerCapExtAttr triple, DialectAsmPrinter &printer)
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
ParseResult parseSymbolName(StringAttr &result)
Parse an -identifier and store it (without the '@' symbol) in a string attribute.
@ Paren
Parens surrounding zero or more operands.
virtual Builder & getBuilder() const =0
Return a builder which provides useful access to MLIRContext, global objects like types and attribute...
virtual ParseResult parseOptionalAttrDict(NamedAttrList &result)=0
Parse a named dictionary into 'result' if it is present.
virtual ParseResult parseOptionalAttrDictWithKeyword(NamedAttrList &result)=0
Parse a named dictionary into 'result' if the attributes keyword is present.
virtual ParseResult parseColonType(Type &result)=0
Parse a colon followed by a type.
virtual SMLoc getNameLoc() const =0
Return the location of the original name token.
virtual ParseResult parseOptionalArrowTypeList(SmallVectorImpl< Type > &result)=0
Parse an optional arrow followed by a type list.
ParseResult parseKeyword(StringRef keyword)
Parse a given keyword.
virtual ParseResult parseAttribute(Attribute &result, Type type={})=0
Parse an arbitrary attribute of a given type and return it in result.
virtual void printAttributeWithoutType(Attribute attr)
Print the given attribute without its type.
virtual void printType(Type type)
virtual void printSymbolName(StringRef symbolRef)
Print the given string as a symbol reference, i.e.
void printOptionalArrowTypeList(TypeRange &&types)
Print an optional arrow followed by a type list.
Attributes are known-constant values of operations.
MLIRContext * getContext() const
Return the context this attribute belongs to.
Block represents an ordered list of Operations.
BlockArgument getArgument(unsigned i)
unsigned getNumArguments()
Operation * getTerminator()
Get the terminator operation of this block.
BlockArgument addArgument(Type type, Location loc)
Add one value to the argument list.
static BoolAttr get(MLIRContext *context, bool value)
This class is a general helper class for creating context-global objects like types,...
IntegerAttr getIndexAttr(int64_t value)
FunctionType getFunctionType(TypeRange inputs, TypeRange results)
Ty getType(Args &&...args)
Get or construct an instance of the type Ty with provided arguments.
StringAttr getStringAttr(const Twine &bytes)
DenseIntElementsAttr getIndexTensorAttr(ArrayRef< int64_t > values)
MLIRContext * getContext() const
NamedAttribute getNamedAttr(StringRef name, Attribute val)
An attribute that represents a reference to a dense integer vector or tensor object.
static DenseIntElementsAttr get(const ShapedType &type, Arg &&arg)
Get an instance of a DenseIntElementsAttr with the given arguments.
This is the interface that must be implemented by the dialects of operations to be inlined.
DialectInlinerInterface(Dialect *dialect)
This is a utility class for mapping one set of IR entities to another.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
NamedAttrList is array of NamedAttributes that tracks whether it is sorted and does some basic work t...
void push_back(NamedAttribute newAttribute)
Add an attribute with the specified name.
NamedAttribute represents a combination of a name and an Attribute value.
StringAttr getName() const
Return the name of the attribute.
Attribute getValue() const
Return the value of the attribute.
The OpAsmParser has methods for interacting with the asm parser: parsing things from it,...
virtual ParseResult parseRegion(Region ®ion, ArrayRef< Argument > arguments={}, bool enableNameShadowing=false)=0
Parses a region.
virtual ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, SmallVectorImpl< Value > &result)=0
Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperands(Operands &&operands, Type type, SmallVectorImpl< Value > &result)
Resolve a list of operands to SSA values, emitting an error on failure, or appending the results to t...
virtual ParseResult parseOperand(UnresolvedOperand &result, bool allowResultNumber=true)=0
Parse a single SSA value operand name along with a result number if allowResultNumber is true.
virtual ParseResult parseOperandList(SmallVectorImpl< UnresolvedOperand > &result, Delimiter delimiter=Delimiter::None, bool allowResultNumber=true, int requiredOperandCount=-1)=0
Parse zero or more SSA comma-separated operand references with a specified surrounding delimiter,...
This is a pure-virtual base class that exposes the asmprinter hooks necessary to implement a custom p...
virtual void printOptionalAttrDictWithKeyword(ArrayRef< NamedAttribute > attrs, ArrayRef< StringRef > elidedAttrs={})=0
If the specified operation has attributes, print out an attribute dictionary prefixed with 'attribute...
virtual void printOptionalAttrDict(ArrayRef< NamedAttribute > attrs, ArrayRef< StringRef > elidedAttrs={})=0
If the specified operation has attributes, print out an attribute dictionary with their values.
virtual void printRegion(Region &blocks, bool printEntryBlockArgs=true, bool printBlockTerminators=true, bool printEmptyBlock=false)=0
Prints a region.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
Block::iterator getInsertionPoint() const
Returns the current insertion point of the builder.
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes=std::nullopt, ArrayRef< Location > locs=std::nullopt)
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Block * getInsertionBlock() const
Return the block the current insertion point belongs to.
This class represents a single result from folding an operation.
A trait used to provide symbol table functionalities to a region operation.
StringAttr getIdentifier() const
Return the name of this operation as a StringAttr.
Operation is the basic unit of execution within MLIR.
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
static Operation * create(Location location, OperationName name, TypeRange resultTypes, ValueRange operands, NamedAttrList &&attributes, OpaqueProperties properties, BlockRange successors, unsigned numRegions)
Create a new Operation with the specific fields.
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
OperationName getName()
The name of an operation is the key identifier for it.
operand_type_range getOperandTypes()
result_type_range getResultTypes()
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
unsigned getNumResults()
Return the number of results held by this operation.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class represents a point being branched from in the methods of the RegionBranchOpInterface.
bool isParent() const
Returns true if branching from the parent op.
This class represents a successor of a region.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Block * splitBlock(Block *block, Block::iterator before)
Split the operations starting at "before" (inclusive) out of the given block into a new block,...
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
void mergeBlocks(Block *source, Block *dest, ValueRange argValues=std::nullopt)
Inline the operations of block 'source' into the end of block 'dest'.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
void inlineRegionBefore(Region ®ion, Region &parent, Region::iterator before)
Move the blocks that belong to "region" before the given position in another region "parent".
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
static StringRef getSymbolAttrName()
Return the name of the attribute used for symbol names.
static Operation * lookupSymbolIn(Operation *op, StringAttr symbol)
Returns the operation registered with the given symbol name with the regions of 'symbolTableOp'.
Tensor types represent multi-dimensional arrays, and have two variants: RankedTensorType and Unranked...
Type getElementType() const
Returns the element type of this tensor type.
This class provides an abstraction over the various different ranges of value types.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class provides an abstraction over the different types of ranges over Values.
ValueTypeRange< ValueRange > type_range
Type front()
Return first type in the range.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Location getLoc() const
Return the location of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
A named class for passing around the variadic flag.
bool staticallyKnownBroadcastable(ArrayRef< SmallVector< int64_t, 6 >> shapes)
Returns true if a broadcast between n shapes is guaranteed to be successful and not result in an erro...
bool getBroadcastedShape(ArrayRef< int64_t > shape1, ArrayRef< int64_t > shape2, SmallVectorImpl< int64_t > &resultShape)
Returns true and sets resultShape to the broadcasted shape from the two given shapes if they are broa...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
void addArgAndResultAttrs(Builder &builder, OperationState &result, ArrayRef< DictionaryAttr > argAttrs, ArrayRef< DictionaryAttr > resultAttrs, StringAttr argAttrsName, StringAttr resAttrsName)
Adds argument and result attributes, provided as argAttrs and resultAttrs arguments,...
void printFunctionOp(OpAsmPrinter &p, FunctionOpInterface op, bool isVariadic, StringRef typeAttrName, StringAttr argAttrsName, StringAttr resAttrsName)
Printer implementation for function-like operations.
ParseResult parseFunctionOp(OpAsmParser &parser, OperationState &result, bool allowVariadic, StringAttr typeAttrName, FuncTypeBuilder funcTypeBuilder, StringAttr argAttrsName, StringAttr resAttrsName)
Parser implementation for function-like operations.
DynamicAPInt getIndex(const ConeV &cone)
Get the index of a cone, i.e., the volume of the parallelepiped spanned by its generators,...
QueryRef parse(llvm::StringRef line, const QuerySession &qs)
bool isExtentTensorType(Type)
LogicalResult getShapeVec(Value input, SmallVectorImpl< int64_t > &shapeValues)
RankedTensorType getExtentTensorType(MLIRContext *ctx, int64_t rank=ShapedType::kDynamic)
Alias type for extent tensors.
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
LogicalResult verifyCompatibleShapes(TypeRange types1, TypeRange types2)
Returns success if the given two arrays have the same number of elements and each pair wise entries h...
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
LogicalResult emitOptionalError(std::optional< Location > loc, Args &&...args)
Overloads of the above emission functions that take an optionally null location.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
detail::constant_int_predicate_matcher m_Zero()
Matches a constant scalar / vector splat / tensor splat integer zero.
const FrozenRewritePatternSet & patterns
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
LogicalResult verify(Operation *op, bool verifyRecursively=true)
Perform (potentially expensive) checks of invariants, used to detect compiler bugs,...
This is the representation of an operand reference.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
This represents an operation in an abstracted form, suitable for use with the builder APIs.
SmallVector< Value, 4 > operands
void addOperands(ValueRange newOperands)
void addAttribute(StringRef name, Attribute attr)
Add an attribute with the specified name.
void addTypes(ArrayRef< Type > newTypes)
SmallVector< std::unique_ptr< Region >, 1 > regions
Regions that the op will hold.
SmallVector< Type, 4 > types
Types of the results of this operation.
Region * addRegion()
Create a region that should be attached to the operation.