27 #include "llvm/ADT/SetOperations.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/TypeSwitch.h"
30 #include "llvm/Support/raw_ostream.h"
35 #include "mlir/Dialect/Shape/IR/ShapeOpsDialect.cpp.inc"
38 #include "ShapeCanonicalization.inc"
46 auto ranked = llvm::dyn_cast<RankedTensorType>(type);
47 return ranked && ranked.getRank() == 1 && ranked.getElementType().isIndex();
53 auto type = llvm::cast<ShapedType>(inputOp.getArg().getType());
56 llvm::append_range(shapeValues, type.getShape());
61 llvm::append_range(shapeValues, attr.getValues<int64_t>());
68 return llvm::any_of(operandTypes,
69 llvm::IsaPred<SizeType, ShapeType, ValueShapeType>);
76 if (!llvm::isa<SizeType>(resultTy))
78 <<
"if at least one of the operands can hold error values then "
79 "the result must be of type `size` to propagate them";
88 if (!llvm::isa<ShapeType>(resultTy))
90 <<
"if at least one of the operands can hold error values then "
91 "the result must be of type `shape` to propagate them";
96 template <
typename... Ty>
98 return typeRange.size() == 1 && llvm::isa<Ty...>(typeRange.front());
101 template <
typename... Ty,
typename... ranges>
132 void ShapeDialect::initialize() {
135 #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"
138 #define GET_TYPEDEF_LIST
139 #include "mlir/Dialect/Shape/IR/ShapeOpsTypes.cpp.inc"
141 addInterfaces<ShapeInlinerInterface>();
145 allowUnknownOperations();
146 declarePromisedInterfaces<bufferization::BufferizableOpInterface, AssumingOp,
153 if (
auto poison = dyn_cast<ub::PoisonAttr>(value))
154 return builder.
create<ub::PoisonOp>(loc, type, poison);
157 return builder.
create<ConstShapeOp>(
158 loc, type, llvm::cast<DenseIntElementsAttr>(value));
159 if (llvm::isa<SizeType>(type))
160 return builder.
create<ConstSizeOp>(loc, type,
161 llvm::cast<IntegerAttr>(value));
162 if (llvm::isa<WitnessType>(type))
163 return builder.
create<ConstWitnessOp>(loc, type,
164 llvm::cast<BoolAttr>(value));
166 return arith::ConstantOp::materialize(builder, value, type, loc);
169 LogicalResult ShapeDialect::verifyOperationAttribute(
Operation *op,
172 if (attribute.
getName() ==
"shape.lib") {
175 "shape.lib attribute may only be on op implementing SymbolTable");
177 if (
auto symbolRef = llvm::dyn_cast<SymbolRefAttr>(attribute.
getValue())) {
180 return op->
emitError(
"shape function library ")
181 << symbolRef <<
" not found";
182 return isa<shape::FunctionLibraryOp>(symbol)
185 << symbolRef <<
" required to be shape function library";
188 if (
auto arr = llvm::dyn_cast<ArrayAttr>(attribute.
getValue())) {
192 for (
auto it : arr) {
193 if (!llvm::isa<SymbolRefAttr>(it))
195 "only SymbolRefAttr allowed in shape.lib attribute array");
197 auto shapeFnLib = dyn_cast<shape::FunctionLibraryOp>(
201 << it <<
" does not refer to FunctionLibraryOp";
202 for (
auto mapping : shapeFnLib.getMapping()) {
203 if (!key.insert(mapping.getName()).second) {
204 return op->
emitError(
"only one op to shape mapping allowed, found "
206 << mapping.getName() <<
"`";
213 return op->
emitError(
"only SymbolRefAttr or array of SymbolRefAttrs "
214 "allowed as shape.lib attribute");
227 if (adaptor.getInputs().back())
228 return adaptor.getInputs().back();
264 bool yieldsResults = !getResults().empty();
266 p <<
" " << getWitness();
268 p <<
" -> (" << getResultTypes() <<
")";
281 LogicalResult matchAndRewrite(AssumingOp op,
283 auto witness = op.getWitness().getDefiningOp<ConstWitnessOp>();
284 if (!witness || !witness.getPassingAttr())
287 AssumingOp::inlineRegionIntoParent(op, rewriter);
292 struct AssumingOpRemoveUnusedResults :
public OpRewritePattern<AssumingOp> {
295 LogicalResult matchAndRewrite(AssumingOp op,
297 Block *body = op.getBody();
298 auto yieldOp = llvm::cast<AssumingYieldOp>(body->
getTerminator());
302 for (
auto [opResult, yieldOperand] :
303 llvm::zip(op.getResults(), yieldOp.getOperands())) {
304 if (!opResult.getUses().empty()) {
305 newYieldOperands.push_back(yieldOperand);
310 if (newYieldOperands.size() == yieldOp->getNumOperands())
319 auto newOp = rewriter.
create<AssumingOp>(
320 op.getLoc(), newYieldOp->getOperandTypes(), op.getWitness());
321 newOp.getDoRegion().takeBody(op.getDoRegion());
325 auto src = newOp.getResults().begin();
326 for (
auto it : op.getResults()) {
327 if (it.getUses().empty())
328 replacementValues.push_back(
nullptr);
330 replacementValues.push_back(*src++);
332 rewriter.
replaceOp(op, replacementValues);
340 patterns.
add<AssumingOpRemoveUnusedResults, AssumingWithTrue>(context);
344 void AssumingOp::getSuccessorRegions(
357 void AssumingOp::inlineRegionIntoParent(AssumingOp &op,
360 auto *assumingBlock = op.getBody();
362 auto *blockAfterAssuming =
363 rewriter.
splitBlock(blockBeforeAssuming, initPosition);
366 auto &yieldOp = assumingBlock->
back();
368 rewriter.
replaceOp(op, yieldOp.getOperands());
373 rewriter.
mergeBlocks(assumingBlock, blockBeforeAssuming);
374 rewriter.
mergeBlocks(blockAfterAssuming, blockBeforeAssuming);
377 void AssumingOp::build(
391 for (
Value v : yieldValues)
392 assumingTypes.push_back(v.getType());
400 LogicalResult mlir::shape::AddOp::inferReturnTypes(
401 MLIRContext *context, std::optional<Location> location,
403 if (llvm::isa<SizeType>(adaptor.getLhs().getType()) ||
404 llvm::isa<SizeType>(adaptor.getRhs().getType()))
413 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
416 OpFoldResult mlir::shape::AddOp::fold(FoldAdaptor adaptor) {
421 return constFoldBinaryOp<IntegerAttr>(
422 adaptor.getOperands(),
423 [](APInt a,
const APInt &b) { return std::move(a) + b; });
445 LogicalResult matchAndRewrite(AssumingAllOp op,
449 for (
Value operand : op.getInputs()) {
450 if (
auto assumeAll = operand.getDefiningOp<AssumingAllOp>())
451 operands.append(assumeAll.operand_begin(), assumeAll->operand_end());
453 operands.push_back(operand);
457 if (operands.size() == op.getNumOperands())
487 struct AssumingAllOfCstrBroadcastable :
public OpRewritePattern<AssumingAllOp> {
490 LogicalResult matchAndRewrite(AssumingAllOp op,
494 for (
Value operand : op.getInputs()) {
497 auto broadcastable = operand.getDefiningOp<CstrBroadcastableOp>();
501 operands.insert(broadcastable);
505 if (operands.size() <= 1)
510 for (
auto cstr : operands) {
512 shapes.emplace_back(cstr, std::move(shapesSet));
516 llvm::sort(shapes, [](
auto a,
auto b) {
517 return a.first.getNumOperands() > b.first.getNumOperands();
526 for (
unsigned i = 0; i < shapes.size(); ++i) {
527 auto isSubset = [&](
auto pair) {
528 return llvm::set_is_subset(pair.second, shapes[i].second);
532 auto *it = std::remove_if(shapes.begin() + i + 1, shapes.end(), isSubset);
533 for (
auto *it0 = it; it0 < shapes.end(); ++it0)
534 markedForErase.push_back(it0->first);
535 shapes.erase(it, shapes.end());
539 if (markedForErase.empty())
544 for (
auto &shape : shapes)
545 uniqueConstraints.push_back(shape.first.getResult());
551 for (
auto &op : markedForErase)
559 struct AssumingAllToCstrEqCanonicalization
563 LogicalResult matchAndRewrite(AssumingAllOp op,
566 for (
Value w : op.getInputs()) {
567 auto cstrEqOp = w.getDefiningOp<CstrEqOp>();
570 bool disjointShapes = llvm::none_of(cstrEqOp.getShapes(), [&](
Value s) {
571 return llvm::is_contained(shapes, s);
573 if (!shapes.empty() && !cstrEqOp.getShapes().empty() && disjointShapes)
575 shapes.append(cstrEqOp.getShapes().begin(), cstrEqOp.getShapes().end());
582 template <
typename OpTy>
586 LogicalResult matchAndRewrite(OpTy op,
592 if (unique.size() < op.getNumOperands()) {
594 unique.takeVector(), op->getAttrs());
606 .
add<MergeAssumingAllOps, AssumingAllOneOp,
607 AssumingAllOfCstrBroadcastable, AssumingAllToCstrEqCanonicalization,
608 RemoveDuplicateOperandsPattern<AssumingAllOp>>(context);
614 for (
int idx = adaptor.getInputs().size() - 1; idx >= 0; idx--) {
622 getOperation()->eraseOperand(idx);
625 if (!llvm::cast<BoolAttr>(a).getValue())
634 if (getNumOperands() == 0)
635 return emitOpError(
"no operands specified");
645 if (getShapes().size() == 1) {
649 return getShapes().front();
653 if (getShapes().size() > 2)
656 if (!adaptor.getShapes()[0] || !adaptor.getShapes()[1])
658 auto lhsShape = llvm::to_vector<6>(
659 llvm::cast<DenseIntElementsAttr>(adaptor.getShapes()[0])
660 .getValues<int64_t>());
661 auto rhsShape = llvm::to_vector<6>(
662 llvm::cast<DenseIntElementsAttr>(adaptor.getShapes()[1])
663 .getValues<int64_t>());
680 template <
typename OpTy>
684 LogicalResult matchAndRewrite(OpTy op,
686 auto isPotentiallyNonEmptyShape = [](
Value shape) {
687 if (
auto extentTensorTy =
688 llvm::dyn_cast<RankedTensorType>(shape.getType())) {
689 if (extentTensorTy.getDimSize(0) == 0)
692 if (
auto constShape = shape.getDefiningOp<ConstShapeOp>()) {
693 if (constShape.getShape().empty())
698 auto newOperands = llvm::to_vector<8>(
699 llvm::make_filter_range(op->getOperands(), isPotentiallyNonEmptyShape));
702 if (newOperands.size() < op.getNumOperands()) {
712 struct BroadcastForwardSingleOperandPattern
716 LogicalResult matchAndRewrite(BroadcastOp op,
718 if (op.getNumOperands() != 1)
720 Value replacement = op.getShapes().front();
723 if (replacement.
getType() != op.getType()) {
725 if (llvm::isa<ShapeType>(op.getType())) {
726 replacement = rewriter.
create<FromExtentTensorOp>(loc, replacement);
728 assert(!llvm::isa<ShapeType>(op.getType()) &&
729 !llvm::isa<ShapeType>(replacement.
getType()) &&
730 "expect extent tensor cast");
732 rewriter.
create<tensor::CastOp>(loc, op.getType(), replacement);
741 struct BroadcastFoldConstantOperandsPattern
745 LogicalResult matchAndRewrite(BroadcastOp op,
749 for (
Value shape : op.getShapes()) {
750 if (
auto constShape = shape.getDefiningOp<ConstShapeOp>()) {
754 llvm::to_vector<8>(constShape.getShape().getValues<int64_t>()),
755 newFoldedConstantShape)) {
756 foldedConstantShape = newFoldedConstantShape;
760 newShapeOperands.push_back(shape);
764 if (op.getNumOperands() - newShapeOperands.size() < 2)
768 {
static_cast<int64_t
>(foldedConstantShape.size())},
770 newShapeOperands.push_back(rewriter.
create<ConstShapeOp>(
771 op.getLoc(), foldedConstantOperandsTy,
779 template <
typename OpTy>
780 struct CanonicalizeCastExtentTensorOperandsPattern
784 LogicalResult matchAndRewrite(OpTy op,
787 bool anyChange =
false;
788 auto canonicalizeOperand = [&](
Value operand) ->
Value {
789 if (
auto castOp = operand.getDefiningOp<tensor::CastOp>()) {
791 bool isInformationLoosingCast =
792 llvm::cast<RankedTensorType>(castOp.getType()).isDynamicDim(0);
793 if (isInformationLoosingCast) {
795 return castOp.getSource();
800 auto newOperands = llvm::to_vector<8>(
801 llvm::map_range(op.getOperands(), canonicalizeOperand));
811 struct BroadcastConcretizeResultTypePattern
815 LogicalResult matchAndRewrite(BroadcastOp op,
818 auto resultTy = llvm::dyn_cast<RankedTensorType>(op.getType());
819 if (!resultTy || !resultTy.isDynamicDim(0))
824 for (
Value shape : op.getShapes()) {
825 if (
auto extentTensorTy =
826 llvm::dyn_cast<RankedTensorType>(shape.getType())) {
829 if (extentTensorTy.isDynamicDim(0))
831 maxRank =
std::max(maxRank, extentTensorTy.getDimSize(0));
835 auto newOp = rewriter.
create<BroadcastOp>(
846 patterns.
add<BroadcastConcretizeResultTypePattern,
847 BroadcastFoldConstantOperandsPattern,
848 BroadcastForwardSingleOperandPattern,
849 CanonicalizeCastExtentTensorOperandsPattern<BroadcastOp>,
850 RemoveDuplicateOperandsPattern<BroadcastOp>,
851 RemoveEmptyShapeOperandsPattern<BroadcastOp>>(context);
859 if (!adaptor.getLhs() || !adaptor.getRhs())
861 auto lhsShape = llvm::to_vector<6>(
862 llvm::cast<DenseIntElementsAttr>(adaptor.getLhs()).getValues<int64_t>());
863 auto rhsShape = llvm::to_vector<6>(
864 llvm::cast<DenseIntElementsAttr>(adaptor.getRhs()).getValues<int64_t>());
866 resultShape.append(lhsShape.begin(), lhsShape.end());
867 resultShape.append(rhsShape.begin(), rhsShape.end());
880 interleaveComma(
getShape().getValues<int64_t>(), p);
895 auto extentsArray = llvm::dyn_cast<ArrayAttr>(extentsRaw);
900 IntegerAttr attr = llvm::dyn_cast<IntegerAttr>(extent);
903 ints.push_back(attr.getInt());
910 result.
types.push_back(resultTy);
914 OpFoldResult ConstShapeOp::fold(FoldAdaptor) {
return getShapeAttr(); }
918 patterns.
add<TensorCastConstShape>(context);
921 LogicalResult mlir::shape::ConstShapeOp::inferReturnTypes(
922 MLIRContext *context, std::optional<Location> location,
925 const Properties prop = adaptor.getProperties();
927 {
static_cast<int64_t
>(prop.shape.size())}, b.getIndexType())});
931 bool mlir::shape::ConstShapeOp::isCompatibleReturnTypes(
TypeRange l,
933 if (l.size() != 1 || r.size() != 1)
936 Type lhs = l.front();
937 Type rhs = r.front();
939 if (llvm::isa<ShapeType>(lhs) || llvm::isa<ShapeType>(rhs))
949 void CstrBroadcastableOp::getCanonicalizationPatterns(
954 patterns.
add<CanonicalizeCastExtentTensorOperandsPattern<CstrBroadcastableOp>,
955 CstrBroadcastableEqOps,
956 RemoveDuplicateOperandsPattern<CstrBroadcastableOp>,
957 RemoveEmptyShapeOperandsPattern<CstrBroadcastableOp>>(context);
963 bool nonScalarSeen =
false;
965 if (!a || llvm::cast<DenseIntElementsAttr>(a).
getNumElements() != 0) {
968 nonScalarSeen =
true;
974 OpFoldResult CstrBroadcastableOp::fold(FoldAdaptor adaptor) {
981 for (
const auto &operand : adaptor.getShapes()) {
984 extents.push_back(llvm::to_vector<6>(
985 llvm::cast<DenseIntElementsAttr>(operand).getValues<int64_t>()));
995 for (
auto shapeValue : getShapes()) {
996 extents.emplace_back();
997 if (failed(
getShapeVec(shapeValue, extents.back())))
1011 if (getNumOperands() < 2)
1012 return emitOpError(
"required at least 2 input shapes");
1023 patterns.
add<CstrEqEqOps>(context);
1027 if (llvm::all_of(adaptor.getShapes(), [&](
Attribute a) {
1028 return a && a == adaptor.getShapes().front();
1047 OpFoldResult ConstSizeOp::fold(FoldAdaptor) {
return getValueAttr(); }
1049 void ConstSizeOp::getAsmResultNames(
1052 llvm::raw_svector_ostream os(buffer);
1053 os <<
"c" << getValue();
1054 setNameFn(getResult(), os.str());
1061 OpFoldResult ConstWitnessOp::fold(FoldAdaptor) {
return getPassingAttr(); }
1067 OpFoldResult CstrRequireOp::fold(FoldAdaptor adaptor) {
1068 return adaptor.getPred();
1075 std::optional<int64_t> DimOp::getConstantIndex() {
1076 if (
auto constSizeOp =
getIndex().getDefiningOp<ConstSizeOp>())
1077 return constSizeOp.getValue().getLimitedValue();
1078 if (
auto constantOp =
getIndex().getDefiningOp<arith::ConstantOp>())
1079 return llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
1080 return std::nullopt;
1084 Type valType = getValue().getType();
1085 auto valShapedType = llvm::dyn_cast<ShapedType>(valType);
1086 if (!valShapedType || !valShapedType.hasRank())
1088 std::optional<int64_t> index = getConstantIndex();
1089 if (!index.has_value())
1091 if (index.value() < 0 || index.value() >= valShapedType.getRank())
1093 auto extent = valShapedType.getDimSize(*index);
1094 if (ShapedType::isDynamic(extent))
1099 LogicalResult mlir::shape::DimOp::inferReturnTypes(
1100 MLIRContext *context, std::optional<Location> location,
1102 inferredReturnTypes.assign({adaptor.getIndex().
getType()});
1107 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1115 auto lhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getLhs());
1118 auto rhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getRhs());
1124 APInt quotient, remainder;
1125 APInt::sdivrem(lhs.getValue(), rhs.getValue(), quotient, remainder);
1126 if (quotient.isNegative() && !remainder.isZero()) {
1134 LogicalResult mlir::shape::DivOp::inferReturnTypes(
1135 MLIRContext *context, std::optional<Location> location,
1137 if (llvm::isa<SizeType>(adaptor.getLhs().getType()) ||
1138 llvm::isa<SizeType>(adaptor.getRhs().getType()))
1147 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1157 bool allSame =
true;
1158 if (!adaptor.getShapes().empty() && !adaptor.getShapes().front())
1160 for (
Attribute operand : adaptor.getShapes().drop_front()) {
1163 allSame = allSame && operand == adaptor.getShapes().front();
1172 OpFoldResult IndexToSizeOp::fold(FoldAdaptor adaptor) {
1182 patterns.
add<SizeToIndexToSizeCanonicalization>(context);
1189 OpFoldResult FromExtentsOp::fold(FoldAdaptor adaptor) {
1190 if (llvm::any_of(adaptor.getExtents(), [](
Attribute a) { return !a; }))
1193 for (
auto attr : adaptor.getExtents())
1194 extents.push_back(llvm::cast<IntegerAttr>(attr).getInt());
1209 FuncOp FunctionLibraryOp::getShapeFunction(
Operation *op) {
1210 auto attr = llvm::dyn_cast_or_null<FlatSymbolRefAttr>(
1214 return lookupSymbol<FuncOp>(attr);
1220 StringAttr nameAttr;
1235 DictionaryAttr mappingAttr;
1247 (*this)->getAttrs(), {mlir::SymbolTable::getSymbolAttrName(),
"mapping"});
1259 FuncOp FuncOp::create(
Location location, StringRef name, FunctionType type,
1263 FuncOp::build(builder, state, name, type, attrs);
1266 FuncOp FuncOp::create(
Location location, StringRef name, FunctionType type,
1271 FuncOp FuncOp::create(
Location location, StringRef name, FunctionType type,
1274 FuncOp func = create(location, name, type, attrs);
1275 func.setAllArgAttrs(argAttrs);
1282 state.addAttribute(FuncOp::getSymNameAttrName(state.name),
1284 state.addAttribute(FuncOp::getFunctionTypeAttrName(state.name),
1286 state.attributes.append(attrs.begin(), attrs.end());
1289 if (argAttrs.empty())
1291 assert(type.getNumInputs() == argAttrs.size());
1293 builder, state, argAttrs, std::nullopt,
1294 getArgAttrsAttrName(state.name), getResAttrsAttrName(state.name));
1298 auto buildFuncType =
1301 std::string &) {
return builder.
getFunctionType(argTypes, results); };
1304 parser, result,
false,
1305 getFunctionTypeAttrName(result.
name), buildFuncType,
1306 getArgAttrsAttrName(result.
name), getResAttrsAttrName(result.
name));
1311 p, *
this,
false, getFunctionTypeAttrName(),
1312 getArgAttrsAttrName(), getResAttrsAttrName());
1319 std::optional<int64_t> GetExtentOp::getConstantDim() {
1320 if (
auto constSizeOp = getDim().getDefiningOp<ConstSizeOp>())
1321 return constSizeOp.getValue().getLimitedValue();
1322 if (
auto constantOp = getDim().getDefiningOp<arith::ConstantOp>())
1323 return llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
1324 return std::nullopt;
1328 auto elements = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getShape());
1331 std::optional<int64_t> dim = getConstantDim();
1332 if (!dim.has_value())
1334 if (dim.value() >= elements.getNumElements())
1336 return elements.getValues<
Attribute>()[(uint64_t)dim.value()];
1343 if (llvm::isa<ShapeType>(shape.
getType())) {
1344 Value dim = builder.
create<ConstSizeOp>(loc, dimAttr);
1345 build(builder, result, builder.
getType<SizeType>(), shape, dim);
1349 build(builder, result, builder.
getIndexType(), shape, dim);
1353 LogicalResult mlir::shape::GetExtentOp::inferReturnTypes(
1354 MLIRContext *context, std::optional<Location> location,
1360 bool mlir::shape::GetExtentOp::isCompatibleReturnTypes(
TypeRange l,
1363 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1372 void IsBroadcastableOp::getCanonicalizationPatterns(
RewritePatternSet &patterns,
1374 patterns.
add<RemoveDuplicateOperandsPattern<IsBroadcastableOp>>(context);
1377 OpFoldResult IsBroadcastableOp::fold(FoldAdaptor adaptor) {
1379 if (adaptor.getShapes().size() < 2) {
1390 LogicalResult mlir::shape::MeetOp::inferReturnTypes(
1391 MLIRContext *context, std::optional<Location> location,
1393 if (adaptor.getOperands().empty())
1396 auto isShapeType = [](
Type arg) {
1397 if (llvm::isa<ShapeType>(arg))
1403 Type acc = types.front();
1404 for (
auto t : drop_begin(types)) {
1405 Type l = acc, r = t;
1406 if (!llvm::isa<ShapeType, SizeType>(l))
1410 if (llvm::isa<SizeType>(l)) {
1411 if (llvm::isa<SizeType, IndexType>(r))
1415 }
else if (llvm::isa<IndexType>(l)) {
1416 if (llvm::isa<IndexType>(r))
1420 }
else if (llvm::isa<ShapeType>(l)) {
1427 auto rank1 = llvm::cast<RankedTensorType>(l).getShape()[0];
1428 auto rank2 = llvm::cast<RankedTensorType>(r).getShape()[0];
1429 if (ShapedType::isDynamic(rank1))
1431 else if (ShapedType::isDynamic(rank2))
1433 else if (rank1 != rank2)
1439 inferredReturnTypes.assign({acc});
1444 if (l.size() != 1 || r.size() != 1)
1449 Type lhs = l.front();
1450 Type rhs = r.front();
1452 if (!llvm::isa<ShapeType, SizeType>(lhs))
1453 std::swap(lhs, rhs);
1455 if (llvm::isa<SizeType>(lhs))
1456 return llvm::isa<SizeType, IndexType>(rhs);
1457 if (llvm::isa<ShapeType>(lhs))
1458 return llvm::isa<ShapeType, TensorType>(rhs);
1469 OpFoldResult shape::RankOp::fold(FoldAdaptor adaptor) {
1470 auto shape = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getShape());
1473 int64_t rank = shape.getNumElements();
1493 struct RankShapeOfCanonicalizationPattern
1497 LogicalResult matchAndRewrite(shape::RankOp op,
1499 auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>();
1502 auto rankedTensorType =
1503 llvm::dyn_cast<RankedTensorType>(shapeOfOp.getArg().getType());
1504 if (!rankedTensorType)
1506 int64_t rank = rankedTensorType.getRank();
1507 if (llvm::isa<IndexType>(op.getType())) {
1510 }
else if (llvm::isa<shape::SizeType>(op.getType())) {
1522 patterns.
add<RankShapeOfCanonicalizationPattern>(context);
1525 LogicalResult mlir::shape::RankOp::inferReturnTypes(
1526 MLIRContext *context, std::optional<Location> location,
1528 if (llvm::isa<ShapeType>(adaptor.getShape().getType()))
1537 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1546 OpFoldResult NumElementsOp::fold(FoldAdaptor adaptor) {
1554 for (
auto value : llvm::cast<DenseIntElementsAttr>(shape))
1560 LogicalResult mlir::shape::NumElementsOp::inferReturnTypes(
1561 MLIRContext *context, std::optional<Location> location,
1562 NumElementsOp::Adaptor adaptor,
1564 if (llvm::isa<ShapeType>(adaptor.getShape().getType()))
1571 bool mlir::shape::NumElementsOp::isCompatibleReturnTypes(
TypeRange l,
1574 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1587 if (getLhs() == getRhs())
1592 LogicalResult mlir::shape::MaxOp::inferReturnTypes(
1593 MLIRContext *context, std::optional<Location> location,
1595 if (adaptor.getLhs().getType() == adaptor.getRhs().getType())
1596 inferredReturnTypes.assign({adaptor.getLhs().
getType()});
1603 if (l.size() != 1 || r.size() != 1)
1605 if (llvm::isa<ShapeType>(l.front()) && llvm::isa<ShapeType>(r.front()))
1607 if (llvm::isa<SizeType>(l.front()) && llvm::isa<SizeType>(r.front()))
1618 if (getLhs() == getRhs())
1623 LogicalResult mlir::shape::MinOp::inferReturnTypes(
1624 MLIRContext *context, std::optional<Location> location,
1626 if (adaptor.getLhs().getType() == adaptor.getRhs().getType())
1627 inferredReturnTypes.assign({adaptor.getLhs().
getType()});
1634 if (l.size() != 1 || r.size() != 1)
1636 if (llvm::isa<ShapeType>(l.front()) && llvm::isa<ShapeType>(r.front()))
1638 if (llvm::isa<SizeType>(l.front()) && llvm::isa<SizeType>(r.front()))
1648 auto lhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getLhs());
1651 auto rhs = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getRhs());
1654 APInt folded = lhs.getValue() * rhs.getValue();
1659 LogicalResult mlir::shape::MulOp::inferReturnTypes(
1660 MLIRContext *context, std::optional<Location> location,
1662 if (llvm::isa<SizeType>(adaptor.getLhs().getType()) ||
1663 llvm::isa<SizeType>(adaptor.getRhs().getType()))
1672 return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
1683 struct ShapeOfOpToConstShapeOp :
public OpRewritePattern<shape::ShapeOfOp> {
1686 LogicalResult matchAndRewrite(shape::ShapeOfOp op,
1688 auto type = llvm::dyn_cast<ShapedType>(op.getArg().getType());
1689 if (!type || !type.hasStaticShape())
1694 .
create<ConstShapeOp>(loc,
1697 if (constShape.
getType() != op.getResult().getType())
1698 constShape = rewriter.
create<tensor::CastOp>(
1699 loc, op.getResult().getType(), constShape);
1718 LogicalResult matchAndRewrite(shape::ShapeOfOp op,
1720 auto tensorReshapeOp = op.getArg().getDefiningOp<tensor::ReshapeOp>();
1721 if (!tensorReshapeOp)
1723 if (!isa<TensorType>(op.getType()))
1730 Value shape = tensorReshapeOp.getShape();
1731 if (op.getType() != shape.
getType())
1732 shape = rewriter.
create<tensor::CastOp>(op.getLoc(), op.getType(), shape);
1751 LogicalResult matchAndRewrite(tensor::CastOp op,
1753 auto ty = llvm::dyn_cast<RankedTensorType>(op.getType());
1754 if (!ty || ty.getRank() != 1)
1757 auto shapeOfOp = op.getSource().getDefiningOp<ShapeOfOp>();
1762 auto argTy = llvm::dyn_cast<RankedTensorType>(shapeOfOp.getArg().getType());
1763 if (!argTy || (!ty.isDynamicDim(0) && ty.getDimSize(0) != argTy.getRank()))
1774 patterns.
add<ShapeOfCastExtentTensor, ShapeOfFromReshape,
1775 ExtractFromShapeOfExtentTensor, ShapeOfOpToConstShapeOp>(
1779 LogicalResult mlir::shape::ShapeOfOp::inferReturnTypes(
1780 MLIRContext *context, std::optional<Location> location,
1782 if (llvm::isa<ValueShapeType>(adaptor.getArg().getType()))
1785 auto shapedTy = llvm::cast<ShapedType>(adaptor.getArg().getType());
1787 shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamic;
1790 inferredReturnTypes.assign({extentTensorTy});
1796 if (l.size() != 1 || r.size() != 1)
1801 Type lhs = l.front();
1802 Type rhs = r.front();
1804 if (!llvm::isa<ShapeType, ShapedType>(lhs) ||
1805 !llvm::isa<ShapeType, ShapedType>(rhs))
1808 if (llvm::isa<ShapeType>(lhs) || llvm::isa<ShapeType>(rhs))
1825 OpFoldResult SizeToIndexOp::fold(FoldAdaptor adaptor) {
1835 patterns.
add<IndexToSizeToIndexCanonicalization>(context);
1839 if (inputs.size() != 1 || outputs.size() != 1)
1841 return llvm::isa<IndexType, SizeType>(inputs[0]) &&
1842 llvm::isa<IndexType>(outputs[0]);
1850 auto *parentOp = (*this)->getParentOp();
1851 auto results = parentOp->getResults();
1852 auto operands = getOperands();
1854 if (parentOp->getNumResults() != getNumOperands())
1855 return emitOpError() <<
"number of operands does not match number of "
1856 "results of its parent";
1857 for (
auto e : llvm::zip(results, operands))
1859 return emitOpError() <<
"types mismatch between yield op and its parent";
1868 LogicalResult SplitAtOp::fold(FoldAdaptor adaptor,
1870 if (!adaptor.getOperand() || !adaptor.getIndex())
1872 auto shapeVec = llvm::to_vector<6>(
1873 llvm::cast<DenseIntElementsAttr>(adaptor.getOperand()).getValues<int64_t>());
1875 auto splitPoint = llvm::cast<IntegerAttr>(adaptor.getIndex()).getInt();
1878 int64_t rank = shape.size();
1879 if (-rank > splitPoint || splitPoint > rank)
1882 splitPoint += shape.size();
1883 Builder builder(adaptor.getOperand().getContext());
1893 OpFoldResult ToExtentTensorOp::fold(FoldAdaptor adaptor) {
1894 if (!adaptor.getInput())
1897 auto shape = llvm::to_vector<6>(
1898 llvm::cast<DenseIntElementsAttr>(adaptor.getInput()).getValues<int64_t>());
1905 if (inputs.size() != 1 || outputs.size() != 1)
1907 if (
auto inputTensor = llvm::dyn_cast<RankedTensorType>(inputs[0])) {
1908 if (!llvm::isa<IndexType>(inputTensor.getElementType()) ||
1909 inputTensor.getRank() != 1)
1911 }
else if (!llvm::isa<ShapeType>(inputs[0])) {
1915 TensorType outputTensor = llvm::dyn_cast<TensorType>(outputs[0]);
1916 return outputTensor && llvm::isa<IndexType>(outputTensor.
getElementType());
1934 if (
auto tensorType = llvm::dyn_cast<TensorType>(shape.
getType()))
1935 elementType = tensorType.getElementType();
1940 for (
Value initVal : initVals) {
1941 bodyBlock->
addArgument(initVal.getType(), initVal.getLoc());
1942 result.
addTypes(initVal.getType());
1951 auto blockArgsCount = getInitVals().size() + 2;
1953 return emitOpError() <<
"ReduceOp body is expected to have "
1954 << blockArgsCount <<
" arguments";
1959 "argument 0 of ReduceOp body is expected to be of IndexType");
1966 if (!llvm::isa<SizeType>(extentTy))
1967 return emitOpError(
"argument 1 of ReduceOp body is expected to be of "
1968 "SizeType if the ReduceOp operates on a ShapeType");
1970 if (!llvm::isa<IndexType>(extentTy))
1972 "argument 1 of ReduceOp body is expected to be of IndexType if the "
1973 "ReduceOp operates on an extent tensor");
1978 return emitOpError() <<
"type mismatch between argument "
1980 <<
" of ReduceOp body and initial value "
1988 Type shapeOrExtentTensorType;
1997 if (parser.
resolveOperand(operands.front(), shapeOrExtentTensorType,
2016 p <<
'(' <<
getShape() <<
", " << getInitVals()
2024 #define GET_OP_CLASSES
2025 #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"
2027 #define GET_TYPEDEF_CLASSES
2028 #include "mlir/Dialect/Shape/IR/ShapeOpsTypes.cpp.inc"
static bool isErrorPropagationPossible(TypeRange operandTypes)
static bool hasAtMostSingleNonScalar(ArrayRef< Attribute > attributes)
static LogicalResult verifyShapeOrExtentTensorOp(Operation *op)
static bool eachHasOnlyOneOfTypes(TypeRange typeRange)
static LogicalResult verifySizeOrIndexOp(Operation *op)
static Operation * materializeConstant(Dialect *dialect, OpBuilder &builder, Attribute value, Type type, Location loc)
A utility function used to materialize a constant for a given attribute and type.
static int64_t product(ArrayRef< int64_t > vals)
static MLIRContext * getContext(OpFoldResult val)
static bool isLegalToInline(InlinerInterface &interface, Region *src, Region *insertRegion, bool shouldCloneInlinedRegion, IRMapping &valueMapping)
Utility to check that all of the operations within 'src' can be inlined.
static int64_t getNumElements(Type t)
Compute the total number of elements in the given type, also taking into account nested types.
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static void print(spirv::VerCapExtAttr triple, DialectAsmPrinter &printer)
static ArrayRef< int64_t > getShape(Type type)
Returns the shape of the given type.
ParseResult parseSymbolName(StringAttr &result)
Parse an -identifier and store it (without the '@' symbol) in a string attribute.
@ Paren
Parens surrounding zero or more operands.
virtual Builder & getBuilder() const =0
Return a builder which provides useful access to MLIRContext, global objects like types and attribute...
virtual ParseResult parseOptionalAttrDict(NamedAttrList &result)=0
Parse a named dictionary into 'result' if it is present.
virtual ParseResult parseOptionalAttrDictWithKeyword(NamedAttrList &result)=0
Parse a named dictionary into 'result' if the attributes keyword is present.
virtual ParseResult parseColonType(Type &result)=0
Parse a colon followed by a type.
virtual SMLoc getNameLoc() const =0
Return the location of the original name token.
virtual ParseResult parseOptionalArrowTypeList(SmallVectorImpl< Type > &result)=0
Parse an optional arrow followed by a type list.
ParseResult parseKeyword(StringRef keyword)
Parse a given keyword.
virtual ParseResult parseAttribute(Attribute &result, Type type={})=0
Parse an arbitrary attribute of a given type and return it in result.
virtual void printAttributeWithoutType(Attribute attr)
Print the given attribute without its type.
virtual void printType(Type type)
virtual void printSymbolName(StringRef symbolRef)
Print the given string as a symbol reference, i.e.
void printOptionalArrowTypeList(TypeRange &&types)
Print an optional arrow followed by a type list.
Attributes are known-constant values of operations.
MLIRContext * getContext() const
Return the context this attribute belongs to.
Block represents an ordered list of Operations.
BlockArgument getArgument(unsigned i)
unsigned getNumArguments()
Operation * getTerminator()
Get the terminator operation of this block.
BlockArgument addArgument(Type type, Location loc)
Add one value to the argument list.
static BoolAttr get(MLIRContext *context, bool value)
This class is a general helper class for creating context-global objects like types,...
IntegerAttr getIndexAttr(int64_t value)
FunctionType getFunctionType(TypeRange inputs, TypeRange results)
Ty getType(Args &&...args)
Get or construct an instance of the type Ty with provided arguments.
StringAttr getStringAttr(const Twine &bytes)
DenseIntElementsAttr getIndexTensorAttr(ArrayRef< int64_t > values)
MLIRContext * getContext() const
NamedAttribute getNamedAttr(StringRef name, Attribute val)
An attribute that represents a reference to a dense integer vector or tensor object.
static DenseIntElementsAttr get(const ShapedType &type, Arg &&arg)
Get an instance of a DenseIntElementsAttr with the given arguments.
This is the interface that must be implemented by the dialects of operations to be inlined.
DialectInlinerInterface(Dialect *dialect)
This is a utility class for mapping one set of IR entities to another.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
MLIRContext is the top-level object for a collection of MLIR operations.
NamedAttrList is array of NamedAttributes that tracks whether it is sorted and does some basic work t...
void push_back(NamedAttribute newAttribute)
Add an attribute with the specified name.
NamedAttribute represents a combination of a name and an Attribute value.
StringAttr getName() const
Return the name of the attribute.
Attribute getValue() const
Return the value of the attribute.
The OpAsmParser has methods for interacting with the asm parser: parsing things from it,...
virtual ParseResult parseRegion(Region ®ion, ArrayRef< Argument > arguments={}, bool enableNameShadowing=false)=0
Parses a region.
virtual ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, SmallVectorImpl< Value > &result)=0
Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperands(Operands &&operands, Type type, SmallVectorImpl< Value > &result)
Resolve a list of operands to SSA values, emitting an error on failure, or appending the results to t...
virtual ParseResult parseOperand(UnresolvedOperand &result, bool allowResultNumber=true)=0
Parse a single SSA value operand name along with a result number if allowResultNumber is true.
virtual ParseResult parseOperandList(SmallVectorImpl< UnresolvedOperand > &result, Delimiter delimiter=Delimiter::None, bool allowResultNumber=true, int requiredOperandCount=-1)=0
Parse zero or more SSA comma-separated operand references with a specified surrounding delimiter,...
This is a pure-virtual base class that exposes the asmprinter hooks necessary to implement a custom p...
virtual void printOptionalAttrDictWithKeyword(ArrayRef< NamedAttribute > attrs, ArrayRef< StringRef > elidedAttrs={})=0
If the specified operation has attributes, print out an attribute dictionary prefixed with 'attribute...
virtual void printOptionalAttrDict(ArrayRef< NamedAttribute > attrs, ArrayRef< StringRef > elidedAttrs={})=0
If the specified operation has attributes, print out an attribute dictionary with their values.
virtual void printRegion(Region &blocks, bool printEntryBlockArgs=true, bool printBlockTerminators=true, bool printEmptyBlock=false)=0
Prints a region.
RAII guard to reset the insertion point of the builder when destroyed.
This class helps build Operations.
Block::iterator getInsertionPoint() const
Returns the current insertion point of the builder.
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes=std::nullopt, ArrayRef< Location > locs=std::nullopt)
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Block * getInsertionBlock() const
Return the block the current insertion point belongs to.
This class represents a single result from folding an operation.
A trait used to provide symbol table functionalities to a region operation.
StringAttr getIdentifier() const
Return the name of this operation as a StringAttr.
Operation is the basic unit of execution within MLIR.
bool hasTrait()
Returns true if the operation was registered with a particular trait, e.g.
static Operation * create(Location location, OperationName name, TypeRange resultTypes, ValueRange operands, NamedAttrList &&attributes, OpaqueProperties properties, BlockRange successors, unsigned numRegions)
Create a new Operation with the specific fields.
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
OperationName getName()
The name of an operation is the key identifier for it.
operand_type_range getOperandTypes()
result_type_range getResultTypes()
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
unsigned getNumResults()
Return the number of results held by this operation.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
This class represents a point being branched from in the methods of the RegionBranchOpInterface.
bool isParent() const
Returns true if branching from the parent op.
This class represents a successor of a region.
This class contains a list of basic blocks and a link to the parent operation it is attached to.
RewritePatternSet & add(ConstructorArg &&arg, ConstructorArgs &&...args)
Add an instance of each of the pattern types 'Ts' to the pattern list with the given arguments.
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Block * splitBlock(Block *block, Block::iterator before)
Split the operations starting at "before" (inclusive) out of the given block into a new block,...
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
void mergeBlocks(Block *source, Block *dest, ValueRange argValues=std::nullopt)
Inline the operations of block 'source' into the end of block 'dest'.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
void inlineRegionBefore(Region ®ion, Region &parent, Region::iterator before)
Move the blocks that belong to "region" before the given position in another region "parent".
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
static StringRef getSymbolAttrName()
Return the name of the attribute used for symbol names.
static Operation * lookupSymbolIn(Operation *op, StringAttr symbol)
Returns the operation registered with the given symbol name with the regions of 'symbolTableOp'.
Tensor types represent multi-dimensional arrays, and have two variants: RankedTensorType and Unranked...
Type getElementType() const
Returns the element type of this tensor type.
This class provides an abstraction over the various different ranges of value types.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
This class provides an abstraction over the different types of ranges over Values.
ValueTypeRange< ValueRange > type_range
Type front()
Return first type in the range.
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Type getType() const
Return the type of this value.
Location getLoc() const
Return the location of this value.
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
A named class for passing around the variadic flag.
bool staticallyKnownBroadcastable(ArrayRef< SmallVector< int64_t, 6 >> shapes)
Returns true if a broadcast between n shapes is guaranteed to be successful and not result in an erro...
bool getBroadcastedShape(ArrayRef< int64_t > shape1, ArrayRef< int64_t > shape2, SmallVectorImpl< int64_t > &resultShape)
Returns true and sets resultShape to the broadcasted shape from the two given shapes if they are broa...
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
void addArgAndResultAttrs(Builder &builder, OperationState &result, ArrayRef< DictionaryAttr > argAttrs, ArrayRef< DictionaryAttr > resultAttrs, StringAttr argAttrsName, StringAttr resAttrsName)
Adds argument and result attributes, provided as argAttrs and resultAttrs arguments,...
void printFunctionOp(OpAsmPrinter &p, FunctionOpInterface op, bool isVariadic, StringRef typeAttrName, StringAttr argAttrsName, StringAttr resAttrsName)
Printer implementation for function-like operations.
ParseResult parseFunctionOp(OpAsmParser &parser, OperationState &result, bool allowVariadic, StringAttr typeAttrName, FuncTypeBuilder funcTypeBuilder, StringAttr argAttrsName, StringAttr resAttrsName)
Parser implementation for function-like operations.
DynamicAPInt getIndex(const ConeV &cone)
Get the index of a cone, i.e., the volume of the parallelepiped spanned by its generators,...
QueryRef parse(llvm::StringRef line, const QuerySession &qs)
bool isExtentTensorType(Type)
LogicalResult getShapeVec(Value input, SmallVectorImpl< int64_t > &shapeValues)
RankedTensorType getExtentTensorType(MLIRContext *ctx, int64_t rank=ShapedType::kDynamic)
Alias type for extent tensors.
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
LogicalResult verifyCompatibleShapes(TypeRange types1, TypeRange types2)
Returns success if the given two arrays have the same number of elements and each pair wise entries h...
Type getType(OpFoldResult ofr)
Returns the int type of the integer in ofr.
LogicalResult emitOptionalError(std::optional< Location > loc, Args &&...args)
Overloads of the above emission functions that take an optionally null location.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
detail::constant_int_predicate_matcher m_Zero()
Matches a constant scalar / vector splat / tensor splat integer zero.
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
LogicalResult verify(Operation *op, bool verifyRecursively=true)
Perform (potentially expensive) checks of invariants, used to detect compiler bugs,...
This is the representation of an operand reference.
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
This represents an operation in an abstracted form, suitable for use with the builder APIs.
SmallVector< Value, 4 > operands
void addOperands(ValueRange newOperands)
void addAttribute(StringRef name, Attribute attr)
Add an attribute with the specified name.
void addTypes(ArrayRef< Type > newTypes)
SmallVector< std::unique_ptr< Region >, 1 > regions
Regions that the op will hold.
SmallVector< Type, 4 > types
Types of the results of this operation.
Region * addRegion()
Create a region that should be attached to the operation.