MLIR  21.0.0git
Tiling.cpp
Go to the documentation of this file.
1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 
27 #include "mlir/IR/AffineExpr.h"
28 #include "mlir/IR/AffineMap.h"
29 #include "mlir/IR/BuiltinOps.h"
30 #include "mlir/IR/ValueRange.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CommandLine.h"
35 #include <utility>
36 
37 namespace mlir {
38 #define GEN_PASS_DEF_LINALGTILINGPASS
39 #include "mlir/Dialect/Linalg/Passes.h.inc"
40 } // namespace mlir
41 
42 using namespace mlir;
43 using namespace mlir::affine;
44 using namespace mlir::linalg;
45 using namespace mlir::scf;
46 
47 #define DEBUG_TYPE "linalg-tiling"
48 
49 std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
51  ArrayRef<OpFoldResult> allShapeSizes,
52  ArrayRef<OpFoldResult> allTileSizes) {
53  assert(allTileSizes.size() == map.getNumResults());
54  // Apply `map` to get shape sizes in loop order.
55  SmallVector<OpFoldResult> shapeSizes =
56  makeComposedFoldedMultiResultAffineApply(b, loc, map, allShapeSizes);
57  SmallVector<OpFoldResult> tileSizes(allTileSizes);
58 
59  // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
60  LoopIndexToRangeIndexMap loopIndexToRangeIndex;
61  for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
62  if (getConstantIntValue(tileSizes[idx - zerosCount]) ==
63  static_cast<int64_t>(0)) {
64  shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
65  tileSizes.erase(tileSizes.begin() + idx - zerosCount);
66  ++zerosCount;
67  continue;
68  }
69  loopIndexToRangeIndex[idx] = idx - zerosCount;
70  }
71 
72  // Create a new range with the applied tile sizes.
74  for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
75  res.push_back(Range{b.getIndexAttr(0), shapeSizes[idx], tileSizes[idx]});
76  return std::make_tuple(res, loopIndexToRangeIndex);
77 }
78 
80  RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
81  const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
82  SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
83  for (auto en : enumerate(allIvs)) {
84  auto rangeIndex = loopIndexToRangeIndex.find(en.index());
85  if (rangeIndex == loopIndexToRangeIndex.end())
86  continue;
87  en.value() = ivs[rangeIndex->second];
88  }
89  offsetIndices(b, op, getAsOpFoldResult(allIvs));
90 }
91 
92 /// Asserts that the given index-typed value is strictly positive. If the value
93 /// is an attribute, asserts at compile time, otherwise emits an assertion
94 /// checked at runtime.
96  OpFoldResult value) {
97  if (auto attr = llvm::dyn_cast_if_present<Attribute>(value)) {
98  assert(cast<IntegerAttr>(attr).getValue().isStrictlyPositive() &&
99  "expected strictly positive tile size and divisor");
100  return;
101  }
102 
103  Value zero = b.create<arith::ConstantIndexOp>(0);
104  Value condition = b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt,
105  cast<Value>(value), zero);
106  b.create<cf::AssertOp>(
107  condition,
108  b.getStringAttr("expected strictly positive tile size and divisor"));
109 }
110 
111 FailureOr<StaticContinuousTileSizeSpecification>
113  unsigned dimension,
114  unsigned targetSize) {
115 
116  assert(!op.hasDynamicShape() &&
117  "cannot compute static multi-tile sizes for an op with dynamic shape");
118  assert(targetSize > 0 && "target size must be non-negative");
119  assert(dimension < op.getNumLoops() && "dimension overflow");
120 
122  int64_t loopRange = op.getStaticLoopRanges()[dimension];
123  int64_t tripCount = loopRange / targetSize;
124 
125  unsigned tileSize = targetSize;
126 
127  spec.tileSizes.push_back(tileSize);
128  spec.tripCounts.push_back(tripCount);
129 
130  int64_t remainderChunk = loopRange % targetSize;
131 
132  while (tileSize > 1 && remainderChunk != 0) {
133 
134  uint64_t maxPower = llvm::bit_floor(tileSize);
135  tileSize = maxPower == tileSize ? maxPower >> 1 : maxPower;
136 
137  tripCount = remainderChunk / tileSize;
138 
139  if (tripCount > 0) {
140  spec.tileSizes.push_back(tileSize);
141  spec.tripCounts.push_back(tripCount);
142  }
143 
144  remainderChunk = remainderChunk % tileSize;
145  }
146 
147  auto tripCountCheck = [&](SmallVector<int64_t> tileSizes,
148  SmallVector<int64_t> tripCounts,
149  int64_t range) -> bool {
150  int64_t computedRange = 0;
151  for (auto [tileSize, tripCount] : llvm::zip(tileSizes, tripCounts))
152  computedRange += tileSize * tripCount;
153  return range == computedRange;
154  };
155 
156  if (!tripCountCheck(spec.tileSizes, spec.tripCounts, loopRange))
157  return failure();
158 
159  return spec;
160 }
161 
162 FailureOr<ContinuousTileSizeSpecification>
164  unsigned dimension,
165  OpFoldResult targetSize,
166  bool emitAssertions) {
167 
168  SmallVector<Range> loopRanges = op.getIterationDomain(builder);
169  unsigned numLoops = loopRanges.size();
170 
171  // Bail out on dimension overflow.
172  if (dimension >= numLoops)
173  return failure();
174 
175  // The code below works only on values.
176  Location loc = op->getLoc();
177  ImplicitLocOpBuilder b(loc, builder);
178  if (emitAssertions) {
179  emitIsPositiveIndexAssertion(b, targetSize);
180  }
181  Value targetSizeValue =
182  getValueOrCreateConstantIndexOp(builder, loc, targetSize);
183 
184  // Find the trip count of the iteration space dimension for which the tile
185  // sizes are computed.
186  Value loopRange = getValueOrCreateConstantIndexOp(b, loc,
187  loopRanges[dimension].size);
189 
190  // Compute the tile sizes and the respective numbers of tiles.
193  auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value {
194  return affine::makeComposedAffineApply(b, b.getLoc(), expr, ofrs);
195  };
196 
197  Value tripCountValue = apply(s0.floorDiv(s1), {loopRange, targetSizeValue});
198  Value remainderChunkValue = apply(s0 % s1, {loopRange, targetSizeValue});
199 
201  b, b.getLoc(), s0.floorDiv(s1), {loopRange, targetSizeValue});
202 
203  // emitAssertions above already asserts that targetSize is
204  // a poistive integer.
205  uint64_t tileSizeInt = *getConstantIntValue(targetSizeValue);
206 
207  assert(tileSizeInt > 0 && "target size must be non-negative");
208 
209  spec.tileSizes.push_back(targetSizeValue);
210  spec.tripCounts.push_back(tripCountValue);
211 
212  while (tileSizeInt > 1) {
213  uint64_t maxPower = llvm::bit_floor(tileSizeInt);
214  tileSizeInt = maxPower == tileSizeInt ? maxPower >> 1 : maxPower;
215  auto constStepOp =
216  builder.createOrFold<arith::ConstantIndexOp>(b.getLoc(), tileSizeInt);
217  tripCountValue = apply(s0.floorDiv(s1), {remainderChunkValue, constStepOp});
218 
220  b, b.getLoc(), s0.floorDiv(s1), {remainderChunkValue, constStepOp});
221 
222  // Optimization if tripCount can be determined to be zero.
223  if (Attribute attr = llvm::dyn_cast_if_present<Attribute>(tripCountSize)) {
224  auto intAttr = cast<IntegerAttr>(attr);
225  bool isTripCountZero = intAttr.getValue().isZero();
226 
227  if (!isTripCountZero) {
228  spec.tileSizes.push_back(constStepOp);
229  spec.tripCounts.push_back(tripCountValue);
230  }
231  } else {
232  spec.tileSizes.push_back(constStepOp);
233  spec.tripCounts.push_back(tripCountValue);
234  }
235 
236  remainderChunkValue = apply(s0 % s1, {remainderChunkValue, constStepOp});
237  }
238 
239  return spec;
240 }
241 
242 FailureOr<StaticMultiSizeSpecification>
243 mlir::linalg::computeStaticMultiTileSizes(LinalgOp op, unsigned dimension,
244  int64_t targetSize, int64_t divisor) {
245  assert(!op.hasDynamicShape() &&
246  "cannot compute static multi-tile sizes for an op with dynamic shape");
247  assert(targetSize > 0 && "target size must be non-negative");
248  assert(divisor > 0 && "divisor must be non-negative");
249  assert(dimension < op.getNumLoops() && "dimension overflow");
250 
252  int64_t tripCount = op.getStaticLoopRanges()[dimension];
253  int64_t a = tripCount / divisor;
254  int64_t t = (targetSize + divisor - 1) / divisor;
255  int64_t totalTripCount = (a + t - 1) / t;
256  spec.lowTileSize = (a / totalTripCount) * divisor;
257  spec.highTileSize = spec.lowTileSize + divisor;
258  spec.highTripCount = a % totalTripCount;
259  spec.lowTripCount = totalTripCount - spec.highTripCount;
260  if (spec.lowTileSize * spec.lowTripCount +
261  spec.highTileSize * spec.highTripCount !=
262  tripCount) {
263  return failure();
264  }
265  return spec;
266 }
267 
268 FailureOr<MultiSizeSpecification>
270  unsigned dimension, OpFoldResult targetSize,
271  OpFoldResult divisor, bool emitAssertions) {
272  // Bail out on dimension overflow.
273  if (dimension >= op.getNumLoops())
274  return failure();
275 
276  // The code below works only on values.
277  Location loc = op.getLoc();
278  ImplicitLocOpBuilder b(loc, builder);
279  if (emitAssertions) {
280  emitIsPositiveIndexAssertion(b, targetSize);
281  emitIsPositiveIndexAssertion(b, divisor);
282  }
283  Value targetSizeValue =
284  getValueOrCreateConstantIndexOp(builder, loc, targetSize);
285  Value divisorValue = getValueOrCreateConstantIndexOp(builder, loc, divisor);
286 
287  // Find the trip count of the iteration space dimension for which the tile
288  // sizes are computed.
289  SmallVector<OpFoldResult> allShapes =
290  op.createFlatListOfOperandDims(b, b.getLoc());
291  AffineMap shapesToLoops = op.getShapesToLoopsMap();
292  SmallVector<OpFoldResult> loopRanges =
293  makeComposedFoldedMultiResultAffineApply(b, op.getLoc(), shapesToLoops,
294  allShapes);
295  Value tripCount =
296  getValueOrCreateConstantIndexOp(b, op.getLoc(), loopRanges[dimension]);
297 
298  // Compute the tile sizes and the respective numbers of tiles.
302  auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value {
303  return affine::makeComposedAffineApply(b, b.getLoc(), expr, ofrs);
304  };
305  Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue});
306  Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue});
307  Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t});
308  Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue});
309  Value v = apply(s0 % s1, {a, d});
310  Value u = apply(s0 - s1, {d, v});
311 
313  spec.lowTileSize = s;
314  spec.highTileSize = apply(s0 + s1, {s, divisorValue});
315  spec.lowTripCount = u;
316  spec.highTripCount = v;
317 
318  // If requested, emit the check that the tile sizes are computed correctly.
319  // For example, for iteration dimension size of 15 and the target size 8 it is
320  // impossible to find two tile sizes both divisible by 8 that fully cover the
321  // original space dimension.
322  if (emitAssertions) {
323  AffineExpr s3 = builder.getAffineSymbolExpr(3);
324  Value coveredSize =
325  apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount,
326  spec.highTileSize, spec.highTripCount});
327  Value equals = b.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
328  coveredSize, tripCount);
329  b.create<cf::AssertOp>(
330  equals, builder.getStringAttr(
331  "could not compute dynamic multi-size tile shapes"));
332  }
333 
334  return spec;
335 }
336 
337 /// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
338 /// than `iterationSize`.
340  OpFoldResult numThreads,
341  OpFoldResult iterationSize) {
342  std::optional<int64_t> tileSizeConst = getConstantIntValue(tileSize);
343  std::optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
344  std::optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
345  if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
346  return false;
347  return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
348 }
349 
350 /// Build an `affine_max` of all the `vals`.
352  ArrayRef<OpFoldResult> vals) {
354  b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
355  vals);
356 }
357 
358 /// Build an `affine_min` of all the `vals`.
360  ArrayRef<OpFoldResult> vals) {
362  b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
363  vals);
364 }
365 
366 /// Fill out the `tiledOffsets` and `tiledSizes` to be used to tile to a given
367 /// number of threads.
369  RewriterBase &b, Location loc, scf::ForallOp forallOp,
370  ArrayRef<OpFoldResult> numThreads, SmallVector<Range> loopRanges,
371  bool omitTileOffsetBoundsCheck,
372  std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
373  SmallVector<OpFoldResult> &tiledOffsets,
374  SmallVector<OpFoldResult> &tiledSizes) {
376  b.setInsertionPointToStart(forallOp.getBody(0));
377 
378  SmallVector<Value> threadIds = forallOp.getInductionVars();
379  SmallVector<OpFoldResult> nonZeroNumThreads = llvm::filter_to_vector(
380  numThreads, [](OpFoldResult ofr) { return !isZeroInteger(ofr); });
381  int64_t nLoops = loopRanges.size();
382  tiledOffsets.reserve(nLoops);
383  tiledSizes.reserve(nLoops);
384  for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) {
385  bool overflow = loopIdx >= numThreads.size();
386  bool isZero = !overflow && isZeroInteger(numThreads[loopIdx]);
387  // Degenerate case: take the whole domain.
388  if (overflow || isZero) {
389  tiledOffsets.push_back(loopRanges[loopIdx].offset);
390  tiledSizes.push_back(loopRanges[loopIdx].size);
391  continue;
392  }
393 
394  // Tiled case: compute the offset and size.
395  AffineExpr i, j, m, n, o;
396  bindDims(b.getContext(), i, j);
397  bindSymbols(b.getContext(), m, n, o);
398  OpFoldResult size = loopRanges[loopIdx].size;
399  OpFoldResult offset = loopRanges[loopIdx].offset;
400  OpFoldResult threadId = threadIds[threadIdIdx];
401  // Symbolic fixed max size per thread.
402  // TODO: floor + 0/1 depending on case for better load-balancing.
403  OpFoldResult tileSizePerThread =
404  nominalTileSizes.has_value()
405  ? (*nominalTileSizes)[loopIdx]
407  b, loc, m.ceilDiv(n),
408  ArrayRef<OpFoldResult>{size, nonZeroNumThreads[threadIdIdx]});
409 
410  // Dynamic offset shifted by threadId * maxSizePerThread.
412  b, loc, i + j * m, {offset, threadId, tileSizePerThread});
413  // Dynamic upper-bound depending on the threadId.
414  OpFoldResult residualTileSize = makeComposedFoldedAffineApply(
415  b, loc, i + j * m - n,
416  {offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size});
417  if (!isZeroInteger(residualTileSize)) {
418  OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply(
419  b, loc, -i + m, {offsetPerThread, size});
420  tileSizePerThread =
421  buildMin(b, loc, {sizeMinusOffsetPerThread, tileSizePerThread});
422  }
423 
424  tiledOffsets.push_back(offsetPerThread);
425  // TODO: if tileSizePerThread <= 0 early exit.
426  if (!omitTileOffsetBoundsCheck &&
427  !canOmitTileOffsetInBoundsCheck(tileSizePerThread,
428  nonZeroNumThreads[threadIdIdx], size))
429  tileSizePerThread =
430  buildMax(b, loc, {b.getIndexAttr(0), tileSizePerThread});
431 
432  tiledSizes.push_back(tileSizePerThread);
433  ++threadIdIdx;
434  }
435 }
436 
437 template <typename LoopTy>
438 static FailureOr<TiledLinalgOp>
440  const LinalgTilingOptions &options) {
442 
443  auto nLoops = op.getNumLoops();
444  // Initial tile sizes may be too big, only take the first nLoops.
445  tileSizes = tileSizes.take_front(nLoops);
446 
447  if (llvm::all_of(tileSizes, [](OpFoldResult ofr) {
448  return getConstantIntValue(ofr) == static_cast<int64_t>(0);
449  })) {
450  TiledLinalgOp tiledOp;
451  tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
452  tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
453  tiledOp.op->result_end());
454  return tiledOp;
455  }
456 
457  // 1. Build the tiled loop ranges.
458  SmallVector<OpFoldResult> allShapeSizes =
459  op.createFlatListOfOperandDims(b, op.getLoc());
460  AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
461  if (!shapeSizesToLoopsMap)
462  return failure();
463 
464  auto [loopRanges, loopIndexToRangeIndex] = makeTiledLoopRanges(
465  b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
466 
468  for (const auto &attr : enumerate(op.getIteratorTypesArray())) {
469  if (loopIndexToRangeIndex.count(attr.index()))
470  iteratorTypes.push_back(attr.value());
471  }
472  // If interchangeVector is empty, use the identity. Build the permutation map
473  // otherwise.
474  auto invPermutationMap =
475  AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
476  if (!options.interchangeVector.empty()) {
477  // Based on the pruned iterations (due to zero tile size), recompute the
478  // interchange vector.
479  SmallVector<unsigned, 4> interchangeVector;
480  interchangeVector.reserve(options.interchangeVector.size());
481  for (auto pos : options.interchangeVector) {
482  auto it = loopIndexToRangeIndex.find(pos);
483  if (it == loopIndexToRangeIndex.end())
484  continue;
485  interchangeVector.push_back(it->second);
486  }
487  // Interchange vector is guaranteed to be a permutation,
488  // `inversePermutation` must succeed.
489  invPermutationMap = inversePermutation(
490  AffineMap::getPermutationMap(interchangeVector, b.getContext()));
491  assert(invPermutationMap);
492  SmallVector<int64_t> permutation(interchangeVector.begin(),
493  interchangeVector.end());
494  applyPermutationToVector(loopRanges, permutation);
495  applyPermutationToVector(iteratorTypes, permutation);
496  }
497 
498  // Handle distribution. Create a vector of the same size of loops that are to
499  // be tiled.
501  if (options.distribution) {
502  procInfo.resize(
503  iteratorTypes.size(),
504  linalg::ProcInfo{nullptr, nullptr, linalg::DistributionMethod::None});
505  // Collect loop ranges of tiled loops, loops that are parallel.
506  SmallVector<Range> parallelLoopRanges;
507  for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
508  if (!isParallelIterator(iteratorType.value()))
509  break;
510  parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
511  }
512  auto returnedProcInfo =
513  options.distribution->procInfo(b, op.getLoc(), parallelLoopRanges);
514  unsigned procIdIdx = 0;
515  // Update the distribution information for the loops.
516  for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
517  if (!isParallelIterator(iteratorType.value()))
518  break;
519  procInfo[iteratorType.index()] = returnedProcInfo[procIdIdx++];
520  }
521  }
522 
523  // 2. Create the tiled loops.
524  LinalgOp res = op;
525  SmallVector<Value, 4> ivs, tensorResults;
526  auto tiledLoopBodyBuilder =
527  [&](OpBuilder &builder, Location loc, ValueRange localIvs,
528  ValueRange operandValuesToUse) -> scf::ValueVector {
529  ivs.assign(localIvs.begin(), localIvs.end());
530 
531  // When an `interchangeVector` is present, it has been applied to the
532  // loop ranges and the iterator types. Apply its inverse to the
533  // resulting loop `ivs` to match the op definition.
534  SmallVector<Value, 4> interchangedIvs;
535  if (!options.interchangeVector.empty()) {
536  for (AffineExpr result : invPermutationMap.getResults())
537  interchangedIvs.push_back(
538  ivs[cast<AffineDimExpr>(result).getPosition()]);
539  } else {
540  interchangedIvs.assign(ivs.begin(), ivs.end());
541  }
542 
543  // Tile the `operandValuesToUse` that either match the `op` operands
544  // themselves or the tile loop arguments forwarding them.
545  assert(operandValuesToUse.size() ==
546  static_cast<size_t>(op->getNumOperands()) &&
547  "expect the number of operands and inputs and outputs to match");
548  SmallVector<Value> valuesToTile = operandValuesToUse;
549  SmallVector<OpFoldResult> sizeBounds =
550  makeComposedFoldedMultiResultAffineApply(b, loc, shapeSizesToLoopsMap,
551  allShapeSizes);
552  SmallVector<Value> tiledOperands = makeTiledShapes(
553  b, loc, op, valuesToTile, getAsOpFoldResult(interchangedIvs), tileSizes,
554  sizeBounds,
555  /*omitPartialTileCheck=*/false);
556 
557  SmallVector<Type> resultTensorTypes =
558  getTensorOutputTypes(op, tiledOperands);
559  res = clone(b, op, resultTensorTypes, tiledOperands);
560  tensorResults =
561  insertSlicesBack(builder, loc, op, tiledOperands, res->getResults());
562  return scf::ValueVector(tensorResults.begin(), tensorResults.end());
563  };
564  GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
565  tiledLoopBodyBuilder, procInfo);
566 
567  // 3. Transform IndexOp results w.r.t. the tiling.
568  transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
569 
570  // 4. Gather the newly created loops and return them with the new op.
572  loops.reserve(ivs.size());
573  for (auto iv : ivs) {
574  if (isa<BlockArgument>(iv)) {
575  loops.push_back(cast<BlockArgument>(iv).getOwner()->getParentOp());
576  assert(loops.back() && "no owner found for induction variable!");
577  } else {
578  // TODO: Instead of doing this, try to recover the ops used instead of the
579  // loop.
580  loops.push_back(nullptr);
581  }
582  }
583 
584  // 5. Get the tensor results from the outermost loop if available. Otherwise
585  // use the previously captured `tensorResults`.
586  Operation *outermostLoop = nullptr;
587  for (Operation *loop : loops)
588  if ((outermostLoop = loop))
589  break;
590 
591  return TiledLinalgOp{
592  res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
593 }
594 
595 FailureOr<linalg::ForallReductionTilingResult> linalg::tileReductionUsingForall(
596  RewriterBase &b, PartialReductionOpInterface op,
597  ArrayRef<OpFoldResult> numThreads, ArrayRef<OpFoldResult> tileSizes,
598  std::optional<ArrayAttr> mapping) {
599  Location loc = op.getLoc();
601 
602  // Ops implementing PartialReductionOpInterface are expected to implement
603  // TilingInterface.
604  // TODO: proper core mechanism to tie interfaces together.
605  auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
606 
607  // Ops implementing PartialReductionOpInterface are not necessarily expected
608  // to implement TilingInterface.. This cast is unsafe atm.
609  // TODO: proper core mechanism to tie interfaces together.
610  // TODO: this function requires a pair of interfaces ..
611  auto destinationStyleOp =
612  dyn_cast<DestinationStyleOpInterface>(op.getOperation());
613  if (!destinationStyleOp)
614  return b.notifyMatchFailure(op, "not a destination style op");
615 
616  // Actually this only work for Linalg ops atm.
617  auto linalgOp = dyn_cast<linalg::LinalgOp>(op.getOperation());
618  if (!linalgOp)
619  return b.notifyMatchFailure(op, "not a linalg op");
620 
621  SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
622  if (op->getNumResults() != 1)
623  return b.notifyMatchFailure(
624  op, "don't support ops with multiple results for now");
625 
627  tilingInterfaceOp.getLoopIteratorTypes();
628  SmallVector<unsigned> redDims;
629  linalgOp.getReductionDims(redDims);
630  if (redDims.size() != 1)
631  return b.notifyMatchFailure(
632  op, "only support ops with one reduction dimension.");
633  if (!tileSizes.empty() && tileSizes.size() != numThreads.size())
634  return b.notifyMatchFailure(op, "if tile sizes are present it must have as "
635  "many elements as number of threads");
636  int reductionDim = static_cast<int>(redDims.front());
637 
638  if (redDims.front() >= numThreads.size())
639  return b.notifyMatchFailure(
640  op, "reduction dimension must be mapped to threads");
641 
642  // 1. Create the inital tensor value.
643  FailureOr<SmallVector<Value>> maybeInitTensors =
644  op.generateInitialTensorForPartialReduction(b, loc, numThreads,
645  reductionDim);
646  if (failed(maybeInitTensors))
647  return b.notifyMatchFailure(
648  op, "Failed to create inital tensors for partial reduction");
649  SmallVector<Value> &initTensors = maybeInitTensors.value();
650 
651  // Gather destination tensors.
652  SmallVector<Value> dest;
653  if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
654  return b.notifyMatchFailure(op, "failed to get destination tensors");
655 
656  Operation *tiledOp = nullptr;
657 
658  SmallVector<OpFoldResult> nonZeroNumThreads = llvm::filter_to_vector(
659  numThreads, [](OpFoldResult ofr) { return !isZeroInteger(ofr); });
660  SmallVector<Value> materializedNonZeroNumThreads =
661  getValueOrCreateConstantIndexOp(b, loc, nonZeroNumThreads);
662 
663  // 2. Create the ForallOp with an empty region.
664  scf::ForallOp forallOp = b.create<scf::ForallOp>(
665  loc, getAsOpFoldResult(materializedNonZeroNumThreads), initTensors,
666  mapping);
667 
668  // 3. Calculate the tile offsets and sizes for the subsequent loop that will
669  // be nested under `forallOp`.
670  SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
671  calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, iterationDomain,
672  /*omitTileOffsetBoundsCheck =*/false,
673  /*nominalTileSizes=*/std::nullopt, tiledOffsets,
674  tiledSizes);
675 
676  // 4b. Clone the tileable op and update its destination operands to use the
677  // output bbArgs of the ForallOp.
678  SmallVector<Value> tilingResults;
679  ArrayRef<BlockArgument> destBbArgs = forallOp.getRegionIterArgs();
680  {
681  // 4.a. RAII guard, inserting within forallOp, before terminator.
683  b.setInsertionPoint(forallOp.getTerminator());
684 
685  SmallVector<Value> tiledDpsInitOperands;
686  for (Value initOperand : destinationStyleOp.getDpsInits()) {
687  auto *it = llvm::find(dest, initOperand);
688  assert(it != dest.end() && "dest operand not found in dest");
689  unsigned destNum = std::distance(dest.begin(), it);
690  SmallVector<OpFoldResult> strides(numThreads.size(), b.getIndexAttr(1));
691  SmallVector<OpFoldResult> outOffsets(numThreads.size(),
692  b.getIndexAttr(0));
693  SmallVector<OpFoldResult> sizes = tiledSizes;
694  sizes[reductionDim] = b.getIndexAttr(1);
695  outOffsets[reductionDim] = forallOp.getInductionVars()[0];
696  // TODO: use SubsetExtractOpInterface once it is available.
697  tiledDpsInitOperands.push_back(b.create<tensor::ExtractSliceOp>(
698  loc, cast<RankedTensorType>(initOperand.getType()),
699  destBbArgs[destNum], outOffsets, sizes, strides));
700  }
701 
702  // 4.b. Clone the op and update init operands.
703  // We cannot use a IRMapping here because it can replace
704  // different OpOperands with the same value.
705  Operation *clonedOp = b.clone(*op.getOperation());
706  b.modifyOpInPlace(clonedOp, [&]() {
707  for (auto [initOperandPtr, tiledInitValue] : llvm::zip_equal(
708  cast<DestinationStyleOpInterface>(clonedOp).getDpsInitsMutable(),
709  tiledDpsInitOperands)) {
710  initOperandPtr.set(tiledInitValue);
711  }
712  });
713 
714  // 5. Tile the cloned op and delete the clone.
715  if (tileSizes.empty()) {
716  FailureOr<TilingResult> tilingResult =
717  cast<TilingInterface>(clonedOp).getTiledImplementation(
718  b, tiledOffsets, tiledSizes);
719  if (failed(tilingResult))
720  return clonedOp->emitError("Failed to tile op: ");
721  if (tilingResult->tiledOps.size() != 1) {
722  return clonedOp->emitError("expected a single produced tiled op, got ")
723  << tilingResult->tiledOps.size();
724  }
725  tiledOp = tilingResult->tiledOps.front();
726  tilingResults = tilingResult->tiledValues;
727  } else {
729  FailureOr<TiledLinalgOp> maybeTiled = tileLinalgOpImpl<scf::ForOp>(
730  b, cast<LinalgOp>(clonedOp), tileSizes, options);
731  if (failed(maybeTiled))
732  return b.notifyMatchFailure(op, "failed tileLinalgOpImpl");
733 
734  SmallVector<Value> ids = forallOp.getInductionVars();
735  mapLoopToProcessorIds(cast<scf::ForOp>(maybeTiled->loops.back()), ids,
736  materializedNonZeroNumThreads);
737  if (maybeTiled->loops.size() != 1) {
738  return clonedOp->emitError("expected a single produced loop");
739  }
740  tiledOp = maybeTiled->op;
741  tilingResults = maybeTiled->loops.front()->getResults();
742  }
743 
744  b.eraseOp(clonedOp);
745  }
746 
747  // 6. Insert the partial reductions back into a new tensor.
748  for (auto [index, result, bbArg] : llvm::zip(
749  llvm::seq<unsigned>(0, dest.size()), tilingResults, destBbArgs)) {
750  // 6.a. Partial subset information is inserted just before the terminator.
752  b.setInsertionPoint(forallOp.getTerminator());
753 
754  SmallVector<OpFoldResult> resultOffsets, resultSizes;
755  if (failed(tilingInterfaceOp.getResultTilePosition(
756  b, index, tiledOffsets, tiledSizes, resultOffsets, resultSizes)))
757  return op->emitOpError("output offsets couldn't be calculated");
758  SmallVector<OpFoldResult> resultOffsetsRank, resultSizesRank;
759  int64_t offIdx = 0;
760  int64_t sizeIdx = 0;
761  for (int64_t i = 0, e = numThreads.size(); i < e; ++i) {
762  if (i == reductionDim) {
763  resultOffsetsRank.push_back(forallOp.getInductionVars()[0]);
764  resultSizesRank.push_back(b.getIndexAttr(1));
765  continue;
766  }
767  resultOffsetsRank.push_back(resultOffsets[offIdx++]);
768  resultSizesRank.push_back(resultSizes[sizeIdx++]);
769  }
770  SmallVector<OpFoldResult> strides(resultSizesRank.size(),
771  b.getIndexAttr(1));
772 
773  // 6.b. Parallel insertions are inserted at the end of the combining
774  // terminator.
775  b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
776  b.create<tensor::ParallelInsertSliceOp>(
777  loc, result, bbArg, resultOffsetsRank, resultSizesRank, strides);
778  }
779 
780  // 7. Merge the partial reductions.
781  b.setInsertionPointAfter(forallOp);
782  FailureOr<MergeResult> mergeResult =
783  op.mergeReductions(b, loc, forallOp->getResults(), reductionDim);
784  if (failed(mergeResult)) {
785  return failure();
786  }
787  b.replaceOp(op, mergeResult->replacements);
788 
789  // 8. Return.
791  results.initialValues = initTensors;
792  results.loops = forallOp;
793  results.parallelTiledOps.push_back(tiledOp);
794  results.mergeOps.append(mergeResult->mergeOps);
795  return results;
796 }
797 
798 template <typename LoopTy>
799 FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
800  RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
802  b.setInsertionPoint(op);
803 
804  if (!options.tileSizeComputationFunction)
805  return failure();
806 
807  // Enforce the convention that "tiling by zero" skips tiling a particular
808  // dimension. This convention is significantly simpler to handle instead of
809  // adjusting affine maps to account for missing dimensions.
810  auto nLoops = op.getNumLoops();
811  SmallVector<OpFoldResult> tileSizeVector =
812  getAsOpFoldResult(options.tileSizeComputationFunction(b, op));
813  if (tileSizeVector.size() < nLoops) {
814  tileSizeVector.append(nLoops - tileSizeVector.size(), b.getIndexAttr(0));
815  }
816 
817  return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
818 }
819 
820 FailureOr<TiledLinalgOp>
822  const LinalgTilingOptions &options) {
823  switch (options.loopType) {
825  return tileLinalgOpImpl<scf::ForOp>(b, op, options);
826  case LinalgTilingLoopType::ParallelLoops:
827  return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
828  default:;
829  }
830  return failure();
831 }
832 
833 namespace {
834 /// Helper classes for type list expansion.
835 template <typename... OpTypes>
836 class CanonicalizationPatternList;
837 
838 template <>
839 class CanonicalizationPatternList<> {
840 public:
841  static void insert(RewritePatternSet &patterns) {}
842 };
843 
844 template <typename OpTy, typename... OpTypes>
845 class CanonicalizationPatternList<OpTy, OpTypes...> {
846 public:
847  static void insert(RewritePatternSet &patterns) {
848  OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
849  CanonicalizationPatternList<OpTypes...>::insert(patterns);
850  }
851 };
852 } // namespace
853 
858  return patterns;
859 }
860 
863  auto *ctx = patterns.getContext();
864  affine::AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
865  affine::AffineForOp::getCanonicalizationPatterns(patterns, ctx);
866  affine::AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
867  affine::AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
868  arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
869 
870  memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
871  memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
872 
873  scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
874  scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
875 
876  tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
877  tensor::EmptyOp::getCanonicalizationPatterns(patterns, ctx);
878  tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
879  tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
880  tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
881  ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
882 
883  CanonicalizationPatternList<
884 #define GET_OP_LIST
885 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
886  >::insert(patterns);
887 }
DiagnosedSilenceableFailure doit(RewriterBase &rewriter, OpTy target, transform::ApplyToEachResultList &results, transform::TransformState &state)
static llvm::ManagedStatic< PassManagerOptions > options
static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize, OpFoldResult numThreads, OpFoldResult iterationSize)
Returns true if the maximum tile offset tileSize * numThreads-1 is less than iterationSize.
Definition: Tiling.cpp:339
static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b, OpFoldResult value)
Asserts that the given index-typed value is strictly positive.
Definition: Tiling.cpp:95
static OpFoldResult buildMax(OpBuilder &b, Location loc, ArrayRef< OpFoldResult > vals)
Build an affine_max of all the vals.
Definition: Tiling.cpp:351
static void calculateTileOffsetsAndSizes(RewriterBase &b, Location loc, scf::ForallOp forallOp, ArrayRef< OpFoldResult > numThreads, SmallVector< Range > loopRanges, bool omitTileOffsetBoundsCheck, std::optional< ArrayRef< OpFoldResult >> nominalTileSizes, SmallVector< OpFoldResult > &tiledOffsets, SmallVector< OpFoldResult > &tiledSizes)
Fill out the tiledOffsets and tiledSizes to be used to tile to a given number of threads.
Definition: Tiling.cpp:368
static FailureOr< TiledLinalgOp > tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ArrayRef< OpFoldResult > tileSizes, const LinalgTilingOptions &options)
Definition: Tiling.cpp:439
static OpFoldResult buildMin(OpBuilder &b, Location loc, ArrayRef< OpFoldResult > vals)
Build an affine_min of all the vals.
Definition: Tiling.cpp:359
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExpr floorDiv(uint64_t v) const
Definition: AffineExpr.cpp:921
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
Definition: AffineMap.cpp:334
unsigned getNumResults() const
Definition: AffineMap.cpp:402
static AffineMap getPermutationMap(ArrayRef< unsigned > permutation, MLIRContext *context)
Returns an AffineMap representing a permutation.
Definition: AffineMap.cpp:264
Attributes are known-constant values of operations.
Definition: Attributes.h:25
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:106
AffineExpr getAffineSymbolExpr(unsigned position)
Definition: Builders.cpp:366
StringAttr getStringAttr(const Twine &bytes)
Definition: Builders.cpp:260
MLIRContext * getContext() const
Definition: Builders.h:55
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
Location getLoc() const
Accessors for the implied location.
OpTy create(Args &&...args)
Create an operation of specific op type at the current insertion point and location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:76
MLIRContext * getContext() const
Return the context this location is uniqued in.
Definition: Location.h:86
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:346
This class helps build Operations.
Definition: Builders.h:205
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition: Builders.cpp:551
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:429
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Definition: Builders.h:396
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Definition: Builders.h:434
void createOrFold(SmallVectorImpl< Value > &results, Location location, Args &&...args)
Create an operation of specific op type at the current insertion point, and immediately try to fold i...
Definition: Builders.h:518
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:455
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:410
This class represents a single result from folding an operation.
Definition: OpDefinition.h:271
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
result_range getResults()
Definition: Operation.h:415
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:358
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:682
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
void modifyOpInPlace(Operation *root, CallableT &&callable)
This method is a utility wrapper around an in-place modification of an operation.
Definition: PatternMatch.h:594
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:387
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Specialization of arith.constant op that returns an integer of index type.
Definition: Arith.h:93
SmallVector< OpFoldResult > makeComposedFoldedMultiResultAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Variant of makeComposedFoldedAffineApply suitable for multi-result maps.
Definition: AffineOps.cpp:1271
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
Definition: AffineOps.cpp:1175
OpFoldResult makeComposedFoldedAffineMax(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a maximum across the results of applying map to operands,...
Definition: AffineOps.cpp:1336
OpFoldResult makeComposedFoldedAffineMin(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a minimum across the results of applying map to operands,...
Definition: AffineOps.cpp:1329
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
Definition: AffineOps.cpp:1225
void mapLoopToProcessorIds(scf::ForOp forOp, ArrayRef< Value > processorId, ArrayRef< Value > numProcessors)
Maps forOp for execution on a parallel grid of virtual processorIds of size given by numProcessors.
Definition: LoopUtils.cpp:1725
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
SmallVector< Value > makeTiledShapes(OpBuilder &builder, Location loc, LinalgOp linalgOp, ValueRange valuesToTile, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds, bool omitPartialTileCheck)
Creates extract_slice/subview ops for all valuesToTile of the given linalgOp with builder,...
Definition: Utils.cpp:857
void transformIndexOps(RewriterBase &b, LinalgOp op, SmallVectorImpl< Value > &ivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex)
All indices returned by IndexOp should be invariant with respect to tiling.
Definition: Tiling.cpp:79
bool isParallelIterator(utils::IteratorType iteratorType)
Check if iterator type has "parallel" semantics.
Definition: Utils.cpp:238
void populateLinalgTilingCanonicalizationPatterns(RewritePatternSet &patterns)
Definition: Tiling.cpp:861
SmallVector< Value > insertSlicesBack(OpBuilder &builder, Location loc, LinalgOp op, ValueRange operands, ValueRange results)
Creates insert_slice ops that insert results back into larger tensors they were originally extracted ...
Definition: Utils.cpp:777
std::tuple< SmallVector< Range, 4 >, LoopIndexToRangeIndexMap > makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > allShapeSizes, ArrayRef< OpFoldResult > allTileSizes)
Definition: Tiling.cpp:50
void offsetIndices(OpBuilder &b, LinalgOp linalgOp, ArrayRef< OpFoldResult > offests)
Add the specified offsets to any linalg.index ops contained in the given linalgOp.
Definition: Utils.cpp:879
FailureOr< StaticMultiSizeSpecification > computeStaticMultiTileSizes(LinalgOp op, unsigned dimension, int64_t targetSize, int64_t divisor)
Definition: Tiling.cpp:243
FailureOr< ContinuousTileSizeSpecification > computeContinuousTileSizes(OpBuilder &builder, TilingInterface op, unsigned dimension, OpFoldResult targetSize, bool emitAssertions)
Definition: Tiling.cpp:163
FailureOr< StaticContinuousTileSizeSpecification > computeStaticContinuousTileSizes(LinalgOp op, unsigned dimension, unsigned targetSize)
Definition: Tiling.cpp:112
FailureOr< ForallReductionTilingResult > tileReductionUsingForall(RewriterBase &b, PartialReductionOpInterface op, ArrayRef< OpFoldResult > numThreads, ArrayRef< OpFoldResult > tileSizes={}, std::optional< ArrayAttr > mapping=std::nullopt)
Method to tile a reduction to parallel iterations computing partial reductions.
Definition: Tiling.cpp:595
FailureOr< TiledLinalgOp > tileLinalgOp(RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options)
Definition: Tiling.cpp:821
RewritePatternSet getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx)
Canonicalization patterns relevant to apply after tiling patterns.
Definition: Tiling.cpp:855
SmallVector< Type > getTensorOutputTypes(LinalgOp op, ValueRange operands)
Returns the list of tensor output types produced when the given structured operation op is applied to...
Definition: Utils.cpp:768
FailureOr< MultiSizeSpecification > computeMultiTileSizes(OpBuilder &builder, LinalgOp op, unsigned dimension, OpFoldResult targetSize, OpFoldResult divisor, bool emitAssertions=true)
Emits the IR computing the multi-sized tiling specification with two tile sizes not exceeding targetS...
Definition: Tiling.cpp:269
SmallVector< Value > ValueVector
An owning vector of values, handy to return from functions.
Definition: SCF.h:64
LogicalResult getOrCreateDestinations(OpBuilder &b, Location loc, Operation *op, SmallVector< Value > &result)
This is a helper function for DestinationStyleOpInterface.
Definition: TensorOps.cpp:117
Include the generated interface declarations.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
Definition: AffineExpr.h:311
AffineMap inversePermutation(AffineMap map)
Returns a map of codomain to domain dimensions such that the first codomain dimension for a particula...
Definition: AffineMap.cpp:788
const FrozenRewritePatternSet & patterns
bool isZeroInteger(OpFoldResult v)
Return true if v is an IntegerAttr with value 0.
void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to SymbolExpr at positions: [0 .
Definition: AffineExpr.h:325
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
Operation * clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands)
OpFoldResult getAsOpFoldResult(Value val)
Given a value, try to extract a constant Attribute.
SmallVector< scf::ForOp, 8 > Loops
Tile a nest of standard for loops rooted at rootForOp by finding such parametric tile sizes that the ...
Definition: Utils.h:154
void applyPermutationToVector(SmallVector< T, N > &inVec, ArrayRef< int64_t > permutation)
Apply the permutation defined by permutation to inVec.
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
Transformation information returned after reduction tiling.
Definition: Transforms.h:892
SmallVector< Operation * > mergeOps
The final reduction operation merging all the partial reductions.
Definition: Transforms.h:896
SmallVector< Value > initialValues
Initial values used for partial reductions.
Definition: Transforms.h:898
scf::ForallOp loops
The scf.forall operation that iterate over the tiles.
Definition: Transforms.h:900
SmallVector< Operation * > parallelTiledOps
The partial reduction tiled op generated.
Definition: Transforms.h:894
A description of a multi-size tiling comprising tile sizes and numbers of tiles, expressed as Values ...
Definition: Transforms.h:839
Callback function type used to get processor ID, and number of processors used for distribution for a...
Definition: Utils.h:306
Perform standalone tiling of a single LinalgOp by tileSizes.
Definition: Transforms.h:680
SmallVector< Value, 4 > tensorResults
Definition: Transforms.h:683
SmallVector< T > tripCounts
Number of tiles associated with each size.
Definition: Transforms.h:830
T lowTripCount
Number of tiles associated with each size.
Definition: Transforms.h:822
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.