mlir.dialects._ml_program_ops_gen¶
Attributes¶
Classes¶
This simple function container represents callables in an ML program where |
|
Loads a constant (immutable) value from a global directly by symbol. |
|
Performs a non-atomic, non-volatile, non-synchronized load from a global |
|
Performs a non-atomic, non-volatile, non-synchronized load from a global |
|
Declares a named global variable (or constant). |
|
Performs a non-atomic, non-volatile, non-synchronized store to a mutable |
|
Performs a non-atomic, non-volatile, non-synchronized store to a mutable |
|
The |
|
The |
|
This simple function container represents callables in an ML program where |
|
Token values are used to chain side effecting ops in a graph so as to |
Functions¶
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Module Contents¶
- mlir.dialects._ml_program_ops_gen._ods_ir¶
- class mlir.dialects._ml_program_ops_gen._Dialect(descriptor: object)¶
Bases:
_ods_ir- DIALECT_NAMESPACE = 'ml_program'¶
- class mlir.dialects._ml_program_ops_gen.FuncOp(sym_name, function_type, *, arg_attrs=None, res_attrs=None, sym_visibility=None, loc=None, ip=None)¶
Bases:
_ods_irThis simple function container represents callables in an ML program where the body is an
SSACFGregion. It must be terminated by areturnop which yields values with the same arity and types as theFunctionTyperesults of the containingfunc.This op is a
Symbolbut does not introduce a newSymbolTable. As such, it cannot represent nested symbols.Example:
ml_program.func private @some_extern(i32) -> i32 ml_program.func @compute(%arg0 : i32) -> i32 { ml_program.return %arg0 : i32 }
- OPERATION_NAME = 'ml_program.func'¶
- _ODS_REGIONS = (1, True)¶
- sym_name() _ods_ir¶
- function_type() _ods_ir¶
- arg_attrs() _ods_ir | None¶
- res_attrs() _ods_ir | None¶
- sym_visibility() _ods_ir | None¶
- body() _ods_ir¶
- mlir.dialects._ml_program_ops_gen.func(sym_name, function_type, *, arg_attrs=None, res_attrs=None, sym_visibility=None, loc=None, ip=None) FuncOp¶
- class mlir.dialects._ml_program_ops_gen.GlobalLoadConstOp(result, global_, *, loc=None, ip=None)¶
Bases:
_ods_irLoads a constant (immutable) value from a global directly by symbol.
This op is only legal for globals that are not mutable and exists because such a load can be considered to have no side effects.
Example:
%0 = ml_program.global_load_const @foobar : tensor<?xi32>
- OPERATION_NAME = 'ml_program.global_load_const'¶
- _ODS_REGIONS = (0, True)¶
- global_() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects._ml_program_ops_gen.global_load_const(result, global_, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._ml_program_ops_gen.GlobalLoadGraphOp(result, produceToken, global_, consumeTokens, *, loc=None, ip=None)¶
Bases:
_ods_irPerforms a non-atomic, non-volatile, non-synchronized load from a global that may be mutable.
It is fully expected that these constraints are not suitable for all situations, and alternative ops should be defined and used for more advanced cases.
This op is side effecting and may not be valid to use in graph regions without additional consideration to evaluation order constraints.
Example:
%0, %cstr = ml_program.global_load_graph @foobar ordering (%token -> !ml_program.token) : tensor<?xi32>
- OPERATION_NAME = 'ml_program.global_load_graph'¶
- _ODS_REGIONS = (0, True)¶
- consumeTokens() _ods_ir¶
- global_() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- produceToken() _ods_ir¶
- mlir.dialects._ml_program_ops_gen.global_load_graph(result, produce_token, global_, consume_tokens, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._ml_program_ops_gen.GlobalLoadOp(result, global_, *, loc=None, ip=None)¶
Bases:
_ods_irPerforms a non-atomic, non-volatile, non-synchronized load from a global that may be mutable.
It is fully expected that these constraints are not suitable for all situations, and alternative ops should be defined and used for more advanced cases.
This op is side effecting and may not be valid to use in graph regions without additional consideration to evaluation order constraints. See
global_load_graphfor op which allows for explicit ordering constraints.Example:
%0 = ml_program.global_load @foobar : tensor<?xi32>
- OPERATION_NAME = 'ml_program.global_load'¶
- _ODS_REGIONS = (0, True)¶
- global_() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects._ml_program_ops_gen.global_load(result, global_, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._ml_program_ops_gen.GlobalOp(sym_name, type_, *, is_mutable=None, value=None, sym_visibility=None, loc=None, ip=None)¶
Bases:
_ods_irDeclares a named global variable (or constant).
A global contains a value of a specified type which can be accessed at runtime via appropriate load/store operations. It can be mutable or constant, optionally taking an initial value or declared as extern (in which case, the initial value is found in external storage by symbol name).
Generally, the type of the global and the type of the initial value will be the same. However, for type hierarchies which can have a more generalized bounding type that can be assigned from a narrow type, this is allowed (but not verified).
Examples:
// Constant global. ml_program.global @foobar(dense<4> : tensor<4xi32>) : tensor<?xi32> // Constant with external linkage. ml_program.global mutable @foobar(#ml_program.extern<tensor<4xi32>>) : tensor<?xi32> // Mutable global with an undefined initial value. ml_program.global mutable @foobar : tensor<?xi32>
- OPERATION_NAME = 'ml_program.global'¶
- _ODS_REGIONS = (0, True)¶
- sym_name() _ods_ir¶
- type_() _ods_ir¶
- is_mutable() bool¶
- value() _ods_ir | None¶
- sym_visibility() _ods_ir | None¶
- mlir.dialects._ml_program_ops_gen.global_(sym_name, type_, *, is_mutable=None, value=None, sym_visibility=None, loc=None, ip=None) GlobalOp¶
- class mlir.dialects._ml_program_ops_gen.GlobalStoreGraphOp(produceToken, global_, value, consumeTokens, *, loc=None, ip=None)¶
Bases:
_ods_irPerforms a non-atomic, non-volatile, non-synchronized store to a mutable global.
It is fully expected that these constraints are not suitable for all situations, and alternative ops should be defined and used for more advanced cases.
This op is side effecting and may not be valid to use in graph regions without additional consideration to evaluation order constraints.
Example:
%token = ml_program.global_store @foobar = %0 : tensor<?xi32> ordering (%in_token -> !ml_program.token) : tensor<?xi32>
- OPERATION_NAME = 'ml_program.global_store_graph'¶
- _ODS_REGIONS = (0, True)¶
- value() _ods_ir¶
- consumeTokens() _ods_ir¶
- global_() _ods_ir¶
- produceToken() _ods_ir¶
- mlir.dialects._ml_program_ops_gen.global_store_graph(produce_token, global_, value, consume_tokens, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._ml_program_ops_gen.GlobalStoreOp(global_, value, *, loc=None, ip=None)¶
Bases:
_ods_irPerforms a non-atomic, non-volatile, non-synchronized store to a mutable global.
It is fully expected that these constraints are not suitable for all situations, and alternative ops should be defined and used for more advanced cases.
This op is side effecting and may not be valid to use in graph regions without additional consideration to evaluation order constraints. See
global_store_graphfor op which allows for explicit ordering constraints.Example:
ml_program.global_store @foobar = %0 : tensor<?xi32>
- OPERATION_NAME = 'ml_program.global_store'¶
- _ODS_REGIONS = (0, True)¶
- value() _ods_ir¶
- global_() _ods_ir¶
- mlir.dialects._ml_program_ops_gen.global_store(global_, value, *, loc=None, ip=None) GlobalStoreOp¶
- class mlir.dialects._ml_program_ops_gen.OutputOp(operands_, *, loc=None, ip=None)¶
Bases:
_ods_irThe
outputoperation terminates a subgraph by yielding values to the caller. The operation takes variable number of operands and produces no results. The operand number and types must match the signature of the function that contains the operation.- OPERATION_NAME = 'ml_program.output'¶
- _ODS_REGIONS = (0, True)¶
- operands_() _ods_ir¶
- class mlir.dialects._ml_program_ops_gen.ReturnOp(operands_, *, loc=None, ip=None)¶
Bases:
_ods_irThe
returnoperation terminates afuncfunction by yielding values to the caller. The operation takes variable number of operands and produces no results. The operand number and types must match the signature of the function that contains the operation.- OPERATION_NAME = 'ml_program.return'¶
- _ODS_REGIONS = (0, True)¶
- operands_() _ods_ir¶
- class mlir.dialects._ml_program_ops_gen.SubgraphOp(sym_name, function_type, *, arg_attrs=None, res_attrs=None, sym_visibility=None, loc=None, ip=None)¶
Bases:
_ods_irThis simple function container represents callables in an ML program where the body is a
Graphregion containing a single block. It must be terminated by anoutputop which yields values with the same arity and types as theFunctionTyperesults of the containingsubgraph.This op is a
Symbolbut does not introduce a newSymbolTable. As such, it cannot represented nested symbols.Example:
ml_program.subgraph private @some_extern(i32) -> i32 ml_program.subgraph @compute(%arg0 : i32) -> i32 { ml_program.output %arg0 : i32 }
- OPERATION_NAME = 'ml_program.subgraph'¶
- _ODS_REGIONS = (1, True)¶
- sym_name() _ods_ir¶
- function_type() _ods_ir¶
- arg_attrs() _ods_ir | None¶
- res_attrs() _ods_ir | None¶
- sym_visibility() _ods_ir | None¶
- body() _ods_ir¶
- mlir.dialects._ml_program_ops_gen.subgraph(sym_name, function_type, *, arg_attrs=None, res_attrs=None, sym_visibility=None, loc=None, ip=None) SubgraphOp¶
- class mlir.dialects._ml_program_ops_gen.TokenOp(token, *, loc=None, ip=None)¶
Bases:
_ods_irToken values are used to chain side effecting ops in a graph so as to establish an execution order. This op produces a token.
- OPERATION_NAME = 'ml_program.token'¶
- _ODS_REGIONS = (0, True)¶
- token() _ods_ir¶
- mlir.dialects._ml_program_ops_gen.token(token, *, loc=None, ip=None) _ods_ir¶