mlir.dialects._tosa_ops_gen¶
Attributes¶
Classes¶
Elementwise absolute value operation. |
|
Elementwise addition of input1 and input2. Axis of size 1 will be broadcast, |
|
Applies rescaling for fixed point values. This behavior is replicated in |
|
This returns the index with the largest value across the given axis of the |
|
Elementwise arithmetic right shift of input1 by the amount specified in |
|
This performs an average pooling over the given input tensor. A sliding |
|
Elementwise bitwise AND of input1 and input2. Axis of size 1 |
|
Elementwise bitwise NOT of input tensor. |
|
Elementwise bitwise OR of input1 and input2. Axis of size 1 will be |
|
Elementwise bitwise XOR of input1 and input2. Axis of size 1 will be |
|
Apply the scales from a scale tensor to the values in a value tensor, casting |
|
Casts a tensor from one data type to another. |
|
Calculate a scale value per block of input values and use that to calculate |
|
Elementwise ceiling operation. |
|
Clamp to an arbitrary minimum and maximum value. |
|
Elementwise count leading zeros operation. |
|
Concatenate a list of tensors along a given axis. |
|
A node containing constant data for use as the input to an operation. May |
|
A node containing a constant shape. |
|
Performs a 2D convolution over the given tensor input, using the weight |
|
Performs a 3D convolution over the given input tensor. Implementations |
|
Elementwise cosine operation for values given in radians. |
|
Hardware implementing TOSA may choose to add additional custom operators |
|
Performs 2D convolutions separately over each channel of the given tensor |
|
Elementwise comparison operation. |
|
Gauss error function: $ erf(x) = frac{2}{sqrt{pi}} int_{0}^{x} e^{-t^2} dt $ |
|
Elementwise e to the x operation |
|
Performs a batched complex 2D Fast Fourier Transform over the input. The |
|
Elementwise floor operation. |
|
Generate a tensor for which each element in the output is a subtensor of the |
|
Elementwise comparison operation. |
|
Elementwise greater than comparison operation. |
|
Returns a tensor with the same shape, type, and contents as the input. |
|
Evaluates a Boolean condition and then takes one of two distinct execution |
|
Elementwise integer divide of input1 by input2. Axis of size 1 will be |
|
Elementwise natural logarithm operation |
|
Elementwise logical AND of input1 and input2. Axis of size 1 will be |
|
Elementwise logical left-shift of input1 by the amount specified in input2. |
|
Elementwise logical NOT of input. |
|
Elementwise logical OR of input1 and input2. Axis of size 1 will be |
|
Elementwise logical right shift of input1 by the amount specified in input2. |
|
Elementwise logical XOR of input1 and input2. Axis of size 1 will be |
|
Performs two dimensional matrix multiplications. |
|
Performs two dimensional matrix multiplications using block scaled tensors. The block |
|
This performs a max pooling over the given input tensor. A sliding window of |
|
Elementwise max of input1 and input2. Axis of size 1 will be broadcast, as |
|
Elementwise minimum of input1 and input2. Axis of size 1 |
|
Elementwise multiplication (Hadamard product) of input1 and input2. |
|
Elementwise negation operation. |
|
Pads a tensor along the borders of each dimension with a supplied value. |
|
Elementwise input1 value raised to the power of input2. |
|
Performs a batched 2D real-valued Fast Fourier Transform over the input where |
|
Elementwise reciprocal operation. For integer operation, a TABLE should be |
|
Reduce a tensor along the given axis with a logical AND operation. |
|
Reduce a tensor along the given axis with a logical OR operation. |
|
Reduce a tensor along the given axis with a maximum operation. |
|
Reduce a tensor along the given axis with a minimum operation. |
|
Reduce a tensor along the given axis by computing the product of the axis. |
|
Reduce a tensor along the given axis by computing the sum of the axis. |
|
RESCALE is defined using an integer multiply, add, and shift. |
|
Returns a tensor with the same type/values as the input, with a new shape |
|
Resizes a tensor. Resize is only allowed in the H and W dimensions. |
|
Returns a tensor with the same type/values as the input, with the data |
|
Elementwise reciprocal square root operation. For integer operation, a TABLE |
|
The values_out tensor is set to the values_in tensor with data modified as |
|
Elementwise select of the output based on a condition. |
|
Applies the sigmoid logistic function to each element of the input tensor: |
|
Elementwise sine operation for values given in radians. |
|
Extracts a slice of input1, beginning at the start coordinates, |
|
Elementwise subtraction of input1 and input2. Axis of size 1 will be |
|
Table lookup operation. For int8_t TABLE operation, perform a 256 entry |
|
Parameterized hyperbolic tangent: $ tanh(x) = frac{1 - e^{-2x}}{1 + e^{-2x}} $. |
|
Replicates input1 multiples times along each dimension. |
|
Performs a 2D transposed convolution over the given tensor input, using the |
|
Permutes the dimensions of the input tensor input1 based on the perms |
|
Defines a new TOSA variable. This is a persistent mutable value across multiple |
|
Reads the value from a pseudo-buffer resource holding a persistent mutable tensor. |
|
Assigns a value to the pseudo-buffer resource holding a persistent mutable tensor. |
|
Generates and evaluates a Boolean condition and either executes a loop body |
|
return operation within the conditional and body of |
Functions¶
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Module Contents¶
- mlir.dialects._tosa_ops_gen._ods_ir¶
- class mlir.dialects._tosa_ops_gen._Dialect(descriptor: object)¶
Bases:
_ods_ir- DIALECT_NAMESPACE = 'tosa'¶
- class mlir.dialects._tosa_ops_gen.AbsOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise absolute value operation.
Example:
%output = tosa.abs(%input1) : (tensor<21x3xf32>) -> tensor<21x3xf32>
- OPERATION_NAME = 'tosa.abs'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.abs(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.AddOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise addition of input1 and input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
Example:
// Elementwise addition. %out = tosa.add %input1, %input2 : tensor<12x6xf32>, tensor<12x6xf32> -> tensor<12x6xf32> // Elementwise addition with broadcasting. %out = tosa.add %input1, %input2 : tensor<12x6xsi32>, tensor<1x1xsi32> -> tensor<12x6xsi32>
- OPERATION_NAME = 'tosa.add'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.add(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ApplyScaleOp(output, value, multiplier, shift, rounding_mode, *, loc=None, ip=None)¶
Bases:
_ods_irApplies rescaling for fixed point values. This behavior is replicated in multiple quantized operations (mul, convolution, rescale, matmul, pooling).
The commonplace implementation is to use i64 operations to avoid integer overflow with target specific implementations can use native operations to avoid wider than necessary types.
- OPERATION_NAME = 'tosa.apply_scale'¶
- _ODS_REGIONS = (0, True)¶
- value() _ods_ir¶
- multiplier() _ods_ir¶
- shift() _ods_ir¶
- rounding_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.apply_scale(output, value, multiplier, shift, rounding_mode, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ArgMaxOp(output, input, axis, *, nan_mode=None, loc=None, ip=None)¶
Bases:
_ods_irThis returns the index with the largest value across the given axis of the input tensor. If multiple locations have equal values, returns the first match along the search axis.
- OPERATION_NAME = 'tosa.argmax'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- axis() _ods_ir¶
- nan_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.argmax(output, input, axis, *, nan_mode=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ArithmeticRightShiftOp(output, input1, input2, round, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise arithmetic right shift of input1 by the amount specified in input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.arithmetic_right_shift'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- round() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.arithmetic_right_shift(output, input1, input2, round, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.AvgPool2dOp(output, input, input_zp, output_zp, kernel, stride, pad, acc_type, *, loc=None, ip=None)¶
Bases:
_ods_irThis performs an average pooling over the given input tensor. A sliding window of size given by is passed over the input tensor, with the mean value being placed in the output tensor. When calculating the average, only the number of valid input tensor values, but not padding, are used to calculate the divisor.
- OPERATION_NAME = 'tosa.avg_pool2d'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- input_zp() _ods_ir¶
- output_zp() _ods_ir¶
- kernel() _ods_ir¶
- stride() _ods_ir¶
- pad() _ods_ir¶
- acc_type() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.avg_pool2d(output, input, input_zp, output_zp, kernel, stride, pad, acc_type, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.BitwiseAndOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise bitwise AND of input1 and input2. Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.bitwise_and'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.bitwise_and(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.BitwiseNotOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise bitwise NOT of input tensor.
- OPERATION_NAME = 'tosa.bitwise_not'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.bitwise_not(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.BitwiseOrOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise bitwise OR of input1 and input2. Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.bitwise_or'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.bitwise_or(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.BitwiseXorOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise bitwise XOR of input1 and input2. Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.bitwise_xor'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.bitwise_xor(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.CastFromBlockScaledOp(output_data, input_data, input_scale, block_size, *, loc=None, ip=None)¶
Bases:
_ods_irApply the scales from a scale tensor to the values in a value tensor, casting the result to the output type. The block dimension must be the last dimension of the tensor.
- OPERATION_NAME = 'tosa.cast_from_block_scaled'¶
- _ODS_REGIONS = (0, True)¶
- input_data() _ods_ir¶
- input_scale() _ods_ir¶
- block_size() _ods_ir¶
- output_data() _ods_ir¶
- mlir.dialects._tosa_ops_gen.cast_from_block_scaled(output_data, input_data, input_scale, block_size, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.CastOp(output, input, *, loc=None, ip=None)¶
Bases:
_ods_irCasts a tensor from one data type to another.
This table is showing the supported conversions from the TOSA Specification.
The MLIR dialect here can be used to represent other conversions.
Mode | Input | Output ||--------------------------|———|---------| | fp16 to fp32 | float16 | float32 | | fp16 to int 16 | float16 | int16 | | fp16 to int 32 | float16 | int32 | | fp16 to int 8 | float16 | int8 | | fp32 to fp16 | float32 | float16 | | fp32 to int 16 | float32 | int16 | | fp32 to int 32 | float32 | int32 | | fp32 to int 8 | float32 | int8 | | int 16 to fp16 | int16 | float16 | | int 16 to fp32 | int16 | float32 | | int 32 to fp16 | int32 | float16 | | int 32 to fp32 | int32 | float32 | | int 8 to fp16 | int8 | float16 | | int 8 to fp32 | int8 | float32 | | bool to int 16 | Boolean | int16 | | bool to int 32 | Boolean | int32 | | bool to int 8 | Boolean | int8 | | int 16 to bool | int16 | Boolean | | int 16 to int 32 | int16 | int32 | | int 16 to int 8 | int16 | int8 | | int 32 to bool | int32 | Boolean | | int 32 to int 16 | int32 | int16 | | int 32 to int 8 | int32 | int8 | | int 8 to bool | int8 | Boolean | | int 8 to int 16 | int8 | int16 | | int 8 to int 32 | int8 | int32 | | bf16 to fp32 | bf16 | float32 | | bf16 to int 16 | bf16 | int16 | | bf16 to int 32 | bf16 | int32 | | bf16 to int 8 | bf16 | int8 | | fp32 to bf16 | float32 | bf16 | | int 16 to bf16 | int16 | bf16 | | int 32 to bf16 | int32 | bf16 | | int 8 to bf16 | int8 | bf16 | | bf16 to fp8e4m3 | bf16 | fp8e4m3 | | fp8e4m3 to bf16 | fp8e4m3 | bf16 | | bf16 to fp8e5m2 | bf16 | fp8e5m2 | | fp8e5m2 to bf16 | fp8e5m2 | bf16 | | fp16 to fp8e4m3 | float16 | fp8e4m3 | | fp32 to fp8e4m3 | float32 | fp8e4m3 | | fp8e4m3 to fp16 | fp8e4m3 | float16 | | fp8e4m3 to fp32 | fp8e4m3 | float32 | | fp16 to fp8e5m2 | float16 | fp8e5m2 | | fp32 to fp8e5m2 | float32 | fp8e5m2 | | fp8e5m2 to fp16 | fp8e5m2 | float16 | | fp8e5m2 to fp32 | fp8e5m2 | float32 |
- OPERATION_NAME = 'tosa.cast'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.cast(output, input, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.CastToBlockScaledOp(output_data, output_scale, input_data, block_size, *, loc=None, ip=None)¶
Bases:
_ods_irCalculate a scale value per block of input values and use that to calculate scaled data values from an input tensor. The output tensors are cast to the specified scale and value types. The block dimension will be the last dimension of the tensor.
- OPERATION_NAME = 'tosa.cast_to_block_scaled'¶
- _ODS_REGIONS = (0, True)¶
- input_data() _ods_ir¶
- block_size() _ods_ir¶
- output_data() _ods_ir¶
- output_scale() _ods_ir¶
- mlir.dialects._tosa_ops_gen.cast_to_block_scaled(output_data, output_scale, input_data, block_size, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.CeilOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise ceiling operation.
- OPERATION_NAME = 'tosa.ceil'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.ceil(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ClampOp(output, input, min_val, max_val, *, nan_mode=None, loc=None, ip=None)¶
Bases:
_ods_irClamp to an arbitrary minimum and maximum value. Maximum and minimum values are specified as values in the range of the input type. No zero point subtraction is done to the values, thus to clamp to the zero point value, the zero point itself should be supplied as the minimum value.
- OPERATION_NAME = 'tosa.clamp'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- min_val() _ods_ir¶
- max_val() _ods_ir¶
- nan_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.clamp(output, input, min_val, max_val, *, nan_mode=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ClzOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise count leading zeros operation.
- OPERATION_NAME = 'tosa.clz'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.clz(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ConcatOp(input1, axis, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irConcatenate a list of tensors along a given axis. No data conversion happens during a concat operation.
- OPERATION_NAME = 'tosa.concat'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- axis() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.concat(input1, axis, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ConstOp(values, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irA node containing constant data for use as the input to an operation. May hold data in any of the supported data formats.
Example:
// Generic form %out = "tosa.const"() {values = dense<0> : tensor<2x3xi32>} : () -> tensor<2x3xi32>
- OPERATION_NAME = 'tosa.const'¶
- _ODS_REGIONS = (0, True)¶
- values() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.const(values, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ConstShapeOp(output, values, *, loc=None, ip=None)¶
Bases:
_ods_irA node containing a constant shape.
Example:
// Generic form %out = "tosa.const_shape"() {values = dense<0> : tensor<4xindex>} : () -> !tosa.shape<4>
- OPERATION_NAME = 'tosa.const_shape'¶
- _ODS_REGIONS = (0, True)¶
- values() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.const_shape(output, values, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.Conv2DOp(output, input, weight, bias, input_zp, weight_zp, pad, stride, dilation, acc_type, *, local_bound=None, loc=None, ip=None)¶
Bases:
_ods_irPerforms a 2D convolution over the given tensor input, using the weight tensor. Implementations may choose to skip calculation of multiplies in the padding area.
- OPERATION_NAME = 'tosa.conv2d'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- weight() _ods_ir¶
- bias() _ods_ir¶
- input_zp() _ods_ir¶
- weight_zp() _ods_ir¶
- pad() _ods_ir¶
- stride() _ods_ir¶
- dilation() _ods_ir¶
- acc_type() _ods_ir¶
- local_bound() _ods_ir | None¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.conv2d(output, input, weight, bias, input_zp, weight_zp, pad, stride, dilation, acc_type, *, local_bound=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.Conv3DOp(output, input, weight, bias, input_zp, weight_zp, pad, stride, dilation, acc_type, *, local_bound=None, loc=None, ip=None)¶
Bases:
_ods_irPerforms a 3D convolution over the given input tensor. Implementations may choose to skip calculation of multiplies in the padding area.
- OPERATION_NAME = 'tosa.conv3d'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- weight() _ods_ir¶
- bias() _ods_ir¶
- input_zp() _ods_ir¶
- weight_zp() _ods_ir¶
- pad() _ods_ir¶
- stride() _ods_ir¶
- dilation() _ods_ir¶
- acc_type() _ods_ir¶
- local_bound() _ods_ir | None¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.conv3d(output, input, weight, bias, input_zp, weight_zp, pad, stride, dilation, acc_type, *, local_bound=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.CosOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise cosine operation for values given in radians.
- OPERATION_NAME = 'tosa.cos'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.cos(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.CustomOp(output_list, operator_name, domain_name, implementation_attrs, input_list, *, loc=None, ip=None)¶
Bases:
_ods_irHardware implementing TOSA may choose to add additional custom operators that are not expressed in the existing TOSA operations. These operators are not expected to be portable across TOSA implementations. The input and output signatures must be expressed in the corresponding TOSA node.
operator_nameis a string that tells the backend which custom operator is being called.domain_nameis a string identifier which can help avoid name collisions on the identifier field.implementation_attrsis a string which is a backend and identifier specific set of attributes to the custom operator.input_listis the set of tensor inputs to the custom operator.output_listis the list of tensors returned by the operator. The number of operators is backend specific.Example:
%out = tosa.custom %in {domain_name = "tosa_mlir_test", operator_name = "custom_test", implementation_attrs = ""}: (tensor<10xi32>) -> (tensor<10xi32>)
- OPERATION_NAME = 'tosa.custom'¶
- _ODS_REGIONS = (0, True)¶
- input_list() _ods_ir¶
- operator_name() _ods_ir¶
- domain_name() _ods_ir¶
- implementation_attrs() _ods_ir¶
- output_list() _ods_ir¶
- mlir.dialects._tosa_ops_gen.custom(output_list, operator_name, domain_name, implementation_attrs, input_list, *, loc=None, ip=None) _ods_ir | _ods_ir | CustomOp¶
- class mlir.dialects._tosa_ops_gen.DepthwiseConv2DOp(output, input, weight, bias, input_zp, weight_zp, pad, stride, dilation, acc_type, *, local_bound=None, loc=None, ip=None)¶
Bases:
_ods_irPerforms 2D convolutions separately over each channel of the given tensor input, using the weight tensor. Implementations may choose to skip calculation of multiplies in the padding area.
- OPERATION_NAME = 'tosa.depthwise_conv2d'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- weight() _ods_ir¶
- bias() _ods_ir¶
- input_zp() _ods_ir¶
- weight_zp() _ods_ir¶
- pad() _ods_ir¶
- stride() _ods_ir¶
- dilation() _ods_ir¶
- acc_type() _ods_ir¶
- local_bound() _ods_ir | None¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.depthwise_conv2d(output, input, weight, bias, input_zp, weight_zp, pad, stride, dilation, acc_type, *, local_bound=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.EqualOp(input1, input2, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irElementwise comparison operation.
- OPERATION_NAME = 'tosa.equal'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.equal(input1, input2, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ErfOp(output, input, *, loc=None, ip=None)¶
Bases:
_ods_irGauss error function: $ erf(x) = frac{2}{sqrt{pi}} int_{0}^{x} e^{-t^2} dt $ For quantized integer data types, the TABLE operator should be used instead with the following definition. The ERF table has 513 entries each of 16-bit precision and covering the input range -4.0 to +4.0 in steps of 1/64.
- OPERATION_NAME = 'tosa.erf'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.erf(output, input, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ExpOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise e to the x operation
- OPERATION_NAME = 'tosa.exp'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.exp(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.FFT2dOp(output_real, output_imag, input_real, input_imag, inverse, *, local_bound=None, loc=None, ip=None)¶
Bases:
_ods_irPerforms a batched complex 2D Fast Fourier Transform over the input. The complex input values are constructed from the corresponding values in the input_real and input_imag tensors. The resulting values in the output are split into the output_real and output_imag tensors. No normalization is applied on either the forward or inverse versions of the operation.
Example:
%output_real, %output_imag = tosa.fft2d %input_real, %input_imag : (tensor<8x9xf32>, tensor<8x9xf32>) -> (tensor<8x9xf32>, tensor<8x9xf32>)
- OPERATION_NAME = 'tosa.fft2d'¶
- _ODS_REGIONS = (0, True)¶
- input_real() _ods_ir¶
- input_imag() _ods_ir¶
- inverse() _ods_ir¶
- local_bound() _ods_ir | None¶
- output_real() _ods_ir¶
- output_imag() _ods_ir¶
- mlir.dialects._tosa_ops_gen.fft2d(output_real, output_imag, input_real, input_imag, inverse, *, local_bound=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.FloorOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise floor operation.
- OPERATION_NAME = 'tosa.floor'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.floor(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.GatherOp(output, values, indices, *, loc=None, ip=None)¶
Bases:
_ods_irGenerate a tensor for which each element in the output is a subtensor of the values tensor based on the indices. N is the number of batches, W the number of indices in each batch, K the range of each index and C the number data channels for each index.
- OPERATION_NAME = 'tosa.gather'¶
- _ODS_REGIONS = (0, True)¶
- values() _ods_ir¶
- indices() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.gather(output, values, indices, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.GreaterEqualOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise comparison operation.
- OPERATION_NAME = 'tosa.greater_equal'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.greater_equal(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.GreaterOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise greater than comparison operation.
- OPERATION_NAME = 'tosa.greater'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.greater(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.IdentityOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irReturns a tensor with the same shape, type, and contents as the input.
- OPERATION_NAME = 'tosa.identity'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.identity(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.IfOp(output_list, condition, input_list, *, loc=None, ip=None)¶
Bases:
_ods_irEvaluates a Boolean condition and then takes one of two distinct execution paths. This implements the semantic If-then-else structure.
- OPERATION_NAME = 'tosa.cond_if'¶
- _ODS_REGIONS = (2, True)¶
- condition() _ods_ir¶
- input_list() _ods_ir¶
- output_list() _ods_ir¶
- then_graph() _ods_ir¶
- else_graph() _ods_ir¶
- mlir.dialects._tosa_ops_gen.cond_if(output_list, condition, input_list, *, loc=None, ip=None) _ods_ir | _ods_ir | IfOp¶
- class mlir.dialects._tosa_ops_gen.IntDivOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise integer divide of input1 by input2. Axis of size 1 will be broadcast as necessary. Rank of input tensors must match. The result of the divide is truncated towards zero. Expected use is for operations on non-scaled integers. Floating point divide should use RECIPROCAL and MUL. Quantized integer divide should use TABLE (for 1/x) and MUL.
- OPERATION_NAME = 'tosa.intdiv'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.intdiv(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.LogOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise natural logarithm operation
- OPERATION_NAME = 'tosa.log'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.log(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.LogicalAndOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise logical AND of input1 and input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.logical_and'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.logical_and(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.LogicalLeftShiftOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise logical left-shift of input1 by the amount specified in input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.logical_left_shift'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.logical_left_shift(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.LogicalNotOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise logical NOT of input.
- OPERATION_NAME = 'tosa.logical_not'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.logical_not(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.LogicalOrOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise logical OR of input1 and input2. Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.logical_or'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.logical_or(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.LogicalRightShiftOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise logical right shift of input1 by the amount specified in input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.logical_right_shift'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.logical_right_shift(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.LogicalXorOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise logical XOR of input1 and input2. Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.logical_xor'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.logical_xor(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.MatMulOp(output, a, b, a_zp, b_zp, *, loc=None, ip=None)¶
Bases:
_ods_irPerforms two dimensional matrix multiplications.
- OPERATION_NAME = 'tosa.matmul'¶
- _ODS_REGIONS = (0, True)¶
- a() _ods_ir¶
- b() _ods_ir¶
- a_zp() _ods_ir¶
- b_zp() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.matmul(output, a, b, a_zp, b_zp, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.MatmulTBlockScaledOp(output_data, a_data, a_scale, b_data, b_scale, block_size, *, loc=None, ip=None)¶
Bases:
_ods_irPerforms two dimensional matrix multiplications using block scaled tensors. The block dimension is always the the last dimension of the tensor, so the result is effectively a matrix multiply of A by the transposed B matrix. If the N dimension of input B is of size 1, the B matrix will be broadcast.
- OPERATION_NAME = 'tosa.matmul_t_block_scaled'¶
- _ODS_REGIONS = (0, True)¶
- a_data() _ods_ir¶
- a_scale() _ods_ir¶
- b_data() _ods_ir¶
- b_scale() _ods_ir¶
- block_size() _ods_ir¶
- output_data() _ods_ir¶
- mlir.dialects._tosa_ops_gen.matmul_t_block_scaled(output_data, a_data, a_scale, b_data, b_scale, block_size, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.MaxPool2dOp(output, input, kernel, stride, pad, *, nan_mode=None, loc=None, ip=None)¶
Bases:
_ods_irThis performs a max pooling over the given input tensor. A sliding window of size given by is passed over the input tensor, with the maximum value being placed in the output tensor.
- OPERATION_NAME = 'tosa.max_pool2d'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- kernel() _ods_ir¶
- stride() _ods_ir¶
- pad() _ods_ir¶
- nan_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.max_pool2d(output, input, kernel, stride, pad, *, nan_mode=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.MaximumOp(output, input1, input2, *, nan_mode=None, loc=None, ip=None)¶
Bases:
_ods_irElementwise max of input1 and input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.maximum'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- nan_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.maximum(output, input1, input2, *, nan_mode=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.MinimumOp(output, input1, input2, *, nan_mode=None, loc=None, ip=None)¶
Bases:
_ods_irElementwise minimum of input1 and input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.minimum'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- nan_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.minimum(output, input1, input2, *, nan_mode=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.MulOp(output, input1, input2, shift, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise multiplication (Hadamard product) of input1 and input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.mul'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- shift() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.mul(output, input1, input2, shift, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.NegateOp(output, input1, input1_zp, output_zp, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise negation operation.
- OPERATION_NAME = 'tosa.negate'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input1_zp() _ods_ir¶
- output_zp() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.negate(output, input1, input1_zp, output_zp, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.PadOp(output, input1, padding, pad_const, *, loc=None, ip=None)¶
Bases:
_ods_irPads a tensor along the borders of each dimension with a supplied value. Returns a new tensor with the padding included. The pad_const value includes the zero point if the tensor uses a zero point.
Example:
%pad_const = "tosa.const"() {values = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32> %padding = tosa.const_shape {values = dense<[1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4> tosa.pad %arg0, %padding, %pad_const: (tensor<1x2xf32>, !tosa.shape<4>, tensor<1xf32>) -> (tensor<4x9xf32>)
Example 2:
%pad_const = "tosa.const"() {values = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32> %padding = tosa.const_shape {values = dense<[-1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4> tosa.pad %arg0, %padding, %pad_const : (tensor<1x2xf32>, !tosa.shape<4>, tensor<1xf32>) -> (tensor<?x9xf32>)
- OPERATION_NAME = 'tosa.pad'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- padding() _ods_ir¶
- pad_const() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.pad(output, input1, padding, pad_const, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.PowOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise input1 value raised to the power of input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.pow'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.pow(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.RFFT2dOp(output_real, output_imag, input_real, *, local_bound=None, loc=None, ip=None)¶
Bases:
_ods_irPerforms a batched 2D real-valued Fast Fourier Transform over the input where the input tensor consists of real values producing complex valued output. The complex output values will be split into the output_real and output_imag tensor arguments. RFFT2D takes advantage of Hermitian symmetry to only calculate the first half of the final output axis. Implementations may choose to skip calculation of the imaginary values at (0,0), (0,W/2), (H/2,0), and (H/2, W/2). If the calculation is skipped, the result at that location must be zero.
Example:
%ouput_real, %output_imag = tosa.rfft2d %input_real : (tensor<8x16xf32>) -> (tensor<8x9xf32>, tensor<8x9xf32>)
- OPERATION_NAME = 'tosa.rfft2d'¶
- _ODS_REGIONS = (0, True)¶
- input_real() _ods_ir¶
- local_bound() _ods_ir | None¶
- output_real() _ods_ir¶
- output_imag() _ods_ir¶
- mlir.dialects._tosa_ops_gen.rfft2d(output_real, output_imag, input_real, *, local_bound=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReciprocalOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise reciprocal operation. For integer operation, a TABLE should be used with the appropriate ranges.
- OPERATION_NAME = 'tosa.reciprocal'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reciprocal(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReduceAllOp(input, axis, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irReduce a tensor along the given axis with a logical AND operation.
- OPERATION_NAME = 'tosa.reduce_all'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- axis() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reduce_all(input, axis, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReduceAnyOp(input, axis, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irReduce a tensor along the given axis with a logical OR operation.
- OPERATION_NAME = 'tosa.reduce_any'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- axis() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reduce_any(input, axis, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReduceMaxOp(input, axis, *, nan_mode=None, results=None, loc=None, ip=None)¶
Bases:
_ods_irReduce a tensor along the given axis with a maximum operation.
- OPERATION_NAME = 'tosa.reduce_max'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- axis() _ods_ir¶
- nan_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reduce_max(input, axis, *, nan_mode=None, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReduceMinOp(input, axis, *, nan_mode=None, results=None, loc=None, ip=None)¶
Bases:
_ods_irReduce a tensor along the given axis with a minimum operation.
- OPERATION_NAME = 'tosa.reduce_min'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- axis() _ods_ir¶
- nan_mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reduce_min(input, axis, *, nan_mode=None, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReduceProductOp(input, axis, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irReduce a tensor along the given axis by computing the product of the axis.
- OPERATION_NAME = 'tosa.reduce_product'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- axis() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reduce_product(input, axis, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReduceSumOp(input, axis, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irReduce a tensor along the given axis by computing the sum of the axis.
- OPERATION_NAME = 'tosa.reduce_sum'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- axis() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reduce_sum(input, axis, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.RescaleOp(output, input, multiplier, shift, input_zp, output_zp, scale32, rounding_mode, per_channel, input_unsigned, output_unsigned, *, loc=None, ip=None)¶
Bases:
_ods_irRESCALE is defined using an integer multiply, add, and shift.
Rescale supports two precisions of multiplier: 16-bit and 32-bit. The 32-bit multiplier version supports two rounding modes to enable simpler lowering of existing frameworks that use two stage rounding. All arithmetic is designed so that it does not overflow a 64-bit accumulator and that the result fits in 32 bits. In particular, a 48-bit value cannot be scaled with the 32-bit multiplier because the accumulator would need to have 80 bits.
The shift and value range are limited to allow a variety of implementations. The limit of 62 on shift allows the shift to be decomposed as two right shifts of 31.
Supported rescalings:
This table is showing the supported conversions from the TOSA Specification.
The MLIR dialect here can be used to represent other conversions.
Mode | Input | Output | Unsigned input | Unsigned output ||------------------------|——-|--------|—————-|-----------------| | signed 16 to 16 | int16 | int16 | false | false | | signed 16 to 32 | int16 | int32 | false | false | | signed 16 to 8 | int16 | int8 | false | false | | signed 32 to 16 | int32 | int16 | false | false | | signed 32 to 32 | int32 | int32 | false | false | | signed 32 to 8 | int32 | int8 | false | false | | signed 8 to 16 | int8 | int16 | false | false | | signed 8 to 32 | int8 | int32 | false | false | | signed 8 to 8 | int8 | int8 | false | false | | signed 48 to 16 | int48 | int16 | false | false | | signed 48 to 32 | int48 | int32 | false | false | | signed 48 to 8 | int48 | int8 | false | false | | unsigned 8 to signed 8 | uint8 | int8 | true | false | | signed 8 to unsigned 8 | int8 | uint8 | false | true |
- OPERATION_NAME = 'tosa.rescale'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- multiplier() _ods_ir¶
- shift() _ods_ir¶
- input_zp() _ods_ir¶
- output_zp() _ods_ir¶
- scale32() _ods_ir¶
- rounding_mode() _ods_ir¶
- per_channel() _ods_ir¶
- input_unsigned() _ods_ir¶
- output_unsigned() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.rescale(output, input, multiplier, shift, input_zp, output_zp, scale32, rounding_mode, per_channel, input_unsigned, output_unsigned, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReshapeOp(input1, shape, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irReturns a tensor with the same type/values as the input, with a new shape specified by the shape argument. Reshape may operate on tensors of any rank. No data conversion happens during a reshape operation.
- OPERATION_NAME = 'tosa.reshape'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- shape() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reshape(input1, shape, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ResizeOp(output, input, scale, offset, border, mode, *, loc=None, ip=None)¶
Bases:
_ods_irResizes a tensor. Resize is only allowed in the H and W dimensions.
The height dimension is scaled by factor (scale_y_n/scale_y_d). The width dimension is scaled by factor (scale_x_n/scale_x_d).
The NEAREST_NEIGHBOR mode returns the value of the input tensor closest to the calculated sample position for both floating-point and integer data formats.
Floating-point BILINEAR mode returns a bilinearly interpolated output value based on the four closest input sample positions.
For integer BILINEAR interpolation mode, the output value must be scaled by 1/(scale_y_n * scale_x_n) in a following operation to complete the interpolation (for example with a RESCALE operator).
The output dimensions can be derived from the input dimensions by inverting the scale as described in the pseudocode. The [border_y, border_x] values adjust the output size to allow fractional sampling beyond integer input position (IH - 1,IW - 1).
The limit MAX_SCALE is applied to each scale ratio after reduction of the ratio. Individual scale numerator and denominator values are allowed to be larger than MAX_SCALE.
- OPERATION_NAME = 'tosa.resize'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- scale() _ods_ir¶
- offset() _ods_ir¶
- border() _ods_ir¶
- mode() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.resize(output, input, scale, offset, border, mode, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ReverseOp(output, input1, axis, *, loc=None, ip=None)¶
Bases:
_ods_irReturns a tensor with the same type/values as the input, with the data reversed along the given axis. No data conversion happens during a reverse operation.
- OPERATION_NAME = 'tosa.reverse'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- axis() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.reverse(output, input1, axis, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.RsqrtOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise reciprocal square root operation. For integer operation, a TABLE should be used with the appropriate ranges.
- OPERATION_NAME = 'tosa.rsqrt'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.rsqrt(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.ScatterOp(values_out, values_in, indices, input, *, loc=None, ip=None)¶
Bases:
_ods_irThe values_out tensor is set to the values_in tensor with data modified as follows: data from the input tensor is inserted at the positions specified by the indices tensor. N is the number of batches, W the number of indices in each batch, K the range of each index and C the number data channels for each index. It is not permitted to repeat the same output index within a single SCATTER operation and so each output index occurs at most once. It follows that K >= W. In use cases that require multiple updates to the same output position, these must be decomposed into multiple SCATTER operations.
- OPERATION_NAME = 'tosa.scatter'¶
- _ODS_REGIONS = (0, True)¶
- values_in() _ods_ir¶
- indices() _ods_ir¶
- input() _ods_ir¶
- values_out() _ods_ir¶
- mlir.dialects._tosa_ops_gen.scatter(values_out, values_in, indices, input, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.SelectOp(output, input1, input2, input3, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise select of the output based on a condition.
- OPERATION_NAME = 'tosa.select'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- input3() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.select(output, input1, input2, input3, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.SigmoidOp(output, input, *, loc=None, ip=None)¶
Bases:
_ods_irApplies the sigmoid logistic function to each element of the input tensor: $ sigmoid(x) = frac{1}{1 + e^{-x}} $.
For quantized integer data types, the TABLE operator should be used instead. Each implementation may choose an appropriate TABLE given the scale and zero point of the input data. Eight or sixteen bit precision tables may be used based on the input tensor to the sigmoid function.
- OPERATION_NAME = 'tosa.sigmoid'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.sigmoid(output, input, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.SinOp(output, input1, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise sine operation for values given in radians.
- OPERATION_NAME = 'tosa.sin'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.sin(output, input1, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.SliceOp(output, input1, start, size, *, loc=None, ip=None)¶
Bases:
_ods_irExtracts a slice of input1, beginning at the start coordinates, and extending for size elements in each direction. No data conversion happens during a slice operation.
- OPERATION_NAME = 'tosa.slice'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- start() _ods_ir¶
- size() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.slice(output, input1, start, size, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.SubOp(output, input1, input2, *, loc=None, ip=None)¶
Bases:
_ods_irElementwise subtraction of input1 and input2. Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.
- OPERATION_NAME = 'tosa.sub'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- input2() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.sub(output, input1, input2, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.TableOp(output, input1, table, *, loc=None, ip=None)¶
Bases:
_ods_irTable lookup operation. For int8_t TABLE operation, perform a 256 entry table lookup returning an int8_t value. For int16_t tables, the int16_t input is treated as a fixed-point 9.7 value. The most significant 9 bits are used to index into the table. The fractional 7 bits are used to interpolate based on table[index] and table[index+1]. For int16_t inputs, the TABLE operator returns a 16.7 interpolated value in an int32_t. This value can then be input to the RESCALE operator to scale to the required output data type. Note that int16_t table has 513 values to handle table[index+1] when index=511.
An int16_t to int16_t table lookup can be constructed in TOSA as follows:
Use the TABLE operator to produce a fixed point 16.7 interpolated result
Use RESCALE (in_t=int32_t, out_t=int16_t, scale=1<<14, shift=21) to
scale the output to int16_t range (or alternate scale as required)
- OPERATION_NAME = 'tosa.table'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- table() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.table(output, input1, table, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.TanhOp(output, input, *, loc=None, ip=None)¶
Bases:
_ods_irParameterized hyperbolic tangent: $ tanh(x) = frac{1 - e^{-2x}}{1 + e^{-2x}} $.
For quantized integer data types, the TABLE operator should be used instead. Each implementation may choose an appropriate TABLE given the scale and zero point of the input data. Eight or sixteen bit precision tables may be used based on the input tensor to the tanh function.
- OPERATION_NAME = 'tosa.tanh'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.tanh(output, input, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.TileOp(output, input1, multiples, *, loc=None, ip=None)¶
Bases:
_ods_irReplicates input1 multiples times along each dimension.
- OPERATION_NAME = 'tosa.tile'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- multiples() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.tile(output, input1, multiples, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.TransposeConv2DOp(output, input, weight, bias, input_zp, weight_zp, out_pad, stride, acc_type, *, local_bound=None, loc=None, ip=None)¶
Bases:
_ods_irPerforms a 2D transposed convolution over the given tensor input, using the weights tensor. Implementations may choose to skip calculation of multiplies by zero at fractional input positions.
- OPERATION_NAME = 'tosa.transpose_conv2d'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- weight() _ods_ir¶
- bias() _ods_ir¶
- input_zp() _ods_ir¶
- weight_zp() _ods_ir¶
- out_pad() _ods_ir¶
- stride() _ods_ir¶
- acc_type() _ods_ir¶
- local_bound() _ods_ir | None¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.transpose_conv2d(output, input, weight, bias, input_zp, weight_zp, out_pad, stride, acc_type, *, local_bound=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.TransposeOp(output, input1, perms, *, loc=None, ip=None)¶
Bases:
_ods_irPermutes the dimensions of the input tensor input1 based on the perms argument. Each value in the perms list must be a valid dimension of the input tensor and may not be repeated.
- OPERATION_NAME = 'tosa.transpose'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- perms() _ods_ir¶
- output() _ods_ir¶
- mlir.dialects._tosa_ops_gen.transpose(output, input1, perms, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.VariableOp(sym_name, var_shape, type_, *, initial_value=None, loc=None, ip=None)¶
Bases:
_ods_irDefines a new TOSA variable. This is a persistent mutable value across multiple TOSA graph invocations. Modifications are expressed using read/write semantics.
- OPERATION_NAME = 'tosa.variable'¶
- _ODS_REGIONS = (0, True)¶
- sym_name() _ods_ir¶
- var_shape() _ods_ir¶
- type_() _ods_ir¶
- initial_value() _ods_ir | None¶
- mlir.dialects._tosa_ops_gen.variable(sym_name, var_shape, type_, *, initial_value=None, loc=None, ip=None) VariableOp¶
- class mlir.dialects._tosa_ops_gen.VariableReadOp(output1, name, *, loc=None, ip=None)¶
Bases:
_ods_irReads the value from a pseudo-buffer resource holding a persistent mutable tensor.
- OPERATION_NAME = 'tosa.variable_read'¶
- _ODS_REGIONS = (0, True)¶
- name() _ods_ir¶
Returns the fully qualified name of the operation.
- output1() _ods_ir¶
- mlir.dialects._tosa_ops_gen.variable_read(output1, name, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects._tosa_ops_gen.VariableWriteOp(name, input1, *, loc=None, ip=None)¶
Bases:
_ods_irAssigns a value to the pseudo-buffer resource holding a persistent mutable tensor.
- OPERATION_NAME = 'tosa.variable_write'¶
- _ODS_REGIONS = (0, True)¶
- input1() _ods_ir¶
- name() _ods_ir¶
Returns the fully qualified name of the operation.
- mlir.dialects._tosa_ops_gen.variable_write(name, input1, *, loc=None, ip=None) VariableWriteOp¶
- class mlir.dialects._tosa_ops_gen.WhileOp(output_list, input_list, *, loc=None, ip=None)¶
Bases:
_ods_irGenerates and evaluates a Boolean condition and either executes a loop body or exits the loop. This action is performed repeatedly after updating and re-evaluating the Boolean condition every iteration. This implements the semantic foreach or while iterative loop structure.
- OPERATION_NAME = 'tosa.while_loop'¶
- _ODS_REGIONS = (2, True)¶
- input_list() _ods_ir¶
- output_list() _ods_ir¶
- cond_graph() _ods_ir¶
- body_graph() _ods_ir¶
- mlir.dialects._tosa_ops_gen.while_loop(output_list, input_list, *, loc=None, ip=None) _ods_ir | _ods_ir | WhileOp¶
- class mlir.dialects._tosa_ops_gen.YieldOp(inputs, *, loc=None, ip=None)¶
Bases:
_ods_irreturn operation within the conditional and body of structured control flow. Operation takes variadic operands but produces no results of its own.
- OPERATION_NAME = 'tosa.yield'¶
- _ODS_REGIONS = (0, True)¶
- inputs() _ods_ir¶