mlir.dialects.linalg¶
Submodules¶
Attributes¶
Classes¶
No numeric casting is performed on the input operand. |
|
The shapes and element types must be identical. The appropriate casts, |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Besides the outermost batch dimension has the same semantic as |
|
Numeric casting is performed on the operands to the inner multiply, |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Broadcast the input into the given shape by adding |
|
No numeric casting is performed on the input operand. |
|
The semantics of contracting inputs |
|
Layout: |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Layout: |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
The shapes and element types must be identical. The appropriate casts, |
|
The shapes and element types must be identical. The appropriate casts, |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
No numeric casting is performed on the input operand. |
|
No numeric casting is performed on the input operand. |
|
Works for arbitrary ranked output tensors since the operation performs scalar |
|
The operation generations pseudo random numbers using a linear congruential |
|
No numeric casting is performed on the input operand. |
|
Generic Linalg op form where the key properties of the computation are |
|
The |
|
The "pack" operation converts a source tensor of rank |
|
linalg.softmax computes a numerically stable version of softmax. |
|
The "unpack" operation converts a source tensor of rank |
|
Winograd Conv2D algorithm will convert linalg Conv2D operator into batched |
|
Winograd Conv2D algorithm will convert linalg Conv2D operator into batched |
|
Winograd Conv2D algorithm will convert linalg Conv2D operator into batched |
|
|
|
No numeric casting is performed on the input operand. |
|
Models elementwise operations on tensors in terms of arithmetic operations |
|
Numeric casting is performed on the operands to the inner multiply, |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
The shapes and element types must be identical. The appropriate casts, |
|
The shapes and element types must be identical. The appropriate casts, |
|
Differences from linalg.matmul: |
|
The shapes and element types must be identical. The appropriate casts, |
|
No numeric casting is performed on the input operand. |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Layout: |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Layout: |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Layout: |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Numeric casting is performed on the input operand, promoting it to the same |
|
Layout: |
|
Only applies to floating point values. |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
No numeric casting is performed on the input operand. |
|
Executes |
|
No numeric casting is performed on the input operand. |
|
No numeric casting is performed on the input operand. |
|
The shapes and element types must be identical. The appropriate casts, |
|
No numeric casting is performed on the input operand. |
|
No numeric casting is performed on the input operand. |
|
The shapes and element types must be identical. The appropriate casts, |
|
No numeric casting is performed on the input operand. |
|
Permutes the dimensions of |
|
Numeric casting is performed on the operands to the inner multiply, promoting |
|
Binary function namespace. |
|
allowed 32-bit signless integer cases: 1, 2, 3 |
|
allowed 32-bit signless integer cases: |
|
allowed 32-bit signless integer cases: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 |
|
Iterator type |
|
Ternary function namespace. |
|
Type conversion function namespace. |
|
Unary function namespace. |
|
allowed 32-bit signless integer cases: 0, 1, 2 |
|
Callable that wraps any defined op function. |
|
An expression that can appear on the RHS of a comprehension. |
|
A used tensor represented by its (tensor_name, indices). |
|
Application of a tensor function. |
|
Application of a reduction function. |
|
Returns the given constant floating point or integer value. |
|
Returns the iteration index for a given dimension name. |
|
Generic enumeration. |
|
Unary function. |
|
Unary function namespace. |
|
Binary function. |
|
Binary function namespace. |
|
Ternary function. |
|
Ternary function namespace. |
|
Type conversion function. |
|
Type conversion function namespace. |
|
Reduction function use. |
|
Reduction function. |
|
Generic enumeration. |
|
Definition of an operand passed to an operation. |
|
Tensor operand definition. |
|
Scalar operand definition. |
|
Index attribute definition. |
|
Unary function attribute definition. |
|
Binary function attribute definition. |
|
Ternary function attribute definition. |
|
Type conversion function attribute definition. |
|
Represents a single comprehension. |
|
An interface that an op implements. |
|
A method that an op implements. |
|
Metadata about the op (generally not behavior impacting). |
|
Definition of a linalg op. |
|
Internal state for the AffineExprDef._create impls. |
|
Base class for an affine expression being defined. |
|
Represents a named dimension. |
|
Represents a named symbol. |
|
An assignment to a named argument (LHS of a comprehension). |
|
A type of ScalarExpression that applies a function. |
|
A type of ScalarExpression that references a named argument. |
|
A type of ScalarExpression representing a constant. |
|
A type of ScalarExpression accessing an iteration index. |
|
An expression on scalar values. |
|
A replaceable type variable. |
|
An object that can dump itself to a YAML stream |
|
Configuration for metadata sufficient to construct a linalg named op. |
|
Container for any supported linalg op type. |
|
Wrapper containing an operand definition with additional state. |
|
Generic Linalg op form where the key properties of the computation are |
|
The attribute |
Functions¶
|
Returns a starting position and a number of elements per variadic group |
|
Returns a context in which the defaulted location is created. If the location |
Returns the given sequence of values or the results of the given op. |
|
|
Returns a slice of elements corresponding to the idx-th segment. |
|
Applies abs(x) elementwise. |
|
Adds two tensors elementwise. |
|
|
|
Performs a batched matrix-vector multiplication. |
|
Performs a batched matrix-matrix-transpose multiplication of two |
|
|
|
Performs a batched matrix-vector multiplication. |
|
|
|
Applies ceil(x) elementwise. |
|
|
|
Performs 1-D convolution. |
|
Performs 1-D convolution. |
|
Performs 1-D convolution with no channels. |
|
Performs 2-D convolution. |
|
Performs 2-D convolution with zero point offsets. |
|
Performs 2-D grouped convolution. |
|
Performs 2-D grouped convolution. |
|
Performs 2-D grouped convolution with zero-point offsets. |
|
Performs 2-D convolution. |
|
Performs 2-D convolution with zero point offsets. |
|
Performs 2-D convolution. |
|
Performs 2-D convolution with zero point offsets. |
|
Performs 2-D grouped convolution. |
|
Performs 2-D grouped convolution with zero point offsets. |
|
Performs 2-D convolution with no channels. |
|
Performs 3-D convolution. |
|
Performs 3-D convolution. |
|
Performs 3-D convolution with zero point offsets. |
|
Performs 3-D convolution with no channels. |
|
Copies the tensor elementwise. |
|
Performs depth-wise 1-D convolution. |
|
Performs depth-wise 1-D convolution. |
|
Performs depth-wise 1-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 3-D convolution. |
|
Performs depth-wise 3-D convolution. |
|
Performs depth-wise 3-D convolution. |
|
Divides the first tensor by the second tensor, elementwise. |
|
Divides the first tensor by the second tensor, elementwise. For integer |
|
Performs a dot product of two vectors to a scalar result. |
|
|
|
Applies erf(x) elementwise. |
|
Applies exp(x) elementwise. |
|
Fills the output tensor with the given value. |
|
Fills the output tensor with pseudo random numbers. |
|
Applies floor(x) elementwise. |
Returns the iteration index for a given dimension name. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Applies log(x) elementwise. |
|
|
|
Performs a matrix-vector multiplication. |
|
Takes the max (signed) between two inputs, elementwise. |
|
Takes the min (signed) between two inputs, elementwise. |
|
Performs a matrix-matrix-transpose multiplication of two 4D inputs. |
|
Multiplies two tensors elementwise. |
|
Applies negf(x) elementwise. |
|
Performs max pooling. |
|
Performs sum pooling. |
|
Performs max pooling. |
|
Performs sum pooling. |
|
Performs 3D max pooling. |
|
Performs 3D min pooling. |
|
Performs 3D sum pooling. |
|
Performs max pooling. |
|
Performs unsigned max pooling. |
|
Performs min pooling. |
|
Performs unsigned min pooling. |
|
Performs sum pooling. |
|
Performs max pooling. |
|
Performs unsigned max pooling. |
|
Performs min pooling. |
|
Performs unsigned min pooling. |
|
Performs sum pooling. |
|
Takes the powf(lhs, rhs) between two inputs, elementwise. For powf(arg, 2) use |
|
Performs a batched matrix multiplication of two 3D inputs. |
|
Performs a matrix multiplication of two 2D inputs. |
|
Applies reciprocal(x) elementwise. |
|
Applies round(x) elementwise. |
|
Applies rsqrt(x) elementwise. |
|
Chooses one value based on a binary condition supplied as its first operand. |
|
Applies sqrt(x) elementwise. |
|
Applies square(x) elementwise. |
|
Subtracts two tensors elementwise. |
|
Applies tanh(x) elementwise. |
|
|
|
Performs a vector-matrix multiplication. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Copies the tensor elementwise. |
|
Applies exp(x) elementwise. |
|
Applies log(x) elementwise. |
|
Applies abs(x) elementwise. |
|
Applies ceil(x) elementwise. |
|
Applies floor(x) elementwise. |
|
Applies negf(x) elementwise. |
|
Applies reciprocal(x) elementwise. |
|
Applies round(x) elementwise. |
|
Applies sqrt(x) elementwise. |
|
Applies rsqrt(x) elementwise. |
|
Applies square(x) elementwise. |
|
Applies tanh(x) elementwise. |
|
Applies erf(x) elementwise. |
|
Adds two tensors elementwise. |
|
Subtracts two tensors elementwise. |
|
Multiplies two tensors elementwise. |
|
Divides the first tensor by the second tensor, elementwise. |
|
Divides the first tensor by the second tensor, elementwise. For integer |
|
Takes the max (signed) between two inputs, elementwise. |
|
Takes the min (signed) between two inputs, elementwise. |
|
Takes the powf(lhs, rhs) between two inputs, elementwise. For powf(arg, 2) use |
|
Chooses one value based on a binary condition supplied as its first operand. |
|
Performs a matrix multiplication of two 2D inputs. |
|
Performs a matrix-matrix-transpose multiplication of two 4D inputs. |
|
Performs a batched matrix-matrix-transpose multiplication of two |
|
Performs a batched matrix multiplication of two 3D inputs. |
|
Performs a matrix-vector multiplication. |
|
Performs a vector-matrix multiplication. |
|
Performs a batched matrix-vector multiplication. |
|
Performs a batched matrix-vector multiplication. |
|
Performs a dot product of two vectors to a scalar result. |
|
Performs 1-D convolution with no channels. |
|
Performs 2-D convolution with no channels. |
|
Performs 3-D convolution with no channels. |
|
Performs 1-D convolution. |
|
Performs 1-D convolution. |
|
Performs 2-D convolution. |
|
Performs 2-D convolution. |
|
Performs 2-D convolution with zero point offsets. |
|
Performs 2-D convolution with zero point offsets. |
|
Performs 2-D convolution with zero point offsets. |
|
Performs 2-D convolution. |
|
Performs 2-D grouped convolution. |
|
Performs 2-D grouped convolution. |
|
Performs 2-D grouped convolution. |
|
Performs 2-D grouped convolution with zero point offsets. |
|
Performs 2-D grouped convolution with zero-point offsets. |
|
Performs 3-D convolution. |
|
Performs 3-D convolution with zero point offsets. |
|
Performs 3-D convolution. |
|
Performs depth-wise 1-D convolution. |
|
Performs depth-wise 1-D convolution. |
|
Performs depth-wise 1-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 2-D convolution. |
|
Performs depth-wise 3-D convolution. |
|
Performs depth-wise 3-D convolution. |
|
Performs depth-wise 3-D convolution. |
|
Performs sum pooling. |
|
Performs sum pooling. |
|
Performs max pooling. |
|
Performs unsigned max pooling. |
|
Performs max pooling. |
|
Performs min pooling. |
|
Performs unsigned min pooling. |
|
Performs sum pooling. |
|
Performs sum pooling. |
|
Performs max pooling. |
|
Performs unsigned max pooling. |
|
Performs max pooling. |
|
Performs min pooling. |
|
Performs unsigned min pooling. |
|
Performs 3D sum pooling. |
|
Performs 3D max pooling. |
|
Performs 3D min pooling. |
|
Fills the output tensor with the given value. |
|
Fills the output tensor with pseudo random numbers. |
|
Returns the given value or the single result of the given op. |
Returns the given sequence of values or the results of the given op. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Enables automatic traceback-based locations for MLIR operations. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns the given value or the single result of the given op. |
|
|
|
Decorator to define an MLIR Op specified as a python function. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Package Contents¶
- mlir.dialects.linalg._ods_equally_sized_accessor(elements, n_simple, n_variadic, n_preceding_simple, n_preceding_variadic)¶
Returns a starting position and a number of elements per variadic group assuming equally-sized groups and the given numbers of preceding groups.
elements: a sequential container. n_simple: the number of non-variadic groups in the container. n_variadic: the number of variadic groups in the container. n_preceding_simple: the number of non-variadic groups preceding the current group. n_preceding_variadic: the number of variadic groups preceding the current group.
- mlir.dialects.linalg._ods_get_default_loc_context(location=None)¶
Returns a context in which the defaulted location is created. If the location is None, takes the current location from the stack.
- mlir.dialects.linalg._get_op_results_or_values(arg: mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | Sequence[mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | mlir._mlir_libs._mlir.ir.Value]) Sequence[mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | mlir._mlir_libs._mlir.ir.Value] | mlir._mlir_libs._mlir.ir.OpResultList¶
Returns the given sequence of values or the results of the given op.
This is useful to implement op constructors so that they can take other ops as lists of arguments instead of requiring the caller to extract results for every op.
- mlir.dialects.linalg._ods_segmented_accessor(elements, raw_segments, idx)¶
Returns a slice of elements corresponding to the idx-th segment.
elements: a sliceable container (operands or results). raw_segments: an mlir.ir.Attribute, of DenseI32Array subclass containing sizes of the segments. idx: index of the segment.
- mlir.dialects.linalg._ods_ir¶
- class mlir.dialects.linalg._Dialect(descriptor: object)¶
Bases:
_ods_ir- DIALECT_NAMESPACE = 'linalg'¶
- class mlir.dialects.linalg.AbsOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.abs'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.abs(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | AbsOp¶
- class mlir.dialects.linalg.AddOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.addsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.add'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.add(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | AddOp¶
- class mlir.dialects.linalg.BatchMatmulOp(result_tensors, inputs, outputs, *, indexing_maps=None, cast=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
Broadcast and Transpose semantics can be appiled by specifying the explicit attribute 'indexing_maps' as shown below. This is a list attribute, so must include maps for all arguments if specified. Example Transpose: ```mlir linalg.batch_matmul indexing_maps = [affine_map<(batch, m, n, k) -> (batch, k, m)>, // transpose affine_map<(batch, m, n, k) -> (batch, k, n)>, affine_map<(batch, m, n, k) -> (batch, m, n)>] ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>) outs(%arg2: memref<2x3x7xf32>) ``` Example Broadcast: ```mlir linalg.batch_matmul indexing_maps = [affine_map<(batch, m, n, k) -> (k)>, // broadcast affine_map<(batch, m, n, k) -> (batch, k, n)>, affine_map<(batch, m, n, k) -> (batch, m, n)>] ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>) outs(%arg2: memref<2x3x7xf32>) ``` Example Broadcast and Transpose: ```mlir linalg.batch_matmul indexing_maps = [affine_map<(batch, m, n, k) -> (m, k)>, // broadcast affine_map<(batch, m, n, k) -> (batch, n, k)>, // transpose affine_map<(batch, m, n, k) -> (batch, m, n)>] ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>) outs(%arg2: memref<2x3x7xf32>) ```- OPERATION_NAME = 'linalg.batch_matmul'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- indexing_maps() _ods_ir | None¶
- cast() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.batch_matmul(result_tensors, inputs, outputs, *, indexing_maps=None, cast=None, loc=None, ip=None) _ods_ir | _ods_ir | BatchMatmulOp¶
- class mlir.dialects.linalg.BatchMatvecOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.batch_matvec'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.batch_matvec(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | BatchMatvecOp¶
- class mlir.dialects.linalg.BatchMmt4DOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irBesides the outermost batch dimension has the same semantic as linalg.batch_matmul, the differences from linalg.batch_matmul in the non-batch dimensions are the same as linalg.mmt4d vs. linalg.matmul. See the description of lingalg.mmt4d.
- OPERATION_NAME = 'linalg.batch_mmt4d'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.batch_mmt4d(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | BatchMmt4DOp¶
- class mlir.dialects.linalg.BatchReduceMatmulOp(result_tensors, inputs, outputs, *, indexing_maps=None, cast=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
Broadcast and Transpose semantics can be applied by specifying the explicit attribute ‘indexing_maps’ as shown below. This is a list attribute, so must include maps for all arguments if specified.
Example Transpose:
linalg.batch_reduce_matmul indexing_maps = [affine_map<(batch, m, n, k) -> (batch, k, m)>, // transpose affine_map<(batch, m, n, k) -> (batch, k, n)>, affine_map<(batch, m, n, k) -> (m, n)>] ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>) outs(%arg2: memref<3x7xf32>)
Example Broadcast:
linalg.batch_reduce_matmul indexing_maps = [affine_map<(batch, m, n, k) -> (k)>, // broadcast affine_map<(batch, m, n, k) -> (batch, k, n)>, affine_map<(batch, m, n, k) -> (m, n)>] ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>) outs(%arg2: memref<3x7xf32>)
Example Broadcast and Transpose:
linalg.batch_reduce_matmul indexing_maps = [affine_map<(batch, m, n, k) -> (m, k)>, // broadcast affine_map<(batch, m, n, k) -> (batch, n, k)>, // transpose affine_map<(batch, m, n, k) -> (m, n)>] ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>) outs(%arg2: memref<3x7xf32>)
- OPERATION_NAME = 'linalg.batch_reduce_matmul'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- indexing_maps() _ods_ir | None¶
- cast() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.batch_reduce_matmul(result_tensors, inputs, outputs, *, indexing_maps=None, cast=None, loc=None, ip=None) _ods_ir | _ods_ir | BatchReduceMatmulOp¶
- class mlir.dialects.linalg.BatchVecmatOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.batch_vecmat'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.batch_vecmat(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | BatchVecmatOp¶
- class mlir.dialects.linalg.BroadcastOp(result, input, init, dimensions, *, loc=None, ip=None)¶
Bases:
_ods_irBroadcast the input into the given shape by adding
dimensions.Example:
%bcast = linalg.broadcast ins(%input:tensor<16xf32>) outs(%init:tensor<16x64xf32>) dimensions = [1]
- OPERATION_NAME = 'linalg.broadcast'¶
- _ODS_REGIONS = (1, True)¶
- input() _ods_ir¶
- init() _ods_ir¶
- dimensions() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- region() _ods_ir¶
- mlir.dialects.linalg.broadcast(result, input, init, dimensions, *, loc=None, ip=None) _ods_ir | _ods_ir | BroadcastOp¶
- class mlir.dialects.linalg.CeilOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.ceil'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.ceil(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | CeilOp¶
- class mlir.dialects.linalg.ContractOp(result_tensors, inputs, outputs, indexing_maps, *, cast=None, loc=None, ip=None)¶
Bases:
_ods_irThe semantics of contracting inputs
AandBon top ofCto produce outputDis given byD[H] = (SUM_{(I ∪ J) \ H} A[I] * B[J]) + C[H]where
I,J, andHare tuples of (pairwise distinct) dimension identifiers - meant to range over valid indices - corresponding to the results of the mandatory (projected permutation)indexing_mapsforA,BandC.SUM_{dims}means reduce over all valid indices for the dimensions in the setdims(withI,J, andKtreated as sets of dim identifiers).The iteration space consists of all dimensions in
I,JandH, i.e. the domain of each of the ``affine_map``s. Like for einsums, the iteration type of each dim is inferred and is either:reduction: the dim is used to index into
AandBbut notC. Per the
above semantics, these dims will be contracted, i.e. reduced over. * parallel: the dim is used to index into
Cand at least one ofAandB, and - deriving from matmul terminology - is either an “M-like” dim (if used onAandC), an “N-like” dim (if used onBandC) or a “batch”-dim (if used to index intoA,B, andC).For example, batch-matmul is given by
I = ⟨ b, m, k ⟩,J = ⟨ b, k, n ⟩,H = ⟨ b, m, n ⟩(withkas a contracting reduction-dimension whilem,nandbhave parallel iteration-type) and gets represented as:%D = linalg.contract indexing_maps = [affine_map<(batch, m, n, k) -> (batch, m, k)>, affine_map<(batch, m, n, k) -> (batch, k, n)>, affine_map<(batch, m, n, k) -> (batch, m, n)>] ins(%A, %B: tensor<?x?x?xf32>, tensor<?x?x?xf32>) outs(%C: tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
Note that by permuting dims in the
affine_map``s' results, accesses to to the inputs and output can be arbitrarily transposed. Similarly, arbitrary broadcasts can be achieved through leaving out dims on either input operand. For example, the following is a variant of batch-matmul with a transposition applied to ``AwhileB’s 2D-matrix gets broadcasted along the batch dim:linalg.contract indexing_maps = [affine_map<(batch, m, n, k) -> (batch, k, m)>, affine_map<(batch, m, n, k) -> (k, n)>, affine_map<(batch, m, n, k) -> (batch, m, n)>] ins(%A, %B: memref<?x?x?xf32>, memref<?x?xf32>) outs(%C: memref<?x?x?xf32>)
Numeric casting is performed on the operands to the inner multiplication, promoting/truncating them to the same data type as the accumulator/output.
TODO: Allow control over the combining/accumulating op and possibly the multiplication op.
- OPERATION_NAME = 'linalg.contract'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- indexing_maps() _ods_ir¶
- cast() _ods_ir | None¶
- result_tensors() _ods_ir¶
- combiner() _ods_ir¶
- mlir.dialects.linalg.contract(result_tensors, inputs, outputs, indexing_maps, *, cast=None, loc=None, ip=None) _ods_ir | _ods_ir | ContractOp¶
- class mlir.dialects.linalg.Conv1DNcwFcwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NCW.
Kernel: FCW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_1d_ncw_fcw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_1d_ncw_fcw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv1DNcwFcwOp¶
- class mlir.dialects.linalg.Conv1DNwcWcfOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_1d_nwc_wcf'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_1d_nwc_wcf(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv1DNwcWcfOp¶
- class mlir.dialects.linalg.Conv1DOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_1d'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_1d(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | Conv1DOp¶
- class mlir.dialects.linalg.Conv2DNchwFchwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NCHW.
Kernel: FCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_2d_nchw_fchw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nchw_fchw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNchwFchwOp¶
- class mlir.dialects.linalg.Conv2DNchwFchwQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NCHW.
Kernel: FCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- OPERATION_NAME = 'linalg.conv_2d_nchw_fchw_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nchw_fchw_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNchwFchwQOp¶
- class mlir.dialects.linalg.Conv2DNgchwFgchwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NGCHW.
Kernel: FGCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_2d_ngchw_fgchw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_ngchw_fgchw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNgchwFgchwOp¶
- class mlir.dialects.linalg.Conv2DNgchwGfchwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NGCHW.
Kernel: GFCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_2d_ngchw_gfchw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_ngchw_gfchw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNgchwGfchwOp¶
- class mlir.dialects.linalg.Conv2DNgchwGfchwQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NGCHW.
Kernel: GFCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- OPERATION_NAME = 'linalg.conv_2d_ngchw_gfchw_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_ngchw_gfchw_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNgchwGfchwQOp¶
- class mlir.dialects.linalg.Conv2DNhwcFhwcOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NHWC.
Kernel: FHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_2d_nhwc_fhwc'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nhwc_fhwc(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNhwcFhwcOp¶
- class mlir.dialects.linalg.Conv2DNhwcFhwcQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NHWC.
Kernel: FHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- OPERATION_NAME = 'linalg.conv_2d_nhwc_fhwc_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nhwc_fhwc_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNhwcFhwcQOp¶
- class mlir.dialects.linalg.Conv2DNhwcHwcfOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NHWC.
Kernel: HWCF.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_2d_nhwc_hwcf'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nhwc_hwcf(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNhwcHwcfOp¶
- class mlir.dialects.linalg.Conv2DNhwcHwcfQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NHWC.
Kernel: HWCF.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- OPERATION_NAME = 'linalg.conv_2d_nhwc_hwcf_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nhwc_hwcf_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNhwcHwcfQOp¶
- class mlir.dialects.linalg.Conv2DNhwgcGfhwcOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NHWGC.
Kernel: GFHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_2d_nhwgc_gfhwc'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nhwgc_gfhwc(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNhwgcGfhwcOp¶
- class mlir.dialects.linalg.Conv2DNhwgcGfhwcQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NHWGC.
Kernel: GFHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- OPERATION_NAME = 'linalg.conv_2d_nhwgc_gfhwc_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d_nhwgc_gfhwc_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DNhwgcGfhwcQOp¶
- class mlir.dialects.linalg.Conv2DOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_2d'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_2d(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | Conv2DOp¶
- class mlir.dialects.linalg.Conv3DNcdhwFcdhwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_3d_ncdhw_fcdhw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_3d_ncdhw_fcdhw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv3DNcdhwFcdhwOp¶
- class mlir.dialects.linalg.Conv3DNdhwcDhwcfOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_3d_ndhwc_dhwcf'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_3d_ndhwc_dhwcf(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv3DNdhwcDhwcfOp¶
- class mlir.dialects.linalg.Conv3DNdhwcDhwcfQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- OPERATION_NAME = 'linalg.conv_3d_ndhwc_dhwcf_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_3d_ndhwc_dhwcf_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | Conv3DNdhwcDhwcfQOp¶
- class mlir.dialects.linalg.Conv3DOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.conv_3d'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.conv_3d(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | Conv3DOp¶
- class mlir.dialects.linalg.CopyOp(result_tensors, inputs, outputs, *, cast=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.copy'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- cast() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.copy(result_tensors, inputs, outputs, *, cast=None, loc=None, ip=None) _ods_ir | _ods_ir | CopyOp¶
- class mlir.dialects.linalg.DepthwiseConv1DNcwCwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- OPERATION_NAME = 'linalg.depthwise_conv_1d_ncw_cw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_1d_ncw_cw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv1DNcwCwOp¶
- class mlir.dialects.linalg.DepthwiseConv1DNwcWcOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- OPERATION_NAME = 'linalg.depthwise_conv_1d_nwc_wc'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_1d_nwc_wc(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv1DNwcWcOp¶
- class mlir.dialects.linalg.DepthwiseConv1DNwcWcmOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.depthwise_conv_1d_nwc_wcm'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_1d_nwc_wcm(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv1DNwcWcmOp¶
- class mlir.dialects.linalg.DepthwiseConv2DNchwChwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- OPERATION_NAME = 'linalg.depthwise_conv_2d_nchw_chw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_2d_nchw_chw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv2DNchwChwOp¶
- class mlir.dialects.linalg.DepthwiseConv2DNhwcHwcOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- OPERATION_NAME = 'linalg.depthwise_conv_2d_nhwc_hwc'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwc(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv2DNhwcHwcOp¶
- class mlir.dialects.linalg.DepthwiseConv2DNhwcHwcQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.depthwise_conv_2d_nhwc_hwc_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwc_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv2DNhwcHwcQOp¶
- class mlir.dialects.linalg.DepthwiseConv2DNhwcHwcmOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.depthwise_conv_2d_nhwc_hwcm'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwcm(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv2DNhwcHwcmOp¶
- class mlir.dialects.linalg.DepthwiseConv2DNhwcHwcmQOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.depthwise_conv_2d_nhwc_hwcm_q'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwcm_q(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv2DNhwcHwcmQOp¶
- class mlir.dialects.linalg.DepthwiseConv3DNcdhwCdhwOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- OPERATION_NAME = 'linalg.depthwise_conv_3d_ncdhw_cdhw'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_3d_ncdhw_cdhw(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv3DNcdhwCdhwOp¶
- class mlir.dialects.linalg.DepthwiseConv3DNdhwcDhwcOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- OPERATION_NAME = 'linalg.depthwise_conv_3d_ndhwc_dhwc'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_3d_ndhwc_dhwc(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv3DNdhwcDhwcOp¶
- class mlir.dialects.linalg.DepthwiseConv3DNdhwcDhwcmOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.depthwise_conv_3d_ndhwc_dhwcm'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.depthwise_conv_3d_ndhwc_dhwcm(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | DepthwiseConv3DNdhwcDhwcmOp¶
- class mlir.dialects.linalg.DivOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.divsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.div'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.div(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | DivOp¶
- class mlir.dialects.linalg.DivUnsignedOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.divsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.div_unsigned'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.div_unsigned(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | DivUnsignedOp¶
- class mlir.dialects.linalg.DotOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.dot'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.dot(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | DotOp¶
- class mlir.dialects.linalg.ElementwiseOp(result_tensors, inputs, outputs, kind, *, indexing_maps=None, loc=None, ip=None)¶
Bases:
_ods_irThe attribute
kinddescribes arithmetic operation to perform. The operation kind can be unary (e.g. max), binary (e.g. add) or ternary (e.g. select).By default, all indexing maps are identities. In the case of default indexing map, all input and output shapes must match. The number of dims in each of the identity maps is equal to the rank of the output type.
Affine-maps for operands and result are required to be provided by the user when a transpose and/or broadcast is needed on any operand. When a map is not provided, default identity maps are inferred for each operand.
Iterator-types are always all
parallel. Iterator-types are needed for constructing the underlying structured op.The number of dims of the iterator-types are inferred from the rank of the result type.
Example:
Defining a unary linalg.elementwise with default indexing-map:
%exp = linalg.elementwise kind=#linalg.elementwise_kind<exp> ins(%x : tensor<4x16x8xf32>) outs(%y: tensor<4x16x8xf32>) -> tensor<4x16x8xf32>
Defining a binary linalg.elementwise with user-defined indexing-map:
%add = linalg.elementwise kind=#linalg.elementwise_kind<add> indexing_maps = [#transpose, #broadcast, #identity] ins(%exp, %arg1 : tensor<4x16x8xf32>, tensor<4x16xf32>) outs(%arg2: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
- OPERATION_NAME = 'linalg.elementwise'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- kind() _ods_ir¶
- indexing_maps() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.elementwise(result_tensors, inputs, outputs, kind, *, indexing_maps=None, loc=None, ip=None) _ods_ir | _ods_ir | ElementwiseOp¶
- class mlir.dialects.linalg.ErfOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.erf'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.erf(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | ErfOp¶
- class mlir.dialects.linalg.ExpOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.exp'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.exp(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | ExpOp¶
- class mlir.dialects.linalg.FillOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irWorks for arbitrary ranked output tensors since the operation performs scalar accesses only and is thus rank polymorphic. Numeric casting is performed on the value operand, promoting it to the same data type as the output.
- OPERATION_NAME = 'linalg.fill'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.fill(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | FillOp¶
- class mlir.dialects.linalg.FillRng2DOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe operation generations pseudo random numbers using a linear congruential generator. It provides no guarantees regarding the distribution of the generated random numbers. Instead of generating the random numbers sequentially, it instantiates one random number generator per data element and runs them in parallel. The seed operand and the indices of the data element seed the random number generation. The min and max operands limit the range of the generated random numbers.
- OPERATION_NAME = 'linalg.fill_rng_2d'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.fill_rng_2d(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | FillRng2DOp¶
- class mlir.dialects.linalg.FloorOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.floor'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.floor(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | FloorOp¶
- class mlir.dialects.linalg.GenericOp(result_tensors, inputs, outputs, indexing_maps, iterator_types, *, doc=None, library_call=None, loc=None, ip=None)¶
Bases:
_ods_irGeneric Linalg op form where the key properties of the computation are specified as attributes. In pretty form, a
linalg.genericop is written as:linalg.generic #trait_attribute ins(%A, %B : memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>) outs(%C : memref<?x?xf32, stride_specification>) attrs = {other-optional-attributes} {region}
Where #trait_attributes is an alias of a dictionary attribute containing:
doc [optional]: a documentation string
indexing_maps: a list of AffineMapAttr, one AffineMapAttr per each input
and output view. Such AffineMapAttr specifies the mapping between the loops and the indexing within each view. * library_call [optional]: a StringAttr containing the name of an external library function that the linalg.generic operation maps to. The external library is assumed to be dynamically linked and no strong compile-time guarantees are provided. In the absence of such a library call, linalg.generic will always lower to loops. * iterator_types: an ArrayAttr specifying the type of the enclosing loops. Each element of the list represents and iterator of one of the following types: parallel, reduction, window
Example: Defining a #matmul_trait attribute in MLIR can be done as follows:
#matmul_accesses = [ (m, n, k) -> (m, k), (m, n, k) -> (k, n), (m, n, k) -> (m, n) ] #matmul_trait = { doc = "C(m, n) += A(m, k) * B(k, n)", indexing_maps = #matmul_accesses, library_call = "linalg_matmul", iterator_types = ["parallel", "parallel", "reduction"] }
And can be reused in multiple places as:
linalg.generic #matmul_trait ins(%A, %B : memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>) outs(%C : memref<?x?xf32, stride_specification>) {other-optional-attributes} { ^bb0(%a: f32, %b: f32, %c: f32) : %d = arith.mulf %a, %b: f32 %e = arith.addf %c, %d: f32 linalg.yield %e : f32 }
This may lower to either:
call @linalg_matmul(%A, %B, %C) : (memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>) -> ()
or IR resembling:
scf.for %m = %c0 to %M step %c1 { scf.for %n = %c0 to %N step %c1 { scf.for %k = %c0 to %K step %c1 { %a = load %A[%m, %k] : memref<?x?xf32, stride_specification> %b = load %B[%k, %n] : memref<?x?xf32, stride_specification> %c = load %C[%m, %n] : memref<?x?xf32, stride_specification> %d = arith.mulf %a, %b: f32 %e = arith.addf %c, %d: f32 store %e, %C[%m, %n] : memref<?x?x?xf32, stride_specification> } } }
- OPERATION_NAME = 'linalg.generic'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- indexing_maps() _ods_ir¶
- iterator_types() _ods_ir¶
- doc() _ods_ir | None¶
- library_call() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.generic(result_tensors, inputs, outputs, indexing_maps, iterator_types, *, doc=None, library_call=None, loc=None, ip=None) _ods_ir | _ods_ir | GenericOp¶
- class mlir.dialects.linalg.IndexOp(dim, *, results=None, loc=None, ip=None)¶
Bases:
_ods_irThe
linalg.indexoperation returns the iteration index of the immediately enclosing linalg structured operation for the iteration dimensiondim. Thedimattribute specifies the position of the accessed dimension in the indexing map domain.Example:
#map = affine_map<(i, j) -> (i, j)> linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} outs(%I, %J : memref<?x?xindex>, memref<?x?xindex>) { ^bb0(%arg0 : index, %arg1 : index): // Access the outer iteration dimension i %i = linalg.index 0 : index // Access the inner iteration dimension j %j = linalg.index 1 : index linalg.yield %i, %j : index, index }
This may lower to IR resembling:
%0 = dim %I, %c0 : memref<?x?xindex> %1 = dim %I, %c1 : memref<?x?xindex> scf.for %i = %c0 to %0 step %c1 { scf.for %j = %c0 to %1 step %c1 { store %i, %I[%i, %j] : memref<?x?xindex> store %j, %J[%i, %j] : memref<?x?xindex> } }
- OPERATION_NAME = 'linalg.index'¶
- _ODS_REGIONS = (0, True)¶
- dim() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects.linalg.index(dim, *, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects.linalg.PackOp(source, dest, inner_dims_pos, inner_tiles, static_inner_tiles, *, padding_value=None, outer_dims_perm=None, results=None, loc=None, ip=None)¶
Bases:
_ods_irThe “pack” operation converts a source tensor of rank
ninto a result tensor of rankn + kwith a tiled and packed layout (maybe with padding) and optionally transposes the tiled source tensor dimensions.inner_tiles(mandatory) specifiesktile sizes. These tile sizes correspond to the least significant (“inner”) result tensor dimension sizes, in the same order. Tile sizes can be static or dynamic.inner_dims_pos(mandatory) specifiesksource tensor dimensions that are being tiled, where0 <= k <= n.inner_dims_pos[i]specifies the source tensor dimension tiled by
inner_tiles[i]where0 <= i < k. All the values ininner_dims_posare within [0, n). * The tiled dimensions (of sizeinner_tiles) are added to the end of the result tensor in the order in which they appear, i.e.shape(result)[rank(source) + i] = inner_tiles[i]for0 <= i < k. * The following relationship for the tiled dimensions holds:shape(result)[inner_dims_pos[i]] = shape(source)[inner_dims_pos[i]] / inner_tiles[i], where (⌈/⌉ indicates CeilDiv).Example: If
inner_tiles = [16, 32], the result tensor has a shape of...x16x32. Ifinner_dims_pos = [0, 1], the 0th source dimension is tiled by 16 and the 1st source dimension is tiled by 32. Other source dimensions (if any) are not tiled. Ifinner_dims_pos = [1, 0], the 1st dimension is tiled by 16 and the 0th dimension is tiled by 32.Example:
// NC to NCnc %0 = linalg.pack %source inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<128x256xf32> -> tensor<16x8 x 8x32 xf32> // \ / \ / // Outer Dims: 16x8 Inner Dims: 8x32 // CHW to CHWhw %0 = linalg.pack %source inner_dims_pos = [2, 1] inner_tiles = [4, 2] into %dest : tensor<3x20x24xf32> -> tensor<3x10x6 x 4x2 xf32> // \ / \ / // Outer Dims: 3x10x6 Inner Dims: 4x2 // HCW to HCWhw %0 = linalg.pack %source inner_dims_pos = [2, 0] inner_tiles = [4, 2] into %dest : tensor<18x3x32xf32> -> tensor<9x3x8 x 4x2 xf32> // \ / \ / // Outer Dims: 9x3x8 Inner Dims: 4x2
outer_dims_perm(optional) specifies a permutation for the outer dimensions. If specified, it must havenelements.Example:
// CK to KCck %0 = linalg.pack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<128x256xf32> -> tensor<8x16 x 8x32 xf32> // \ / // compare with "NC to NCnc": outer dims are transposed
padding_valuespecifies a padding value at the boundary on non-perfectly divisible dimensions. Padding is optional:If absent, it is assumed that for all inner tiles,
shape(source)[inner_dims_pos[i]] % inner_tiles[i] == 0, i.e. all inner tiles divide perfectly the corresponding outer dimension in the result tensor. It is UB if the tile does not perfectly divide the dimension. * If present, it will pad along high dimensions (high-padding) to make the tile complete. Note that it is not allowed to have artificial padding that is not strictly required by linalg.pack (i.e., padding past what is needed to complete the last tile along each packed dimension). It is UB if extra padding is requested. It is not possible to verify the requirements statically with dynamic shapes, so they are treated as UB.Example:
%0 = linalg.pack %arg0 padding_value(%pad : f32) outer_dims_perm = [2, 1, 0] inner_dims_pos = [1] inner_tiles = [2] into %arg1 : tensor<200x127x256xf32> -> tensor<256x64x200x2xf32> // \ // padded and tiled dim // // Source dimension 1 is tiled. 64 does not divide 127 evenly, so 1 padded // element is added at the end. // // Note: Only tiled dimensions can be padded.
Invalid example that has artificial padding:
%0 = linalg.pack %src padding_value(%cst : f32) inner_dims_pos = [0] inner_tiles = [8] into %dest : tensor<9xf32> -> tensor<3x8xf32> // \ // expect tensor<2x8xf32> because CeilDiv(9, 8) = 2
- OPERATION_NAME = 'linalg.pack'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (0, True)¶
- source() _ods_ir¶
- dest() _ods_ir¶
- padding_value() _ods_ir | None¶
- inner_tiles() _ods_ir¶
- outer_dims_perm() _ods_ir | None¶
- inner_dims_pos() _ods_ir¶
- static_inner_tiles() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects.linalg.pack(source, dest, inner_dims_pos, inner_tiles, static_inner_tiles, *, padding_value=None, outer_dims_perm=None, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects.linalg.SoftmaxOp(result, input, output, dimension, *, loc=None, ip=None)¶
Bases:
_ods_irlinalg.softmax computes a numerically stable version of softmax.
For a given input tensor and a specified dimension
d, compute:the max
malong that dimensiondf(x) = exp(x - m)
sum f(x) along dimension d to get l(x).
compute the final result f(x) / l(x).
This is an aggregate linalg operation that further reduces to a small DAG of structured operations.
Warning: Regarding the tiling capabilities, the implementation doesn’t check that the provided dimensions make sense. This is the responsability of the transformation calling the tiling to ensure that the provided sizes for each dimension make sense with respect to the semantic of softmax.
- OPERATION_NAME = 'linalg.softmax'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- output() _ods_ir¶
- dimension() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects.linalg.softmax(result, input, output, dimension, *, loc=None, ip=None) _ods_ir | _ods_ir | SoftmaxOp¶
- class mlir.dialects.linalg.UnPackOp(source, dest, inner_dims_pos, inner_tiles, static_inner_tiles, *, outer_dims_perm=None, results=None, loc=None, ip=None)¶
Bases:
_ods_irThe “unpack” operation converts a source tensor of rank
nwith a tiled and packed layout to a result tensor of rankn - k.inner_tiles(mandatory) specifiesktile sizes. These tile sizes correspond to the least significant (“inner”) source tensor dimension sizes. The behavior of this op is undefined if:inner_tilesdo not exactly match with the corresponding source tensor
dimension sizes. * Or,
inner_tiles[i]does not divide the size of dimensioninner_dims_pos[i](assuming thatouter_dims_permis not specified) evenly.inner_dims_pos(mandatory) specifieskresult tensor (i.e. unpacked tensor) dimensions that were tiled with theinner_tilesto create the packed source tensor. The source tensor (i.e. packed tensor) dimensions can be unpacked giveninner_dims_posas follows.For
0 <= i < kthe following relationship holds:
shape(result)[inner_dims_pos[i]] <= shape(source)[n-k+i] * shape(source)[inner_dims_pos[i]]. * For0 <= j < n-kandjnot ininner_dims_posthe following relationship holds:shape(result)[j] = shape(source)[j].outer_dims_perm(optional) specifies a permutation for the outer dimensions. If specified, it must haven - kelements. If specified, this permutation is applied before combining any dimensions.Note, the unpack operation may drop any padding introduced by the pack operation and hence the following holds
NumElementsOf(source) >= NumElementsOf(result).Examples:
// NCnc to NC: %0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<16x8 x 8x32 xf32> -> tensor<128x256xf32> // \ / \ / // Outer Dims: 16x8 Inner Dims: 8x32 // CK to KCck: %0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<8x16 x 8x32 xf32> -> tensor<128x256xf32> // \ / \ / // Outer Dims: 8x16 Inner Dims: 8x32 // CHW to CHWhw: %0 = linalg.unpack %source inner_dims_pos = [2, 1] inner_tiles = [4, 2] into %dest : tensor<3x10x6 x 4x2 xf32> -> tensor<3x20x24xf32> // \ / \ / // Outer Dims: 3x10x6 Inner Dims: 4x2 // HCW to HCWhw %0 = linalg.unpack %source inner_dims_pos = [2, 0] inner_tiles = [4, 2] into %dest : tensor<9x3x8 x 4x2 xf32> -> tensor<18x3x32xf32> // \ / \ / // Outer Dims: 9x3x8 Inner Dims: 4x2
- OPERATION_NAME = 'linalg.unpack'¶
- _ODS_REGIONS = (0, True)¶
- source() _ods_ir¶
- dest() _ods_ir¶
- inner_tiles() _ods_ir¶
- outer_dims_perm() _ods_ir | None¶
- inner_dims_pos() _ods_ir¶
- static_inner_tiles() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects.linalg.unpack(source, dest, inner_dims_pos, inner_tiles, static_inner_tiles, *, outer_dims_perm=None, results=None, loc=None, ip=None) _ods_ir¶
- class mlir.dialects.linalg.WinogradFilterTransformOp(result, filter, output, fmr, *, loc=None, ip=None)¶
Bases:
_ods_irWinograd Conv2D algorithm will convert linalg Conv2D operator into batched matrix multiply. Before the matrix multiply, it will convert filter and input into a format suitable for batched matrix multiply. After the matrix multiply, it will convert output to the final result tensor.
The algorithm F(m x m, r x r) is
Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
The size of output Y is m x m. The size of filter g is r x r. The size of input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are transformation matrices.
This operator is defined to represent the high level concept of filter transformation (G x g x G^T) in the Winograd Conv2D algorithm.
- OPERATION_NAME = 'linalg.winograd_filter_transform'¶
- _ODS_REGIONS = (0, True)¶
- filter() _ods_ir¶
- output() _ods_ir¶
- fmr() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects.linalg.winograd_filter_transform(result, filter, output, fmr, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects.linalg.WinogradInputTransformOp(result, input, output, fmr, *, loc=None, ip=None)¶
Bases:
_ods_irWinograd Conv2D algorithm will convert linalg Conv2D operator into batched matrix multiply. Before the matrix multiply, it will convert filter and input into a format suitable for batched matrix multiply. After the matrix multiply, it will convert output to the final result tensor.
The algorithm F(m x m, r x r) is
Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
The size of output Y is m x m. The size of filter g is r x r. The size of input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are transformation matrices.
This operator is defined to represent the high level concept of input transformation (B^T x d x B) in the Winograd Conv2D algorithm.
- OPERATION_NAME = 'linalg.winograd_input_transform'¶
- _ODS_REGIONS = (0, True)¶
- input() _ods_ir¶
- output() _ods_ir¶
- fmr() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects.linalg.winograd_input_transform(result, input, output, fmr, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects.linalg.WinogradOutputTransformOp(result, value, output, fmr, *, loc=None, ip=None)¶
Bases:
_ods_irWinograd Conv2D algorithm will convert linalg Conv2D operator into batched matrix multiply. Before the matrix multiply, it will convert filter and input into a format suitable for batched matrix multiply. After the matrix multiply, it will convert output to the final result tensor.
The algorithm F(m x m, r x r) is
Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
The size of output Y is m x m. The size of filter g is r x r. The size of input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are transformation matrices.
This operator is defined to represent the high level concept of output transformation (A^T x y x A) in the Winograd Conv2D algorithm.
- OPERATION_NAME = 'linalg.winograd_output_transform'¶
- _ODS_REGIONS = (0, True)¶
- value() _ods_ir¶
- output() _ods_ir¶
- fmr() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mlir.dialects.linalg.winograd_output_transform(result, value, output, fmr, *, loc=None, ip=None) _ods_ir¶
- class mlir.dialects.linalg.YieldOp(values, *, loc=None, ip=None)¶
Bases:
_ods_irlinalg.yieldis a special terminator operation for blocks inside regions inlinalggeneric ops. It returns values to the immediately enclosinglinalggeneric op.Example:
linalg.yield %f0, %f1 : f32, f32
- OPERATION_NAME = 'linalg.yield'¶
- _ODS_REGIONS = (0, True)¶
- values() _ods_ir¶
- class mlir.dialects.linalg.LogOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.log'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.log(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | LogOp¶
- class mlir.dialects.linalg.MapOp(result, inputs, init, *, loc=None, ip=None)¶
Bases:
_ods_irModels elementwise operations on tensors in terms of arithmetic operations on the corresponding elements.
Example:
%add = linalg.map ins(%lhs, %rhs : tensor<64xf32>, tensor<64xf32>) outs(%init: tensor<64xf32>) (%lhs_elem: f32, %rhs_elem: f32) { %0 = arith.addf %lhs_elem, %rhs_elem: f32 linalg.yield %0: f32 }
Shortened print form is available for simple maps where the body contains exactly two operations (the payload operation and a yield), the payload operation has the same number of operands as block arguments with operands matching block arguments in order, and the yield operand is the result of the payload operation.
The example above will be printed using the shortened form as:
%add = linalg.map { arith.addf } ins(%lhs, %rhs : tensor<64xf32>, tensor<64xf32>) outs(%init: tensor<64xf32>)
- OPERATION_NAME = 'linalg.map'¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- init() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- mapper() _ods_ir¶
- class mlir.dialects.linalg.MatmulOp(result_tensors, inputs, outputs, *, indexing_maps=None, cast=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
Broadcast and Transpose semantics can be appiled by specifying the explicit attribute ‘indexing_maps’ as shown below.This is a list attribute, so the list must include all the maps if specified.
Example Transpose:
linalg.matmul indexing_maps = [affine_map<(m, n, k) -> (k, m)>, // transpose affine_map<(m, n, k) -> (k, n)>, affine_map<(m, n, k) -> (m, n)>] ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
Example Broadcast:
linalg.matmul indexing_maps = [affine_map<(m, n, k) -> (k)>, // broadcast affine_map<(m, n, k) -> (k, n)>, affine_map<(m, n, k) -> (m, n)>] ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
Example Broadcast and transpose:
linalg.matmul indexing_maps = [affine_map<(m, n, k) -> (k, m)>, // transpose affine_map<(m, n, k) -> (k)>, // broadcast affine_map<(m, n, k) -> (m, n)>] ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
- OPERATION_NAME = 'linalg.matmul'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- indexing_maps() _ods_ir | None¶
- cast() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.matmul(result_tensors, inputs, outputs, *, indexing_maps=None, cast=None, loc=None, ip=None) _ods_ir | _ods_ir | MatmulOp¶
- class mlir.dialects.linalg.MatvecOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.matvec'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.matvec(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | MatvecOp¶
- class mlir.dialects.linalg.MaxOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.maxsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.max'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.max(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | MaxOp¶
- class mlir.dialects.linalg.MinOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.minsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.min'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.min(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | MinOp¶
- class mlir.dialects.linalg.Mmt4DOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irDifferences from linalg.matmul:
The right hand side is transposed, whence the ‘t’ in ‘mmt’.
The input and output tensors have a 4D shape instead of a 2D shape. They
are interpreted as 2D matrices with one level of 2D tile subdivision, whence the 2+2=4 dimensions. The inner tile dimensions are identified with ‘0’ suffixes below, for instance the LHS matrix shape (M, K, M0, K0) reads as: MxK tiles, each of shape M0xK0.
- OPERATION_NAME = 'linalg.mmt4d'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.mmt4d(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | Mmt4DOp¶
- class mlir.dialects.linalg.MulOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.mulsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.mul'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.mul(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | MulOp¶
- class mlir.dialects.linalg.NegFOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.negf'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.negf(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | NegFOp¶
- class mlir.dialects.linalg.PoolingNchwMaxOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nchw_max'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nchw_max(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNchwMaxOp¶
- class mlir.dialects.linalg.PoolingNchwSumOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NCHW.
Kernel: HW.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nchw_sum'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nchw_sum(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNchwSumOp¶
- class mlir.dialects.linalg.PoolingNcwMaxOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_ncw_max'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_ncw_max(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNcwMaxOp¶
- class mlir.dialects.linalg.PoolingNcwSumOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NCW.
Kernel: W.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_ncw_sum'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_ncw_sum(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNcwSumOp¶
- class mlir.dialects.linalg.PoolingNdhwcMaxOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_ndhwc_max'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_ndhwc_max(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNdhwcMaxOp¶
- class mlir.dialects.linalg.PoolingNdhwcMinOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_ndhwc_min'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_ndhwc_min(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNdhwcMinOp¶
- class mlir.dialects.linalg.PoolingNdhwcSumOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_ndhwc_sum'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_ndhwc_sum(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNdhwcSumOp¶
- class mlir.dialects.linalg.PoolingNhwcMaxOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nhwc_max'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nhwc_max(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNhwcMaxOp¶
- class mlir.dialects.linalg.PoolingNhwcMaxUnsignedOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nhwc_max_unsigned'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nhwc_max_unsigned(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNhwcMaxUnsignedOp¶
- class mlir.dialects.linalg.PoolingNhwcMinOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nhwc_min'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nhwc_min(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNhwcMinOp¶
- class mlir.dialects.linalg.PoolingNhwcMinUnsignedOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nhwc_min_unsigned'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nhwc_min_unsigned(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNhwcMinUnsignedOp¶
- class mlir.dialects.linalg.PoolingNhwcSumOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NHWC.
Kernel: HW.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nhwc_sum'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nhwc_sum(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNhwcSumOp¶
- class mlir.dialects.linalg.PoolingNwcMaxOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nwc_max'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nwc_max(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNwcMaxOp¶
- class mlir.dialects.linalg.PoolingNwcMaxUnsignedOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nwc_max_unsigned'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nwc_max_unsigned(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNwcMaxUnsignedOp¶
- class mlir.dialects.linalg.PoolingNwcMinOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nwc_min'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nwc_min(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNwcMinOp¶
- class mlir.dialects.linalg.PoolingNwcMinUnsignedOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nwc_min_unsigned'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nwc_min_unsigned(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNwcMinUnsignedOp¶
- class mlir.dialects.linalg.PoolingNwcSumOp(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None)¶
Bases:
_ods_irLayout:
Input: NWC.
Kernel: W.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.pooling_nwc_sum'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- strides() _ods_ir | None¶
- dilations() _ods_ir | None¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.pooling_nwc_sum(result_tensors, inputs, outputs, *, strides=None, dilations=None, loc=None, ip=None) _ods_ir | _ods_ir | PoolingNwcSumOp¶
- class mlir.dialects.linalg.PowFOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irOnly applies to floating point values.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.powfsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.powf'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.powf(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | PowFOp¶
- class mlir.dialects.linalg.QuantizedBatchMatmulOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. The quantized variant includes zero-point adjustments for the left and right operands of the matmul.
- OPERATION_NAME = 'linalg.quantized_batch_matmul'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.quantized_batch_matmul(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | QuantizedBatchMatmulOp¶
- class mlir.dialects.linalg.QuantizedMatmulOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. The quantized variant includes zero-point adjustments for the left and right operands of the matmul.
- OPERATION_NAME = 'linalg.quantized_matmul'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.quantized_matmul(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | QuantizedMatmulOp¶
- class mlir.dialects.linalg.ReciprocalOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.reciprocal'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.reciprocal(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | ReciprocalOp¶
- class mlir.dialects.linalg.ReduceOp(result, inputs, inits, dimensions, *, loc=None, ip=None)¶
Bases:
_ods_irExecutes
combineron thedimensionsofinputsand returns the reduced result. Thedimensionsattribute needs to list the reduction dimensions in increasing order.Example:
%reduce = linalg.reduce ins(%input:tensor<16x32x64xf32>) outs(%init:tensor<16x64xf32>) dimensions = [1] (%in: f32, %out: f32) { %0 = arith.addf %out, %in: f32 linalg.yield %0: f32 }
Shortened print form is available for simple reduces where the body contains exactly two operations (the payload operation and a yield), the payload operation has the same number of operands as block arguments, the first block argument (init) is the last operand of the payload operation with remaining operands matching remaining block arguments in order, and the yield operand is the result of the payload operation.
The example above will be printed using the shortened form as:
%reduce = linalg.reduce { arith.addf } ins(%input:tensor<16x32x64xf32>) outs(%init:tensor<16x64xf32>) dimensions = [1]
- OPERATION_NAME = 'linalg.reduce'¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- inits() _ods_ir¶
- dimensions() _ods_ir¶
- combiner() _ods_ir¶
- mlir.dialects.linalg.reduce(result, inputs, inits, dimensions, *, loc=None, ip=None) _ods_ir | _ods_ir | ReduceOp¶
- class mlir.dialects.linalg.RoundOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.round'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.round(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | RoundOp¶
- class mlir.dialects.linalg.RsqrtOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.rsqrt'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.rsqrt(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | RsqrtOp¶
- class mlir.dialects.linalg.SelectOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.selectsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.select'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.select(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | SelectOp¶
- class mlir.dialects.linalg.SqrtOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.sqrt'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.sqrt(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | SqrtOp¶
- class mlir.dialects.linalg.SquareOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.square'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.square(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | SquareOp¶
- class mlir.dialects.linalg.SubOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irThe shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.subsequence can be lowered to alinalg.genericwith different affine maps for the two operands.- OPERATION_NAME = 'linalg.sub'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.sub(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | SubOp¶
- class mlir.dialects.linalg.TanhOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNo numeric casting is performed on the input operand.
- OPERATION_NAME = 'linalg.tanh'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.tanh(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | TanhOp¶
- class mlir.dialects.linalg.TransposeOp(result, input, init, permutation, *, loc=None, ip=None)¶
Bases:
_ods_irPermutes the dimensions of
inputaccording to the givenpermutation.dim(result, i) = dim(input, permutation[i])This op actually moves data, unlike
memref.transposewhich is a metadata operation only that produces a transposed “view”.Example:
%transpose = linalg.transpose ins(%input:tensor<16x64xf32>) outs(%init:tensor<64x16xf32>) permutation = [1, 0]
- OPERATION_NAME = 'linalg.transpose'¶
- _ODS_REGIONS = (1, True)¶
- input() _ods_ir¶
- init() _ods_ir¶
- permutation() _ods_ir¶
- result() _ods_ir¶
Shortcut to get an op result if it has only one (throws an error otherwise).
- region() _ods_ir¶
- mlir.dialects.linalg.transpose(result, input, init, permutation, *, loc=None, ip=None) _ods_ir | _ods_ir | TransposeOp¶
- class mlir.dialects.linalg.VecmatOp(result_tensors, inputs, outputs, *, loc=None, ip=None)¶
Bases:
_ods_irNumeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- OPERATION_NAME = 'linalg.vecmat'¶
- _ODS_OPERAND_SEGMENTS¶
- _ODS_REGIONS = (1, True)¶
- inputs() _ods_ir¶
- outputs() _ods_ir¶
- result_tensors() _ods_ir¶
- region() _ods_ir¶
- mlir.dialects.linalg.vecmat(result_tensors, inputs, outputs, *, loc=None, ip=None) _ods_ir | _ods_ir | VecmatOp¶
- mlir.dialects.linalg.register_attribute_builder(kind, replace=False)¶
- mlir.dialects.linalg._ods_ir¶
- class mlir.dialects.linalg.BinaryFn¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- add = 0¶
- sub = 1¶
- mul = 2¶
- div = 3¶
- div_unsigned = 4¶
- max_signed = 5¶
- min_signed = 6¶
- max_unsigned = 7¶
- min_unsigned = 8¶
- powf = 9¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._binaryfn(x, context)¶
- class mlir.dialects.linalg.ElementwiseArityGroup¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases: 1, 2, 3
- Unary = 1¶
- Binary = 2¶
- Ternary = 3¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._elementwisearitygroup(x, context)¶
- class mlir.dialects.linalg.ElementwiseCaseLimits¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases:
- LastUnary = 13¶
- LastBinary = 23¶
- LastTernary = 24¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._elementwisecaselimits(x, context)¶
- class mlir.dialects.linalg.ElementwiseKind¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- exp = 0¶
- log = 1¶
- abs = 2¶
- ceil = 3¶
- floor = 4¶
- negf = 5¶
- reciprocal = 6¶
- round = 7¶
- sqrt = 8¶
- rsqrt = 9¶
- square = 10¶
- tanh = 11¶
- erf = 12¶
- add = 13¶
- sub = 14¶
- mul = 15¶
- div = 16¶
- div_unsigned = 17¶
- max_signed = 18¶
- min_signed = 19¶
- max_unsigned = 20¶
- min_unsigned = 21¶
- powf = 22¶
- select = 23¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._elementwisekind(x, context)¶
- class mlir.dialects.linalg.IteratorType¶
Bases:
enum.IntEnumIterator type
- parallel = 0¶
- reduction = 1¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._iteratortype(x, context)¶
- class mlir.dialects.linalg.TernaryFn¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases: 0
- select = 0¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._ternaryfn(x, context)¶
- class mlir.dialects.linalg.TypeFn¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases: 0, 1
- cast_signed = 0¶
- cast_unsigned = 1¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._typefn(x, context)¶
- class mlir.dialects.linalg.UnaryFn¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- exp = 0¶
- log = 1¶
- abs = 2¶
- ceil = 3¶
- floor = 4¶
- negf = 5¶
- reciprocal = 6¶
- round = 7¶
- sqrt = 8¶
- rsqrt = 9¶
- square = 10¶
- tanh = 11¶
- erf = 12¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._unaryfn(x, context)¶
- class mlir.dialects.linalg.WinogradConv2DFmr¶
Bases:
enum.IntEnumallowed 32-bit signless integer cases: 0, 1, 2
- F_2_3 = 0¶
- F_4_3 = 1¶
- F_2_5 = 2¶
- __str__()¶
Return str(self).
- mlir.dialects.linalg._winogradconv2dfmr(x, context)¶
- mlir.dialects.linalg._binaryfnattr(x, context)¶
- mlir.dialects.linalg._elementwisekindattr(x, context)¶
- mlir.dialects.linalg._iteratortypeenum(x, context)¶
- mlir.dialects.linalg._ternaryfnattr(x, context)¶
- mlir.dialects.linalg._typefnattr(x, context)¶
- mlir.dialects.linalg._unaryfnattr(x, context)¶
- mlir.dialects.linalg._iteratortypeenum(x, context)¶
- mlir.dialects.linalg.T1¶
- mlir.dialects.linalg.T2¶
- mlir.dialects.linalg.Batch¶
- mlir.dialects.linalg.copy(I=TensorDef(T1), O=TensorDef(U, output=True), cast=TypeFnAttrDef(default=TypeFn.cast_signed))¶
Copies the tensor elementwise.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.exp(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies exp(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.log(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies log(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.abs(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies abs(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.ceil(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies ceil(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.floor(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies floor(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.negf(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies negf(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.reciprocal(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies reciprocal(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.round(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies round(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.sqrt(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies sqrt(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.rsqrt(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies rsqrt(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.square(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies square(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.tanh(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies tanh(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.erf(I=TensorDef(T1), O=TensorDef(T1, output=True))¶
Applies erf(x) elementwise.
No numeric casting is performed on the input operand.
- mlir.dialects.linalg.add(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Adds two tensors elementwise.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.addsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.sub(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Subtracts two tensors elementwise.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.subsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.mul(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Multiplies two tensors elementwise.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.mulsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.div(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Divides the first tensor by the second tensor, elementwise.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.divsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.div_unsigned(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Divides the first tensor by the second tensor, elementwise. For integer types, performs an unsigned division.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.divsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.max(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Takes the max (signed) between two inputs, elementwise.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.maxsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.min(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Takes the min (signed) between two inputs, elementwise.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.minsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.powf(lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Takes the powf(lhs, rhs) between two inputs, elementwise. For powf(arg, 2) use
linalg.square.Only applies to floating point values.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.powfsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.select(cond=TensorDef(U), lhs=TensorDef(T1), rhs=TensorDef(T1), O=TensorDef(T1, output=True))¶
Chooses one value based on a binary condition supplied as its first operand.
The shapes and element types must be identical. The appropriate casts, broadcasts and reductions should be done previously to calling this op.
This means reduction/broadcast/element cast semantics is explicit. Further passes can take that into account when lowering this code. For example, a
linalg.broadcast+linalg.selectsequence can be lowered to alinalg.genericwith different affine maps for the two operands.
- mlir.dialects.linalg.quantized_matmul(A=TensorDef(T1, S.M, S.K), B=TensorDef(T2, S.K, S.N), AZp=ScalarDef(I32), BZp=ScalarDef(I32), C=TensorDef(U, S.M, S.N, output=True))¶
Performs a matrix multiplication of two 2D inputs.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. The quantized variant includes zero-point adjustments for the left and right operands of the matmul.
- mlir.dialects.linalg.mmt4d(lhs=TensorDef(TV.LhsType, S.M, S.K, S.M0, S.K0), rhs=TensorDef(TV.RhsType, S.N, S.K, S.N0, S.K0), accum=TensorDef(TV.AccumType, S.M, S.N, S.M0, S.N0, output=True))¶
Performs a matrix-matrix-transpose multiplication of two 4D inputs.
Differences from linalg.matmul:
The right hand side is transposed, whence the ‘t’ in ‘mmt’.
The input and output tensors have a 4D shape instead of a 2D shape. They
are interpreted as 2D matrices with one level of 2D tile subdivision, whence the 2+2=4 dimensions. The inner tile dimensions are identified with ‘0’ suffixes below, for instance the LHS matrix shape (M, K, M0, K0) reads as: MxK tiles, each of shape M0xK0.
- mlir.dialects.linalg.batch_mmt4d(lhs=TensorDef(TV.LhsType, Batch, S.M, S.K, S.M0, S.K0), rhs=TensorDef(TV.RhsType, Batch, S.N, S.K, S.N0, S.K0), accum=TensorDef(TV.AccumType, Batch, S.M, S.N, S.M0, S.N0, output=True))¶
Performs a batched matrix-matrix-transpose multiplication of two batched-4D (5D) inputs.
Besides the outermost batch dimension has the same semantic as linalg.batch_matmul, the differences from linalg.batch_matmul in the non-batch dimensions are the same as linalg.mmt4d vs. linalg.matmul. See the description of lingalg.mmt4d.
- mlir.dialects.linalg.quantized_batch_matmul(A=TensorDef(T1, Batch, S.M, S.K), B=TensorDef(T2, Batch, S.K, S.N), AZp=ScalarDef(I32), BZp=ScalarDef(I32), C=TensorDef(U, Batch, S.M, S.N, output=True))¶
Performs a batched matrix multiplication of two 3D inputs.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. The quantized variant includes zero-point adjustments for the left and right operands of the matmul.
- mlir.dialects.linalg.matvec(A=TensorDef(T1, S.M, S.N), y=TensorDef(T2, S.N), x=TensorDef(U, S.M, output=True))¶
Performs a matrix-vector multiplication.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.vecmat(y=TensorDef(T1, S.M), A=TensorDef(T2, S.M, S.N), x=TensorDef(U, S.N, output=True))¶
Performs a vector-matrix multiplication.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.batch_matvec(A=TensorDef(T1, Batch, S.M, S.K), B=TensorDef(T2, Batch, S.K), C=TensorDef(U, Batch, S.M, output=True))¶
Performs a batched matrix-vector multiplication.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.batch_vecmat(A=TensorDef(T1, Batch, S.K), B=TensorDef(T2, Batch, S.K, S.N), C=TensorDef(U, Batch, S.N, output=True))¶
Performs a batched matrix-vector multiplication.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.dot(A=TensorDef(T1, S.M), B=TensorDef(T2, S.M), C=TensorDef(U, output=True))¶
Performs a dot product of two vectors to a scalar result.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_1d(I=TensorDef(T1, S.OW + S.KW), K=TensorDef(T2, S.KW), O=TensorDef(U, S.OW, output=True))¶
Performs 1-D convolution with no channels.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d(I=TensorDef(T1, S.OH + S.KH, S.OW + S.KW), K=TensorDef(T2, S.KH, S.KW), O=TensorDef(U, S.OH, S.OW, output=True))¶
Performs 2-D convolution with no channels.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_3d(I=TensorDef(T1, S.OD + S.KD, S.OH + S.KH, S.OW + S.KW), K=TensorDef(T2, S.KD, S.KH, S.KW), O=TensorDef(U, S.OD, S.OH, S.OW, output=True))¶
Performs 3-D convolution with no channels.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_1d_nwc_wcf(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KW, S.C, S.F), O=TensorDef(U, S.N, S.OW, S.F, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs 1-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_1d_ncw_fcw(I=TensorDef(T1, S.N, S.C, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.F, S.C, S.KW), O=TensorDef(U, S.N, S.F, S.OW, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs 1-D convolution.
Layout:
Input: NCW.
Kernel: FCW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d_nhwc_hwcf(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KH, S.KW, S.C, S.F), O=TensorDef(U, S.N, S.OH, S.OW, S.F, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D convolution.
Layout:
Input: NHWC.
Kernel: HWCF.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d_nhwc_fhwc(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.F, S.KH, S.KW, S.C), O=TensorDef(U, S.N, S.OH, S.OW, S.F, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D convolution.
Layout:
Input: NHWC.
Kernel: FHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d_nhwc_hwcf_q(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KH, S.KW, S.C, S.F), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.OH, S.OW, S.F, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D convolution with zero point offsets.
Layout:
Input: NHWC.
Kernel: HWCF.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- mlir.dialects.linalg.conv_2d_nhwc_fhwc_q(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.F, S.KH, S.KW, S.C), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.OH, S.OW, S.F, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D convolution with zero point offsets.
Layout:
Input: NHWC.
Kernel: FHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- mlir.dialects.linalg.conv_2d_nchw_fchw_q(I=TensorDef(T1, S.N, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.F, S.C, S.KH, S.KW), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.F, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D convolution with zero point offsets.
Layout:
Input: NCHW.
Kernel: FCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- mlir.dialects.linalg.conv_2d_nchw_fchw(I=TensorDef(T1, S.N, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.F, S.C, S.KH, S.KW), O=TensorDef(U, S.N, S.F, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D convolution.
Layout:
Input: NCHW.
Kernel: FCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d_ngchw_fgchw(I=TensorDef(T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.FG, S.G, S.C, S.KH, S.KW), O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D grouped convolution.
Layout:
Input: NGCHW.
Kernel: FGCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d_ngchw_gfchw(I=TensorDef(T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.G, S.FG, S.C, S.KH, S.KW), O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D grouped convolution.
Layout:
Input: NGCHW.
Kernel: GFCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d_nhwgc_gfhwc(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.G, S.C), K=TensorDef(T2, S.G, S.FG, S.KH, S.KW, S.C), O=TensorDef(U, S.N, S.OH, S.OW, S.G, S.FG, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D grouped convolution.
Layout:
Input: NHWGC.
Kernel: GFHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_2d_nhwgc_gfhwc_q(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.G, S.C), K=TensorDef(T2, S.G, S.FG, S.KH, S.KW, S.C), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.OH, S.OW, S.G, S.FG, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D grouped convolution with zero point offsets.
Layout:
Input: NHWGC.
Kernel: GFHWC.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- mlir.dialects.linalg.conv_2d_ngchw_gfchw_q(I=TensorDef(T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.G, S.FG, S.C, S.KH, S.KW), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs 2-D grouped convolution with zero-point offsets.
Layout:
Input: NGCHW.
Kernel: GFCHW.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- mlir.dialects.linalg.conv_3d_ndhwc_dhwcf(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KD, S.KH, S.KW, S.C, S.F), O=TensorDef(U, S.N, S.OD, S.OH, S.OW, S.F, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs 3-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.conv_3d_ndhwc_dhwcf_q(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KD, S.KH, S.KW, S.C, S.F), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.OD, S.OH, S.OW, S.F, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs 3-D convolution with zero point offsets.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. This includes the zero point offsets common to quantized operations.
- mlir.dialects.linalg.conv_3d_ncdhw_fcdhw(I=TensorDef(T1, S.N, S.C, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.F, S.C, S.KD, S.KH, S.KW), O=TensorDef(U, S.N, S.F, S.OD, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs 3-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.depthwise_conv_1d_nwc_wc(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KW, S.IC), O=TensorDef(U, S.N, S.OW, S.IC, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs depth-wise 1-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- mlir.dialects.linalg.depthwise_conv_1d_ncw_cw(I=TensorDef(T1, S.N, S.IC, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.IC, S.KW), O=TensorDef(U, S.N, S.IC, S.OW, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs depth-wise 1-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- mlir.dialects.linalg.depthwise_conv_1d_nwc_wcm(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KW, S.IC, S.CM), O=TensorDef(U, S.N, S.OW, S.IC, S.CM, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs depth-wise 1-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwc(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC), O=TensorDef(U, S.N, S.OH, S.OW, S.IC, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs depth-wise 2-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- mlir.dialects.linalg.depthwise_conv_2d_nchw_chw(I=TensorDef(T1, S.N, S.IC, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.IC, S.KH, S.KW), O=TensorDef(U, S.N, S.IC, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs depth-wise 2-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwc_q(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.OH, S.OW, S.IC, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs depth-wise 2-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwcm(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC, S.CM), O=TensorDef(U, S.N, S.OH, S.OW, S.IC, S.CM, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs depth-wise 2-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.depthwise_conv_2d_nhwc_hwcm_q(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC, S.CM), IZp=ScalarDef(I32), KZp=ScalarDef(I32), O=TensorDef(U, S.N, S.OH, S.OW, S.IC, S.CM, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs depth-wise 2-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.depthwise_conv_3d_ndhwc_dhwc(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KD, S.KH, S.KW, S.IC), O=TensorDef(U, S.N, S.OD, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs depth-wise 3-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- mlir.dialects.linalg.depthwise_conv_3d_ncdhw_cdhw(I=TensorDef(T1, S.N, S.IC, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.IC, S.KD, S.KH, S.KW), O=TensorDef(U, S.N, S.IC, S.OD, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs depth-wise 3-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 which is a special case for most depthwise convolutions.
- mlir.dialects.linalg.depthwise_conv_3d_ndhwc_dhwcm(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KD, S.KH, S.KW, S.IC, S.CM), O=TensorDef(U, S.N, S.OD, S.OH, S.OW, S.CM, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs depth-wise 3-D convolution.
Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nhwc_sum(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]), O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs sum pooling.
Layout:
Input: NHWC.
Kernel: HW.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nchw_sum(I=TensorDef(T1, S.N, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]), O=TensorDef(U, S.N, S.C, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs sum pooling.
Layout:
Input: NCHW.
Kernel: HW.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nhwc_max(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]), O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs max pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nhwc_max_unsigned(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]), O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs unsigned max pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nchw_max(I=TensorDef(T1, S.N, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]), O=TensorDef(U, S.N, S.C, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs max pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nhwc_min(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]), O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs min pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nhwc_min_unsigned(I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]), O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]), dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]))¶
Performs unsigned min pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nwc_sum(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KW, index_dims=[D.kw]), O=TensorDef(U, S.N, S.OW, S.C, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs sum pooling.
Layout:
Input: NWC.
Kernel: W.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_ncw_sum(I=TensorDef(T1, S.N, S.C, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.KW, index_dims=[D.kw]), O=TensorDef(U, S.N, S.C, S.OW, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs sum pooling.
Layout:
Input: NCW.
Kernel: W.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nwc_max(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KW, index_dims=[D.kw]), O=TensorDef(U, S.N, S.OW, S.C, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs max pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nwc_max_unsigned(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KW, index_dims=[D.kw]), O=TensorDef(U, S.N, S.OW, S.C, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs unsigned max pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_ncw_max(I=TensorDef(T1, S.N, S.C, S.OW * S.SW + S.KW * S.DW), K=TensorDef(T2, S.KW, index_dims=[D.kw]), O=TensorDef(U, S.N, S.C, S.OW, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs max pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nwc_min(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KW, index_dims=[D.kw]), O=TensorDef(U, S.N, S.OW, S.C, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs min pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_nwc_min_unsigned(I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KW, index_dims=[D.kw]), O=TensorDef(U, S.N, S.OW, S.C, output=True), strides=IndexAttrDef(S.SW, default=[1]), dilations=IndexAttrDef(S.DW, default=[1]))¶
Performs unsigned min pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_ndhwc_sum(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KD, S.KH, S.KW, index_dims=[D.kd, D.kh, D.kw]), O=TensorDef(U, S.N, S.OD, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs 3D sum pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_ndhwc_max(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KD, S.KH, S.KW, index_dims=[D.kd, D.kh, D.kw]), O=TensorDef(U, S.N, S.OD, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs 3D max pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.pooling_ndhwc_min(I=TensorDef(T1, S.N, S.OD * S.SD + S.KD * S.DD, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.C), K=TensorDef(T2, S.KD, S.KH, S.KW, index_dims=[D.kd, D.kh, D.kw]), O=TensorDef(U, S.N, S.OD, S.OH, S.OW, S.C, output=True), strides=IndexAttrDef(S.SD, S.SH, S.SW, default=[1, 1, 1]), dilations=IndexAttrDef(S.DD, S.DH, S.DW, default=[1, 1, 1]))¶
Performs 3D min pooling.
Numeric casting is performed on the input operand, promoting it to the same data type as the accumulator/output.
- mlir.dialects.linalg.fill(value=ScalarDef(T1), O=TensorDef(U, output=True))¶
Fills the output tensor with the given value.
Works for arbitrary ranked output tensors since the operation performs scalar accesses only and is thus rank polymorphic. Numeric casting is performed on the value operand, promoting it to the same data type as the output.
- mlir.dialects.linalg.fill_rng_2d(min=ScalarDef(F64), max=ScalarDef(F64), seed=ScalarDef(I32), O=TensorDef(T, S.M, S.N, output=True))¶
Fills the output tensor with pseudo random numbers.
The operation generations pseudo random numbers using a linear congruential generator. It provides no guarantees regarding the distribution of the generated random numbers. Instead of generating the random numbers sequentially, it instantiates one random number generator per data element and runs them in parallel. The seed operand and the indices of the data element seed the random number generation. The min and max operands limit the range of the generated random numbers.
- mlir.dialects.linalg._get_op_result_or_value(arg: mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | mlir._mlir_libs._mlir.ir.Value | mlir._mlir_libs._mlir.ir.OpResultList) mlir._mlir_libs._mlir.ir.Value¶
Returns the given value or the single result of the given op.
This is useful to implement op constructors so that they can take other ops as arguments instead of requiring the caller to extract results for every op. Raises ValueError if provided with an op that doesn’t have a single result.
- mlir.dialects.linalg._get_op_results_or_values(arg: mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | Sequence[mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | mlir._mlir_libs._mlir.ir.Value]) Sequence[mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | mlir._mlir_libs._mlir.ir.Value] | mlir._mlir_libs._mlir.ir.OpResultList¶
Returns the given sequence of values or the results of the given op.
This is useful to implement op constructors so that they can take other ops as lists of arguments instead of requiring the caller to extract results for every op.
- mlir.dialects.linalg._CONTEXT¶
- mlir.dialects.linalg.StructuredOpOuts¶
- mlir.dialects.linalg.bind_op_def(op_def: mlir.dialects.linalg.opdsl.lang.emitter.LinalgOpDef)¶
- mlir.dialects.linalg.current_op_def() mlir.dialects.linalg.opdsl.lang.emitter.LinalgOpDef¶
- mlir.dialects.linalg._prepare_structured_op_outs(outs: StructuredOpOuts) mlir.dialects.linalg.opdsl.lang.emitter.ValueList¶
- class mlir.dialects.linalg.DefinedOpCallable(op_name: str, op_def: mlir.dialects.linalg.opdsl.lang.emitter.LinalgOpDef)¶
Callable that wraps any defined op function.
- op_name¶
- op_def¶
- __call__(*ins: mlir.dialects.linalg.opdsl.lang.emitter.Union[mlir.ir.Operation, mlir.ir.OpView, mlir.ir.Value], outs: StructuredOpOuts, **kwargs)¶
Emits the corresponding op definition as IR.
Most arguments are passed through to the underlying emitter. The following keyword argument is interpreted here: emit_generic: Emits a generic form as appropriate (default True). If False, a named form is emitted (which must have been built in to the compiler).
- mlir.dialects.linalg.linalg_structured_op(dsl_func=None, *, op_name=None, op_class_name=None) DefinedOpCallable¶
- mlir.dialects.linalg.domain(*dimensions: mlir.dialects.linalg.opdsl.lang.emitter.DimDef)¶
- mlir.dialects.linalg.implements(*interfaces: mlir.dialects.linalg.opdsl.lang.emitter.OpInterfaceDef)¶
- mlir.dialects.linalg.defines(*definitions: mlir.dialects.linalg.opdsl.lang.emitter.OpDefinitionDef)¶
- class mlir.dialects.linalg.TensorExpression¶
An expression that can appear on the RHS of a comprehension.
- abstract to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression¶
- visit_tensor_exprs(callback: mlir.dialects.linalg.opdsl.lang.scalar_expr.Callable[[TensorExpression], None])¶
Visits all tensor expression reachable by the expression.
- collect_dim_uses(uses: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef])¶
Collects all DimDefs reachable through this expression.
- collect_tensor_uses(uses: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[TensorUse])¶
Collects all TensorUses reachable through this expression.
- collect_indices(indices: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[index])¶
Collects all index accesses reachable through this expression.
- collect_scalar_uses(uses: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[ScalarDef])¶
Collects all ScalarDefs reachable through this expression.
- __add__(rhs: TensorExpression) TensorExpression¶
- __mul__(rhs) TensorExpression¶
- __sub__(rhs) TensorExpression¶
- __truediv__(rhs) TensorExpression¶
- __hash__()¶
- class mlir.dialects.linalg.TensorUse(operand_def: OperandDef, indices: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef])¶
Bases:
TensorExpressionA used tensor represented by its (tensor_name, indices).
Note that forming a comprehension via direct assignment is performed through setitem on the TensorDef level. However, performing a reduction with compound ops (+=, =, etc) is done by doing a: TensorDef.**getitem* TensorUse.**iadd** TensorDef.**setitem**
- operand_def¶
- indices¶
- to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression¶
- property tensor_name: str¶
- _compute_reduce_dims(rhs: TensorExpression) mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]¶
- __iadd__(rhs: TensorExpression) TensorReduceFn¶
- __repr__()¶
- class mlir.dialects.linalg.TensorFn(kind: FunctionKind, name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str], operand_def: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[OperandDef], type_var: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.types.TypeVar], args: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[TensorExpression])¶
Bases:
TensorExpressionApplication of a tensor function.
- name¶
- kind¶
- operand_def¶
- type_var¶
- args¶
- to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression¶
- visit_tensor_exprs(callback: mlir.dialects.linalg.opdsl.lang.scalar_expr.Callable[[TensorExpression], None])¶
Visits all tensor expression reachable by the expression.
- __repr__()¶
- class mlir.dialects.linalg.TensorReduceFn(reduce_use: ReduceFnUse, args: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[TensorExpression])¶
Bases:
TensorExpressionApplication of a reduction function.
This captures the lhs (initial value) separately from the rhs.
- reduce_use¶
- args¶
- to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression¶
- visit_tensor_exprs(callback: mlir.dialects.linalg.opdsl.lang.scalar_expr.Callable[[TensorExpression], None])¶
Visits all tensor expression reachable by the expression.
- __repr__()¶
- class mlir.dialects.linalg.const(value: mlir.dialects.linalg.opdsl.lang.scalar_expr.Any)¶
Bases:
TensorExpressionReturns the given constant floating point or integer value.
- to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression¶
- __repr__()¶
- class mlir.dialects.linalg.index(dim: mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef)¶
Bases:
TensorExpressionReturns the iteration index for a given dimension name.
Resolves the given dimension name to obtain its position in the iteration domain of the operation.
- dim_def¶
- dim = -1¶
- resolve_dimension_name(affine_state: mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineBuildState)¶
- to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression¶
- __repr__()¶
- class mlir.dialects.linalg.FunctionKind¶
Bases:
mlir.dialects.linalg.opdsl.lang.types.EnumGeneric enumeration.
Derive from this class to define new enumerations.
- UNARY = 0¶
- BINARY = 1¶
- TERNARY = 2¶
- TYPE = 3¶
- class mlir.dialects.linalg.UnaryFnType(fn_name: str)¶
Unary function.
A unary function takes one tensor expression and returns the function evaluation result.
- fn_name¶
- __call__(arg: TensorExpression) TensorFn¶
- __repr__()¶
- class mlir.dialects.linalg.UnaryFn¶
Unary function namespace.
- exp¶
- log¶
- abs¶
- ceil¶
- floor¶
- negf¶
- reciprocal¶
- round¶
- sqrt¶
- rsqrt¶
- square¶
- tanh¶
- erf¶
- class mlir.dialects.linalg.BinaryFnType(fn_name: str)¶
Binary function.
A binary function takes two tensor expressions and returns the function evaluation result.
- fn_name¶
- __call__(arg0: TensorExpression, arg1: TensorExpression) TensorFn¶
- __repr__()¶
- class mlir.dialects.linalg.BinaryFn¶
Binary function namespace.
As the integer types are signless, signedness is implement by different functions that treat integers as signed or unsigned values.
Examples:
max ->
arith.MaxSIOpmax_unsigned ->
arith.MaxUIOp
- add¶
- sub¶
- mul¶
- div¶
- div_unsigned¶
- max_signed¶
- min_signed¶
- max_unsigned¶
- min_unsigned¶
- powf¶
- class mlir.dialects.linalg.TernaryFnType(fn_name: str)¶
Ternary function.
A ternary function takes three tensor expressions and returns the function evaluation result.
- fn_name¶
- __call__(arg0: TensorExpression, arg1: TensorExpression, arg2: TensorExpression) TensorFn¶
- __repr__()¶
- class mlir.dialects.linalg.TypeFnType(fn_name: str)¶
Type conversion function.
A type conversion function takes a target type and a tensor expression and returns the casted tensor expression.
- fn_name¶
- __call__(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar, arg: TensorExpression) TensorFn¶
- __repr__()¶
- class mlir.dialects.linalg.TypeFn¶
Type conversion function namespace.
As the integer types are signless, signedness is implement by different cast functions that treat integers as signed (
cast_signed) or unsigned (cast_unsigned) values.Examples:
cast_signed(I32 -> I64) ->
arith.ExtSIOpcast_unsigned(I32 -> I64) ->
arith.ExtUIOp
- cast_signed¶
- cast_unsigned¶
- class mlir.dialects.linalg.ReduceFnUse(binary_fn: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[BinaryFnType], binary_attr: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[BinaryFnAttrDef], *reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef)¶
Reduction function use.
A reduction use specifies the reduction function and dimensions.
- binary_fn¶
- binary_attr¶
- reduce_dims = ()¶
- __call__(*args: TensorExpression) TensorReduceFn¶
- __repr__()¶
- class mlir.dialects.linalg.ReduceFnType(binary_fn: BinaryFnType)¶
Reduction function.
A binary function that reduces its RHS into its LHS.
- binary_fn¶
- __getitem__(reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]) ReduceFnUse¶
- __repr__()¶
- class mlir.dialects.linalg.OperandKind¶
Bases:
mlir.dialects.linalg.opdsl.lang.types.EnumGeneric enumeration.
Derive from this class to define new enumerations.
- INPUT_TENSOR = 0¶
- SCALAR = 1¶
- OUTPUT_TENSOR = 2¶
- INDEX_ATTR = 3¶
- UNARY_FN_ATTR = 4¶
- BINARY_FN_ATTR = 5¶
- TERNARY_FN_ATTR = 6¶
- TYPE_FN_ATTR = 7¶
- class mlir.dialects.linalg.OperandDef(kind: OperandKind, type_var: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.types.TypeVar] = None, size_exprs: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef]] = None, index_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]] = None, default_indices: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[int]] = None, default_fn: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None)¶
Definition of an operand passed to an operation.
Keep the meta information of Tensor, Scalar, and Attribute operands and provide the shared registration functionality.
- owner: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[LinalgOpDef] = None¶
- type_var = None¶
- size_exprs = None¶
- index_dims = None¶
- default_indices = None¶
- default_fn = None¶
- kind¶
- name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None¶
- registered_index: int = -1¶
- attach(index: int, name: str, owner: LinalgOpDef)¶
- is_input() bool¶
- is_tensor() bool¶
- is_attribute() bool¶
- __hash__()¶
- __repr__()¶
- class mlir.dialects.linalg.TensorDef(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar, *shape: mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef, index_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]] = None, output: bool = False)¶
Tensor operand definition.
Tensor operands are indexed using the associated indexing_map when forwarded to the body of the structured op. A unique name identifies the tensor operands and an index determines their position in the operation’s parameter list. A tensor definition takes type, a shape, and an optional flag to mark output tensors. Additionally, a tuple of index dimensions may be used to map the tensor to the loop dimensions of the operation. This mapping is needed to compute the indexing map of shape-only tensors that have no uses.
- operand_def¶
- __getitem__(dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef]) TensorUse¶
- __setitem__(dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef], value: TensorExpression)¶
Creates a new 1:1 comprehension by binding this tensor to an expression.
Note that due to the way assignment works in Python, we have to capture direct assignment as a setitem on the TensorDef.
- class mlir.dialects.linalg.ScalarDef(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar)¶
Bases:
TensorExpressionScalar operand definition.
Scalar operands are forwarded to the body of the structured op as they are. A unique name identifies the scalars and an index determines their position in the operation’s parameter list.
- operand_def¶
- property scalar_name: str¶
- to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression¶
- class mlir.dialects.linalg.IndexAttrDef(*sizes: mlir.dialects.linalg.opdsl.lang.scalar_expr.SymbolDef, default: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[int])¶
Index attribute definition.
Index attributes provide a way to define and set symbols that can be used in indexing expressions. Every attribute specifies a tuple of symbols that at compile-time are replaced by integer values as well as their default values.
- operand_def¶
- class mlir.dialects.linalg.UnaryFnAttrDef(default: UnaryFnType)¶
Unary function attribute definition.
Unary function attributes provide a way to make the arithmetic computation parametrizable. Every attribute specifies a default unary function that may be overwritten at operation instantiation time.
- operand_def¶
- __call__(arg: TensorExpression) TensorFn¶
- class mlir.dialects.linalg.BinaryFnAttrDef(default: BinaryFnType)¶
Binary function attribute definition.
Binary function attributes provide a way to make the arithmetic computation parametrizable. Every attribute specifies a default binary function that may be overwritten at operation instantiation time.
- operand_def¶
- __call__(arg0: TensorExpression, arg1: TensorExpression) TensorFn¶
- __getitem__(reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]) ReduceFnUse¶
- class mlir.dialects.linalg.TernaryFnAttrDef(default: TernaryFnType)¶
Ternary function attribute definition.
Ternary function attributes provide a way to make the arithmetic computation parametrizable. Every attribute specifies a default Ternary function that may be overwritten at operation instantiation time.
- operand_def¶
- __call__(arg0: TensorExpression, arg1: TensorExpression) TensorFn¶
- __getitem__(reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]) ReduceFnUse¶
- class mlir.dialects.linalg.TypeFnAttrDef(default: TypeFnType)¶
Type conversion function attribute definition.
Type conversion function attributes provide a way to make type conversions parameterizable. Every attribute specifies a default type conversion function that may be overwritten at operation instantiation time.
- operand_def¶
- __call__(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar, arg: TensorExpression) TensorFn¶
- class mlir.dialects.linalg.Comprehension(*bindings: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[TensorUse, TensorExpression])¶
Represents a single comprehension.
- definitions = []¶
- values = []¶
- property all_reduction_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef, Ellipsis]]¶
Gets the reduction dims for the comprehension or None.
- __repr__()¶
- class mlir.dialects.linalg.OpInterfaceDef(cpp_name: str)¶
An interface that an op implements.
- cpp_name¶
- mlir.dialects.linalg.ContractionOpInterface¶
- mlir.dialects.linalg.ConvolutionOpInterface¶
- mlir.dialects.linalg.FillOpInterface¶
- class mlir.dialects.linalg.OpDefinitionDef(def_name: str)¶
A method that an op implements.
- def_name¶
- mlir.dialects.linalg.Canonicalizer¶
- class mlir.dialects.linalg.OpMetadataDef(name: str, cpp_class_name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str], doc: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str])¶
Bases:
mlir.dialects.linalg.opdsl.lang.yaml_helper.YAMLObjectMetadata about the op (generally not behavior impacting).
- yaml_tag = '!LinalgOpMetadata'¶
- name¶
- cpp_class_name¶
- doc¶
- implements: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[OpInterfaceDef] = []¶
- defines: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[OpDefinitionsDef] = []¶
- to_yaml_custom_dict()¶
- class mlir.dialects.linalg.LinalgOpDef(name: str, cpp_class_name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None, doc: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None)¶
Definition of a linalg op.
- metadata¶
- registered_operands: mlir.dialects.linalg.opdsl.lang.types.Dict[str, OperandDef]¶
- domain: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef] = []¶
- comprehensions: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[Comprehension] = []¶
- _affine_state¶
- add_operand(name: str, operand: OperandDef)¶
Registers an operand.
- __repr__()¶
- class mlir.dialects.linalg.AffineBuildState(*, global_state: AffineBuildState = None, allow_new_symbols: bool = True, allow_new_dims: bool = True)¶
Internal state for the AffineExprDef._create impls.
Note that a “local” AffineBuildState can be created relative to a “global” AffineBuildState. In that case, any affine expressions built will inherit symbol and dim bindings from the global state and will update both as new ones are discovered. This allows for building expressions across contexts which share a common symbol and dim space.
- local_symbols: Dict[str, int]¶
- local_dims: Dict[str, int]¶
- allow_new_symbols = True¶
- allow_new_dims = True¶
- get_dim(dimname: str) int¶
Gets the dim position given a name.
- get_symbol(symname: str) int¶
Geta a symbol position given a name.
- property local_dim_count: int¶
- property local_symbol_count: int¶
- property dim_count: int¶
- property symbol_count: int¶
- __repr__()¶
- class mlir.dialects.linalg.AffineExprDef¶
Base class for an affine expression being defined.
- build(state: AffineBuildState | None = None) mlir.ir.AffineExpr¶
Builds the corresponding _ir.AffineExpr from the definitions.
- abstract _create(state: AffineBuildState) mlir.ir.AffineExpr¶
- static coerce_from(py_value)¶
- visit_affine_exprs(callback)¶
Visits all AffineExprDefs including self.
- __add__(rhs)¶
- __mul__(rhs)¶
- __mod__(rhs)¶
- __floordiv__(rhs)¶
- __truediv__(rhs)¶
- mlir.dialects.linalg.D¶
- class mlir.dialects.linalg.DimDef¶
Bases:
AffineExprDefRepresents a named dimension.
- __repr__()¶
- _create(state: AffineBuildState) mlir.ir.AffineExpr¶
- classmethod create_expando()¶
Create an expando class that creates unique symbols based on attr access.
- mlir.dialects.linalg.S¶
- class mlir.dialects.linalg.SymbolDef¶
Bases:
AffineExprDefRepresents a named symbol.
s1 = SymbolDef(“s1”) s1 Symbol(s1) s2 = SymbolDef(“s2”) s1 is s2 False s1 is SymbolDef(“s1”) True
- __repr__()¶
- _create(state: AffineBuildState) mlir.ir.AffineExpr¶
- classmethod create_expando()¶
Create an expando class that creates unique symbols based on attr access.
- class mlir.dialects.linalg.ScalarAssign(arg: str, value: ScalarExpression)¶
Bases:
mlir.dialects.linalg.opdsl.lang.yaml_helper.YAMLObjectAn assignment to a named argument (LHS of a comprehension).
- yaml_tag = '!ScalarAssign'¶
- arg¶
- value¶
- to_yaml_custom_dict()¶
- __repr__()¶
- class mlir.dialects.linalg.ScalarFn(kind: mlir.dialects.linalg.opdsl.lang.comprehension.FunctionKind, fn_name: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[str], attr_name: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[str], type_var: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.dialects.linalg.opdsl.lang.types.TypeVar], operands: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[ScalarExpression])¶
A type of ScalarExpression that applies a function.
- kind¶
- fn_name¶
- attr_name¶
- type_var¶
- operands¶
- expr() ScalarExpression¶
- __repr__()¶
- class mlir.dialects.linalg.ScalarArg(arg: str)¶
A type of ScalarExpression that references a named argument.
- arg¶
- expr() ScalarExpression¶
- __repr__()¶
- class mlir.dialects.linalg.ScalarConst(value: str)¶
A type of ScalarExpression representing a constant.
- value¶
- expr() ScalarExpression¶
- __repr__()¶
- class mlir.dialects.linalg.ScalarIndex(dim: int)¶
A type of ScalarExpression accessing an iteration index.
- dim¶
- expr() ScalarExpression¶
- __repr__()¶
- class mlir.dialects.linalg.ScalarExpression(scalar_fn: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[ScalarFn] = None, scalar_arg: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[ScalarArg] = None, scalar_const: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[ScalarConst] = None, scalar_index: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[ScalarIndex] = None)¶
Bases:
mlir.dialects.linalg.opdsl.lang.yaml_helper.YAMLObjectAn expression on scalar values.
Can be one of:
ScalarFn
ScalarArg
ScalarConst
ScalarIndex
- yaml_tag = '!ScalarExpression'¶
- scalar_fn = None¶
- scalar_arg = None¶
- scalar_const = None¶
- scalar_index = None¶
- to_yaml_custom_dict()¶
- class mlir.dialects.linalg.TypeVar¶
A replaceable type variable.
Type variables are uniqued by name.
- __repr__()¶
- classmethod create_expando()¶
Create an expando class that creates unique type vars on attr access.
- mlir.dialects.linalg.TV¶
- mlir.dialects.linalg.I32¶
- mlir.dialects.linalg.I64¶
- mlir.dialects.linalg.F32¶
- mlir.dialects.linalg.F64¶
- mlir.dialects.linalg.T¶
- mlir.dialects.linalg.U¶
- mlir.dialects.linalg.V¶
- mlir.dialects.linalg.yaml_dump(data, sort_keys=False, **kwargs)¶
- mlir.dialects.linalg.yaml_dump_all(data, sort_keys=False, explicit_start=True, **kwargs)¶
- class mlir.dialects.linalg.YAMLObject¶
Bases:
yaml.YAMLObjectAn object that can dump itself to a YAML stream and load itself from a YAML stream.
- classmethod to_yaml(dumper, self)¶
Default to a custom dictionary mapping.
- abstract to_yaml_custom_dict()¶
- as_linalg_yaml()¶
- class mlir.dialects.linalg.LinalgStructuredOpConfig(comprehension: mlir.dialects.linalg.opdsl.lang.comprehension.Comprehension, domain: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[mlir.dialects.linalg.opdsl.lang.comprehension.DimDef], registered_operands: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[mlir.dialects.linalg.opdsl.lang.comprehension.OperandDef], context: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.ir.Context] = None)¶
Bases:
mlir.dialects.linalg.opdsl.lang.yaml_helper.YAMLObjectConfiguration for metadata sufficient to construct a linalg named op.
- yaml_tag = '!LinalgStructuredOpConfig'¶
- context = None¶
- affine_state¶
- writes: mlir.dialects.linalg.opdsl.lang.comprehension.List[mlir.dialects.linalg.opdsl.lang.comprehension.Tuple[mlir.dialects.linalg.opdsl.lang.comprehension.TensorUse, mlir.dialects.linalg.opdsl.lang.comprehension.TensorExpression]] = []¶
- operands: mlir.dialects.linalg.opdsl.lang.comprehension.Dict[mlir.dialects.linalg.opdsl.lang.comprehension.OperandDef, OperandDefConfig]¶
- uses: mlir.dialects.linalg.opdsl.lang.comprehension.Dict[mlir.dialects.linalg.opdsl.lang.comprehension.TensorUse, TensorUseConfig]¶
- reduction_dims¶
- assignments¶
- property ordered_operands: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[OperandDefConfig]¶
- property ordered_dims: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[mlir.dialects.linalg.opdsl.lang.comprehension.Tuple[str, int]]¶
Gets the ordered list of dim bindings (symbolic name, position).
TODO: The original parser relies on parse ordering to arrive at the iterator types, but that ordering is not defined on the Python side, so this may be ambiguous.
- property indexing_maps: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[mlir.ir.AffineMap]¶
- property iterator_types: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[str]¶
- add_operand(operand_def: mlir.dialects.linalg.opdsl.lang.comprehension.OperandDef)¶
- add_indexed_operand(operand_def: mlir.dialects.linalg.opdsl.lang.comprehension.OperandDef)¶
- add_tensor_use(tensor_use: mlir.dialects.linalg.opdsl.lang.comprehension.TensorUse)¶
- _get_scalar_map() mlir.ir.AffineMap¶
Create an empty affine map used to index a scalar.
- _normalize_affine_map(affine_map: mlir.ir.AffineMap, with_dims: bool = True) mlir.ir.AffineMap¶
Normalizes an indexing map to have the max known symbols and dims.
- to_yaml_custom_dict()¶
- __repr__()¶
- class mlir.dialects.linalg.LinalgOpConfig(metadata: mlir.dialects.linalg.opdsl.lang.comprehension.OpMetadataDef, *, structured_op: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[LinalgStructuredOpConfig] = None)¶
Bases:
mlir.dialects.linalg.opdsl.lang.yaml_helper.YAMLObjectContainer for any supported linalg op type.
This includes the concrete type by name for ease of parsing by systems that ignore tags.
- yaml_tag = '!LinalgOpConfig'¶
- metadata¶
- structured_op = None¶
- to_yaml_custom_dict()¶
- static from_linalg_op_def(op_def: mlir.dialects.linalg.opdsl.lang.comprehension.LinalgOpDef, context: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.ir.Context] = None) mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[LinalgOpConfig]¶
Expands a LinalgOpDef into corresponding Linalg configured ops.
- __repr__()¶
- class mlir.dialects.linalg.OperandDefConfig(operand_def: mlir.dialects.linalg.opdsl.lang.comprehension.OperandDef, shape_map: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.ir.AffineMap] = None, index_attr_map: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.ir.AffineMap] = None)¶
Bases:
mlir.dialects.linalg.opdsl.lang.yaml_helper.YAMLObjectWrapper containing an operand definition with additional state.
- yaml_tag = '!LinalgOperandDefConfig'¶
- operand_def¶
- shape_map: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.ir.AffineMap] = None¶
- index_attr_map: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.ir.AffineMap] = None¶
- indexing_map: mlir.dialects.linalg.opdsl.lang.comprehension.Optional[mlir.ir.AffineMap] = None¶
- property name: str¶
- property kind: mlir.dialects.linalg.opdsl.lang.comprehension.OperandKind¶
- property type_var: mlir.dialects.linalg.opdsl.lang.comprehension.TypeVar¶
- to_yaml_custom_dict()¶
- __repr__()¶
- mlir.dialects.linalg.emit_generic_structured_op(op_config: mlir.dialects.linalg.opdsl.lang.config.LinalgStructuredOpConfig, *ins: Value, outs: ValueList, **attrs: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[int])¶
- mlir.dialects.linalg.emit_named_structured_op(op_config: mlir.dialects.linalg.opdsl.lang.config.LinalgStructuredOpConfig, op_name: str, op_class_name: str, *ins: Value, outs: ValueList, **attrs: mlir.dialects.linalg.opdsl.lang.comprehension.Sequence[int])¶
- mlir.dialects.linalg.ValueList¶
- mlir.dialects.linalg.loc_tracebacks(*, max_depth: int | None = None) collections.abc.Iterable[None]¶
Enables automatic traceback-based locations for MLIR operations.
Operations created within this context will have their location automatically set based on the Python call stack.
- Parameters:
max_depth – Maximum number of frames to include in the location. If None, the default limit is used.
- mlir.dialects.linalg.register_attribute_builder(kind, replace=False)¶
- mlir.dialects.linalg._affineMapAttr(x, context)¶
- mlir.dialects.linalg._integerSetAttr(x, context)¶
- mlir.dialects.linalg._boolAttr(x, context)¶
- mlir.dialects.linalg._dictAttr(x, context)¶
- mlir.dialects.linalg._indexAttr(x, context)¶
- mlir.dialects.linalg._i1Attr(x, context)¶
- mlir.dialects.linalg._i8Attr(x, context)¶
- mlir.dialects.linalg._i16Attr(x, context)¶
- mlir.dialects.linalg._i32Attr(x, context)¶
- mlir.dialects.linalg._i64Attr(x, context)¶
- mlir.dialects.linalg._si1Attr(x, context)¶
- mlir.dialects.linalg._si8Attr(x, context)¶
- mlir.dialects.linalg._si16Attr(x, context)¶
- mlir.dialects.linalg._si32Attr(x, context)¶
- mlir.dialects.linalg._si64Attr(x, context)¶
- mlir.dialects.linalg._ui1Attr(x, context)¶
- mlir.dialects.linalg._ui8Attr(x, context)¶
- mlir.dialects.linalg._ui16Attr(x, context)¶
- mlir.dialects.linalg._ui32Attr(x, context)¶
- mlir.dialects.linalg._ui64Attr(x, context)¶
- mlir.dialects.linalg._f32Attr(x, context)¶
- mlir.dialects.linalg._f64Attr(x, context)¶
- mlir.dialects.linalg._stringAttr(x, context)¶
- mlir.dialects.linalg._symbolNameAttr(x, context)¶
- mlir.dialects.linalg._symbolRefAttr(x, context)¶
- mlir.dialects.linalg._flatSymbolRefAttr(x, context)¶
- mlir.dialects.linalg._unitAttr(x, context)¶
- mlir.dialects.linalg._arrayAttr(x, context)¶
- mlir.dialects.linalg._affineMapArrayAttr(x, context)¶
- mlir.dialects.linalg._boolArrayAttr(x, context)¶
- mlir.dialects.linalg._dictArrayAttr(x, context)¶
- mlir.dialects.linalg._flatSymbolRefArrayAttr(x, context)¶
- mlir.dialects.linalg._i32ArrayAttr(x, context)¶
- mlir.dialects.linalg._i64ArrayAttr(x, context)¶
- mlir.dialects.linalg._i64SmallVectorArrayAttr(x, context)¶
- mlir.dialects.linalg._indexListArrayAttr(x, context)¶
- mlir.dialects.linalg._f32ArrayAttr(x, context)¶
- mlir.dialects.linalg._f64ArrayAttr(x, context)¶
- mlir.dialects.linalg._strArrayAttr(x, context)¶
- mlir.dialects.linalg._symbolRefArrayAttr(x, context)¶
- mlir.dialects.linalg._denseF32ArrayAttr(x, context)¶
- mlir.dialects.linalg._denseF64ArrayAttr(x, context)¶
- mlir.dialects.linalg._denseI8ArrayAttr(x, context)¶
- mlir.dialects.linalg._denseI16ArrayAttr(x, context)¶
- mlir.dialects.linalg._denseI32ArrayAttr(x, context)¶
- mlir.dialects.linalg._denseI64ArrayAttr(x, context)¶
- mlir.dialects.linalg._denseBoolArrayAttr(x, context)¶
- mlir.dialects.linalg._typeAttr(x, context)¶
- mlir.dialects.linalg._typeArrayAttr(x, context)¶
- mlir.dialects.linalg._memref_type_attr(x, context)¶
- mlir.dialects.linalg._f64ElementsAttr(x, context)¶
- mlir.dialects.linalg._get_op_result_or_value(arg: mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation | mlir._mlir_libs._mlir.ir.Value | mlir._mlir_libs._mlir.ir.OpResultList) mlir._mlir_libs._mlir.ir.Value¶
Returns the given value or the single result of the given op.
This is useful to implement op constructors so that they can take other ops as arguments instead of requiring the caller to extract results for every op. Raises ValueError if provided with an op that doesn’t have a single result.
- mlir.dialects.linalg._get_op_result_or_op_results(op: mlir._mlir_libs._mlir.ir.OpView | mlir._mlir_libs._mlir.ir.Operation) mlir._mlir_libs._mlir.ir.Operation | mlir._mlir_libs._mlir.ir.OpResult | Sequence[mlir._mlir_libs._mlir.ir.OpResult]¶
- mlir.dialects.linalg._dispatch_mixed_values(values: MixedValues) Tuple[List[mlir.ir.Value], mlir.ir.Operation | mlir.ir.Value | mlir.ir.OpView, mlir.ir.DenseI64ArrayAttr]¶
- mlir.dialects.linalg.region_op(op_constructor, terminator=None)¶
Decorator to define an MLIR Op specified as a python function.
Requires that an
mlir.ir.InsertionPointandmlir.ir.Locationare active for the current thread (i.e. established in awithblock).Supports “naked” usage i.e., no parens if no args need to be passed to the Op constructor.
When applied as a decorator to a Python function, an entry block will be constructed for the Op with types as specified as type hints on the args of the function. The block arguments will be passed positionally to the Python function.
If a terminator is specified then the return from the decorated function will be passed to the terminator as the last statement in the entry block. Note, the API for the terminator is a (possibly empty) list; terminator accepting single values should be wrapped in a
lambda args: term(args[0])The identifier (name) of the function will become:
A single value result if the Op returns a single value;
An OpResultList (as a list) if the Op returns multiple values;
The Operation if the Op returns no results.
See examples in tensor.py and transform.extras.
- mlir.dialects.linalg.transpose(input: opdsl.ops.core_named_ops.Union[Operation, OpView, opdsl.ops.core_named_ops.Sequence[Value]], *, outs: opdsl.ops.core_named_ops.List[opdsl.ops.core_named_ops.Union[Operation, OpView, opdsl.ops.core_named_ops.Sequence[Value]]], permutation: opdsl.ops.core_named_ops.Union[DenseI64ArrayAttr, opdsl.ops.core_named_ops.List[int]])¶
- mlir.dialects.linalg.broadcast(input: opdsl.ops.core_named_ops.Union[Operation, OpView, opdsl.ops.core_named_ops.Sequence[Value]], *, outs: opdsl.ops.core_named_ops.List[opdsl.ops.core_named_ops.Union[Operation, OpView, opdsl.ops.core_named_ops.Sequence[Value]]], dimensions: opdsl.ops.core_named_ops.Union[DenseI64ArrayAttr, opdsl.ops.core_named_ops.List[int]])¶
- mlir.dialects.linalg._IteratorTypeArrayAttr(x, context)¶
- class mlir.dialects.linalg.GenericOp_(inputs, outputs, indexing_maps, iterator_types, *, doc=None, library_call=None, loc=None, ip=None)¶
Bases:
mlir.dialects._linalg_ops_gen.GenericOpGeneric Linalg op form where the key properties of the computation are specified as attributes. In pretty form, a
linalg.genericop is written as:linalg.generic #trait_attribute ins(%A, %B : memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>) outs(%C : memref<?x?xf32, stride_specification>) attrs = {other-optional-attributes} {region}
Where #trait_attributes is an alias of a dictionary attribute containing:
doc [optional]: a documentation string
indexing_maps: a list of AffineMapAttr, one AffineMapAttr per each input
and output view. Such AffineMapAttr specifies the mapping between the loops and the indexing within each view. * library_call [optional]: a StringAttr containing the name of an external library function that the linalg.generic operation maps to. The external library is assumed to be dynamically linked and no strong compile-time guarantees are provided. In the absence of such a library call, linalg.generic will always lower to loops. * iterator_types: an ArrayAttr specifying the type of the enclosing loops. Each element of the list represents and iterator of one of the following types: parallel, reduction, window
Example: Defining a #matmul_trait attribute in MLIR can be done as follows:
#matmul_accesses = [ (m, n, k) -> (m, k), (m, n, k) -> (k, n), (m, n, k) -> (m, n) ] #matmul_trait = { doc = "C(m, n) += A(m, k) * B(k, n)", indexing_maps = #matmul_accesses, library_call = "linalg_matmul", iterator_types = ["parallel", "parallel", "reduction"] }
And can be reused in multiple places as:
linalg.generic #matmul_trait ins(%A, %B : memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>) outs(%C : memref<?x?xf32, stride_specification>) {other-optional-attributes} { ^bb0(%a: f32, %b: f32, %c: f32) : %d = arith.mulf %a, %b: f32 %e = arith.addf %c, %d: f32 linalg.yield %e : f32 }
This may lower to either:
call @linalg_matmul(%A, %B, %C) : (memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>) -> ()
or IR resembling:
scf.for %m = %c0 to %M step %c1 { scf.for %n = %c0 to %N step %c1 { scf.for %k = %c0 to %K step %c1 { %a = load %A[%m, %k] : memref<?x?xf32, stride_specification> %b = load %B[%k, %n] : memref<?x?xf32, stride_specification> %c = load %C[%m, %n] : memref<?x?xf32, stride_specification> %d = arith.mulf %a, %b: f32 %e = arith.addf %c, %d: f32 store %e, %C[%m, %n] : memref<?x?x?xf32, stride_specification> } } }
- mlir.dialects.linalg.generic¶
- mlir.dialects.linalg._create_matmul_like_op(op_type, *ins: opdsl.ops.core_named_ops.Union[Operation, OpView, Value], outs: opdsl.ops.core_named_ops.Sequence[opdsl.ops.core_named_ops.Union[Operation, OpView, Value]], indexing_maps: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Sequence[AffineMapAttr]] = None, cast: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Union[opdsl.ops.core_named_ops.TypeFn, Attribute]] = None)¶
- mlir.dialects.linalg.matmul(*ins: opdsl.ops.core_named_ops.Union[Operation, OpView, Value], outs: opdsl.ops.core_named_ops.Sequence[opdsl.ops.core_named_ops.Union[Operation, OpView, Value]], indexing_maps: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Sequence[AffineMapAttr]] = None, cast: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Union[opdsl.ops.core_named_ops.TypeFn, Attribute]] = None)¶
- mlir.dialects.linalg.batch_matmul(*ins: opdsl.ops.core_named_ops.Union[Operation, OpView, Value], outs: opdsl.ops.core_named_ops.Sequence[opdsl.ops.core_named_ops.Union[Operation, OpView, Value]], indexing_maps: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Sequence[AffineMapAttr]] = None, cast: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Union[opdsl.ops.core_named_ops.TypeFn, Attribute]] = None)¶
- mlir.dialects.linalg.batch_reduce_matmul(*ins: opdsl.ops.core_named_ops.Union[Operation, OpView, Value], outs: opdsl.ops.core_named_ops.Sequence[opdsl.ops.core_named_ops.Union[Operation, OpView, Value]], indexing_maps: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Sequence[AffineMapAttr]] = None, cast: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Union[opdsl.ops.core_named_ops.TypeFn, Attribute]] = None)¶
- mlir.dialects.linalg.contract(*ins: opdsl.ops.core_named_ops.Union[Operation, OpView, Value], outs: opdsl.ops.core_named_ops.Sequence[opdsl.ops.core_named_ops.Union[Operation, OpView, Value]], indexing_maps: opdsl.ops.core_named_ops.Sequence[AffineMapAttr], cast: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Union[opdsl.ops.core_named_ops.TypeFn, Attribute]] = None)¶
- class mlir.dialects.linalg.ElementwiseOp_(result_tensors, inputs, outputs, kind, *, indexing_maps=None, loc=None, ip=None)¶
Bases:
mlir.dialects._linalg_ops_gen.ElementwiseOpThe attribute
kinddescribes arithmetic operation to perform. The operation kind can be unary (e.g. max), binary (e.g. add) or ternary (e.g. select).By default, all indexing maps are identities. In the case of default indexing map, all input and output shapes must match. The number of dims in each of the identity maps is equal to the rank of the output type.
Affine-maps for operands and result are required to be provided by the user when a transpose and/or broadcast is needed on any operand. When a map is not provided, default identity maps are inferred for each operand.
Iterator-types are always all
parallel. Iterator-types are needed for constructing the underlying structured op.The number of dims of the iterator-types are inferred from the rank of the result type.
Example:
Defining a unary linalg.elementwise with default indexing-map:
%exp = linalg.elementwise kind=#linalg.elementwise_kind<exp> ins(%x : tensor<4x16x8xf32>) outs(%y: tensor<4x16x8xf32>) -> tensor<4x16x8xf32>
Defining a binary linalg.elementwise with user-defined indexing-map:
%add = linalg.elementwise kind=#linalg.elementwise_kind<add> indexing_maps = [#transpose, #broadcast, #identity] ins(%exp, %arg1 : tensor<4x16x8xf32>, tensor<4x16xf32>) outs(%arg2: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
- mlir.dialects.linalg.ElementwiseOp¶
- mlir.dialects.linalg.elementwise(*ins: opdsl.ops.core_named_ops.Union[Operation, OpView, Value], outs: opdsl.ops.core_named_ops.Sequence[opdsl.ops.core_named_ops.Union[Operation, OpView, Value]], kind: opdsl.ops.core_named_ops.Union[mlir.dialects._linalg_enum_gen.ElementwiseKind, Attribute], indexing_maps: opdsl.ops.core_named_ops.Optional[opdsl.ops.core_named_ops.Sequence[AffineMapAttr]] = None)¶
- mlir.dialects.linalg.pack(source, dest, inner_dims_pos, inner_tiles, *, padding_value=None, outer_dims_perm=None, loc=None, ip=None) opdsl.ops.core_named_ops.ir.Value¶
- mlir.dialects.linalg.unpack(source, dest, inner_dims_pos, inner_tiles, *, outer_dims_perm=None, loc=None, ip=None) opdsl.ops.core_named_ops.ir.Value¶
- mlir.dialects.linalg.reduce¶
- mlir.dialects.linalg.map¶