mlir.dialects.linalg.opdsl.lang.comprehension

Model classes representing a tensor comprehension.

These classes model the language more at an AST level as evaluated. Reasoning about it typically involves processing this form into config objects that represent actual op definitions (i.e. YAML).

Attributes

Classes

TensorExpression

An expression that can appear on the RHS of a comprehension.

TensorUse

A used tensor represented by its (tensor_name, indices).

TensorFn

Application of a tensor function.

TensorReduceFn

Application of a reduction function.

const

Returns the given constant floating point or integer value.

index

Returns the iteration index for a given dimension name.

FunctionKind

Generic enumeration.

UnaryFnType

Unary function.

UnaryFn

Unary function namespace.

BinaryFnType

Binary function.

BinaryFn

Binary function namespace.

TernaryFnType

Ternary function.

TernaryFn

Ternary function namespace.

TypeFnType

Type conversion function.

TypeFn

Type conversion function namespace.

ReduceFnUse

Reduction function use.

ReduceFnType

Reduction function.

ReduceFn

OperandKind

Generic enumeration.

OperandDef

Definition of an operand passed to an operation.

TensorDef

Tensor operand definition.

ScalarDef

Scalar operand definition.

IndexAttrDef

Index attribute definition.

UnaryFnAttrDef

Unary function attribute definition.

BinaryFnAttrDef

Binary function attribute definition.

TernaryFnAttrDef

Ternary function attribute definition.

TypeFnAttrDef

Type conversion function attribute definition.

Comprehension

Represents a single comprehension.

OpInterfaceDef

An interface that an op implements.

OpDefinitionDef

A method that an op implements.

OpMetadataDef

Metadata about the op (generally not behavior impacting).

LinalgOpDef

Definition of a linalg op.

Module Contents

class mlir.dialects.linalg.opdsl.lang.comprehension.TensorExpression

An expression that can appear on the RHS of a comprehension.

abstract to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression
visit_tensor_exprs(callback: mlir.dialects.linalg.opdsl.lang.scalar_expr.Callable[[TensorExpression], None])

Visits all tensor expression reachable by the expression.

collect_dim_uses(uses: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef])

Collects all DimDefs reachable through this expression.

collect_tensor_uses(uses: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[TensorUse])

Collects all TensorUses reachable through this expression.

collect_indices(indices: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[index])

Collects all index accesses reachable through this expression.

collect_scalar_uses(uses: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[ScalarDef])

Collects all ScalarDefs reachable through this expression.

__add__(rhs: TensorExpression) TensorExpression
__mul__(rhs) TensorExpression
__sub__(rhs) TensorExpression
__truediv__(rhs) TensorExpression
__hash__()
class mlir.dialects.linalg.opdsl.lang.comprehension.TensorUse(operand_def: OperandDef, indices: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef])

Bases: TensorExpression

A used tensor represented by its (tensor_name, indices).

Note that forming a comprehension via direct assignment is performed through setitem on the TensorDef level. However, performing a reduction with compound ops (+=, =, etc) is done by doing a: TensorDef.**getitem* TensorUse.**iadd** TensorDef.**setitem**

operand_def
indices
to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression
property tensor_name: str
_compute_reduce_dims(rhs: TensorExpression) mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]
__iadd__(rhs: TensorExpression) TensorReduceFn
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.TensorFn(kind: FunctionKind, name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str], operand_def: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[OperandDef], type_var: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.types.TypeVar], args: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[TensorExpression])

Bases: TensorExpression

Application of a tensor function.

name
kind
operand_def
type_var
args
to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression
visit_tensor_exprs(callback: mlir.dialects.linalg.opdsl.lang.scalar_expr.Callable[[TensorExpression], None])

Visits all tensor expression reachable by the expression.

__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.TensorReduceFn(reduce_use: ReduceFnUse, args: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[TensorExpression])

Bases: TensorExpression

Application of a reduction function.

This captures the lhs (initial value) separately from the rhs.

reduce_use
lhs: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[TensorUse] = None
args
to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression
visit_tensor_exprs(callback: mlir.dialects.linalg.opdsl.lang.scalar_expr.Callable[[TensorExpression], None])

Visits all tensor expression reachable by the expression.

__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.const(value: mlir.dialects.linalg.opdsl.lang.scalar_expr.Any)

Bases: TensorExpression

Returns the given constant floating point or integer value.

to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.index(dim: mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef)

Bases: TensorExpression

Returns the iteration index for a given dimension name.

Resolves the given dimension name to obtain its position in the iteration domain of the operation.

dim_def
dim = -1
resolve_dimension_name(affine_state: mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineBuildState)
to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.FunctionKind

Bases: mlir.dialects.linalg.opdsl.lang.types.Enum

Generic enumeration.

Derive from this class to define new enumerations.

UNARY = 0
BINARY = 1
TERNARY = 2
TYPE = 3
class mlir.dialects.linalg.opdsl.lang.comprehension.UnaryFnType(fn_name: str)

Unary function.

A unary function takes one tensor expression and returns the function evaluation result.

fn_name
__call__(arg: TensorExpression) TensorFn
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.UnaryFn

Unary function namespace.

exp
log
abs
ceil
floor
negf
reciprocal
round
sqrt
rsqrt
square
tanh
erf
class mlir.dialects.linalg.opdsl.lang.comprehension.BinaryFnType(fn_name: str)

Binary function.

A binary function takes two tensor expressions and returns the function evaluation result.

fn_name
__call__(arg0: TensorExpression, arg1: TensorExpression) TensorFn
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.BinaryFn

Binary function namespace.

As the integer types are signless, signedness is implement by different functions that treat integers as signed or unsigned values.

Examples:

  • max -> arith.MaxSIOp

  • max_unsigned -> arith.MaxUIOp

add
sub
mul
div
div_unsigned
max_signed
min_signed
max_unsigned
min_unsigned
powf
class mlir.dialects.linalg.opdsl.lang.comprehension.TernaryFnType(fn_name: str)

Ternary function.

A ternary function takes three tensor expressions and returns the function evaluation result.

fn_name
__call__(arg0: TensorExpression, arg1: TensorExpression, arg2: TensorExpression) TensorFn
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.TernaryFn

Ternary function namespace.

select
class mlir.dialects.linalg.opdsl.lang.comprehension.TypeFnType(fn_name: str)

Type conversion function.

A type conversion function takes a target type and a tensor expression and returns the casted tensor expression.

fn_name
__call__(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar, arg: TensorExpression) TensorFn
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.TypeFn

Type conversion function namespace.

As the integer types are signless, signedness is implement by different cast functions that treat integers as signed (cast_signed) or unsigned (cast_unsigned) values.

Examples:

  • cast_signed(I32 -> I64) -> arith.ExtSIOp

  • cast_unsigned(I32 -> I64) -> arith.ExtUIOp

cast_signed
cast_unsigned
class mlir.dialects.linalg.opdsl.lang.comprehension.ReduceFnUse(binary_fn: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[BinaryFnType], binary_attr: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[BinaryFnAttrDef], *reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef)

Reduction function use.

A reduction use specifies the reduction function and dimensions.

binary_fn
binary_attr
reduce_dims = ()
__call__(*args: TensorExpression) TensorReduceFn
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.ReduceFnType(binary_fn: BinaryFnType)

Reduction function.

A binary function that reduces its RHS into its LHS.

binary_fn
__getitem__(reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]) ReduceFnUse
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.ReduceFn
add
mul
max_signed
min_signed
max_unsigned
min_unsigned
class mlir.dialects.linalg.opdsl.lang.comprehension.OperandKind

Bases: mlir.dialects.linalg.opdsl.lang.types.Enum

Generic enumeration.

Derive from this class to define new enumerations.

INPUT_TENSOR = 0
SCALAR = 1
OUTPUT_TENSOR = 2
INDEX_ATTR = 3
UNARY_FN_ATTR = 4
BINARY_FN_ATTR = 5
TERNARY_FN_ATTR = 6
TYPE_FN_ATTR = 7
class mlir.dialects.linalg.opdsl.lang.comprehension.OperandDef(kind: OperandKind, type_var: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.types.TypeVar] = None, size_exprs: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef]] = None, index_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]] = None, default_indices: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[int]] = None, default_fn: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None)

Definition of an operand passed to an operation.

Keep the meta information of Tensor, Scalar, and Attribute operands and provide the shared registration functionality.

owner: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[LinalgOpDef] = None
type_var = None
size_exprs = None
index_dims = None
default_indices = None
default_fn = None
kind
name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None
registered_index: int = -1
attach(index: int, name: str, owner: LinalgOpDef)
is_input() bool
is_tensor() bool
is_attribute() bool
__hash__()
__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.TensorDef(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar, *shape: mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef, index_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]] = None, output: bool = False)

Tensor operand definition.

Tensor operands are indexed using the associated indexing_map when forwarded to the body of the structured op. A unique name identifies the tensor operands and an index determines their position in the operation’s parameter list. A tensor definition takes type, a shape, and an optional flag to mark output tensors. Additionally, a tuple of index dimensions may be used to map the tensor to the loop dimensions of the operation. This mapping is needed to compute the indexing map of shape-only tensors that have no uses.

operand_def
__getitem__(dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef]) TensorUse
__setitem__(dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[mlir.dialects.linalg.opdsl.lang.scalar_expr.AffineExprDef], value: TensorExpression)

Creates a new 1:1 comprehension by binding this tensor to an expression.

Note that due to the way assignment works in Python, we have to capture direct assignment as a setitem on the TensorDef.

class mlir.dialects.linalg.opdsl.lang.comprehension.ScalarDef(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar)

Bases: TensorExpression

Scalar operand definition.

Scalar operands are forwarded to the body of the structured op as they are. A unique name identifies the scalars and an index determines their position in the operation’s parameter list.

operand_def
property scalar_name: str
to_scalar_expression() mlir.dialects.linalg.opdsl.lang.scalar_expr.ScalarExpression
class mlir.dialects.linalg.opdsl.lang.comprehension.IndexAttrDef(*sizes: mlir.dialects.linalg.opdsl.lang.scalar_expr.SymbolDef, default: mlir.dialects.linalg.opdsl.lang.scalar_expr.Sequence[int])

Index attribute definition.

Index attributes provide a way to define and set symbols that can be used in indexing expressions. Every attribute specifies a tuple of symbols that at compile-time are replaced by integer values as well as their default values.

operand_def
class mlir.dialects.linalg.opdsl.lang.comprehension.UnaryFnAttrDef(default: UnaryFnType)

Unary function attribute definition.

Unary function attributes provide a way to make the arithmetic computation parametrizable. Every attribute specifies a default unary function that may be overwritten at operation instantiation time.

operand_def
__call__(arg: TensorExpression) TensorFn
class mlir.dialects.linalg.opdsl.lang.comprehension.BinaryFnAttrDef(default: BinaryFnType)

Binary function attribute definition.

Binary function attributes provide a way to make the arithmetic computation parametrizable. Every attribute specifies a default binary function that may be overwritten at operation instantiation time.

operand_def
__call__(arg0: TensorExpression, arg1: TensorExpression) TensorFn
__getitem__(reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]) ReduceFnUse
class mlir.dialects.linalg.opdsl.lang.comprehension.TernaryFnAttrDef(default: TernaryFnType)

Ternary function attribute definition.

Ternary function attributes provide a way to make the arithmetic computation parametrizable. Every attribute specifies a default Ternary function that may be overwritten at operation instantiation time.

operand_def
__call__(arg0: TensorExpression, arg1: TensorExpression) TensorFn
__getitem__(reduce_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef]) ReduceFnUse
class mlir.dialects.linalg.opdsl.lang.comprehension.TypeFnAttrDef(default: TypeFnType)

Type conversion function attribute definition.

Type conversion function attributes provide a way to make type conversions parameterizable. Every attribute specifies a default type conversion function that may be overwritten at operation instantiation time.

operand_def
__call__(type_var: mlir.dialects.linalg.opdsl.lang.types.TypeVar, arg: TensorExpression) TensorFn
class mlir.dialects.linalg.opdsl.lang.comprehension.Comprehension(*bindings: mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[TensorUse, TensorExpression])

Represents a single comprehension.

definitions = []
values = []
property all_reduction_dims: mlir.dialects.linalg.opdsl.lang.scalar_expr.Set[mlir.dialects.linalg.opdsl.lang.scalar_expr.Tuple[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef, Ellipsis]]

Gets the reduction dims for the comprehension or None.

__repr__()
class mlir.dialects.linalg.opdsl.lang.comprehension.OpInterfaceDef(cpp_name: str)

An interface that an op implements.

cpp_name
mlir.dialects.linalg.opdsl.lang.comprehension.ContractionOpInterface
mlir.dialects.linalg.opdsl.lang.comprehension.ConvolutionOpInterface
mlir.dialects.linalg.opdsl.lang.comprehension.FillOpInterface
class mlir.dialects.linalg.opdsl.lang.comprehension.OpDefinitionDef(def_name: str)

A method that an op implements.

def_name
mlir.dialects.linalg.opdsl.lang.comprehension.Canonicalizer
class mlir.dialects.linalg.opdsl.lang.comprehension.OpMetadataDef(name: str, cpp_class_name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str], doc: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str])

Bases: mlir.dialects.linalg.opdsl.lang.yaml_helper.YAMLObject

Metadata about the op (generally not behavior impacting).

yaml_tag = '!LinalgOpMetadata'
name
cpp_class_name
doc
implements: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[OpInterfaceDef] = []
defines: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[OpDefinitionsDef] = []
to_yaml_custom_dict()
class mlir.dialects.linalg.opdsl.lang.comprehension.LinalgOpDef(name: str, cpp_class_name: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None, doc: mlir.dialects.linalg.opdsl.lang.scalar_expr.Optional[str] = None)

Definition of a linalg op.

metadata
registered_operands: mlir.dialects.linalg.opdsl.lang.types.Dict[str, OperandDef]
domain: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[mlir.dialects.linalg.opdsl.lang.scalar_expr.DimDef] = []
comprehensions: mlir.dialects.linalg.opdsl.lang.scalar_expr.List[Comprehension] = []
_affine_state
add_operand(name: str, operand: OperandDef)

Registers an operand.

__repr__()