'polynomial' Dialect
The Polynomial dialect defines single-variable polynomial types and operations.
The simplest use of polynomial
is to represent mathematical operations in
a polynomial ring R[x]
, where R
is another MLIR type like i32
.
More generally, this dialect supports representing polynomial operations in a
quotient ring R[X]/(f(x))
for some statically fixed polynomial f(x)
.
Two polyomials p(x), q(x)
are considered equal in this ring if they have the
same remainder when dividing by f(x)
. When a modulus is given, ring operations
are performed with reductions modulo f(x)
and relative to the coefficient ring
R
.
Examples:
// A constant polynomial in a ring with i32 coefficients and no polynomial modulus
#ring = #polynomial.ring<coefficientType=i32>
%a = polynomial.constant <1 + x**2 - 3x**3> : polynomial.polynomial<#ring>
// A constant polynomial in a ring with i32 coefficients, modulo (x^1024 + 1)
#modulus = #polynomial.int_polynomial<1 + x**1024>
#ring = #polynomial.ring<coefficientType=i32, polynomialModulus=#modulus>
%a = polynomial.constant <1 + x**2 - 3x**3> : polynomial.polynomial<#ring>
// A constant polynomial in a ring with i32 coefficients, with a polynomial
// modulus of (x^1024 + 1) and a coefficient modulus of 17.
#modulus = #polynomial.int_polynomial<1 + x**1024>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=17:i32, polynomialModulus=#modulus>
%a = polynomial.constant <1 + x**2 - 3x**3> : polynomial.polynomial<#ring>
Operations ¶
polynomial.add
(polynomial::AddOp) ¶
Addition operation between polynomials.
Syntax:
operation ::= `polynomial.add` operands attr-dict `:` type($result)
Performs polynomial addition on the operands. The operands may be single polynomials or containers of identically-typed polynomials, i.e., polynomials from the same underlying ring with the same coefficient types.
Addition is defined to occur in the ring defined by the ring attribute of the two operands, meaning the addition is taken modulo the coefficientModulus and the polynomialModulus of the ring.
Example:
// add two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant int<x**5 - x + 1> : !polynomial.polynomial<#ring>
%2 = polynomial.add %0, %1 : !polynomial.polynomial<#ring>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
lhs | polynomial-like |
rhs | polynomial-like |
Results: ¶
Result | Description |
---|---|
result | polynomial-like |
polynomial.constant
(polynomial::ConstantOp) ¶
Define a constant polynomial via an attribute.
Example:
!int_poly_ty = !polynomial.polynomial<ring=<coefficientType=i32>>
%0 = polynomial.constant int<1 + x**2> : !int_poly_ty
!float_poly_ty = !polynomial.polynomial<ring=<coefficientType=f32>>
%1 = polynomial.constant float<0.5 + 1.3e06 x**2> : !float_poly_ty
Traits: AlwaysSpeculatableImplTrait
, InferTypeOpAdaptor
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes: ¶
Attribute | MLIR Type | Description |
---|---|---|
value | ::mlir::Attribute | a typed float_polynomial or a typed int_polynomial |
Results: ¶
Result | Description |
---|---|
output | An element of a polynomial ring. |
polynomial.from_tensor
(polynomial::FromTensorOp) ¶
Creates a polynomial from integer coefficients stored in a tensor.
Syntax:
operation ::= `polynomial.from_tensor` $input attr-dict `:` type($input) `->` type($output)
polynomial.from_tensor
creates a polynomial value from a tensor of coefficients.
The input tensor must list the coefficients in degree-increasing order.
The input one-dimensional tensor may have size at most the degree of the ring’s polynomialModulus generator polynomial, with smaller dimension implying that all higher-degree terms have coefficient zero.
Example:
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%two = arith.constant 2 : i32
%five = arith.constant 5 : i32
%coeffs = tensor.from_elements %two, %two, %five : tensor<3xi32>
%poly = polynomial.from_tensor %coeffs : tensor<3xi32> -> !polynomial.polynomial<#ring>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
input | ranked tensor of integer values |
Results: ¶
Result | Description |
---|---|
output | An element of a polynomial ring. |
polynomial.intt
(polynomial::INTTOp) ¶
Computes the reverse integer Number Theoretic Transform (NTT).
Syntax:
operation ::= `polynomial.intt` $input attr-dict `:` qualified(type($input)) `->` type($output)
polynomial.intt
computes the reverse integer Number Theoretic Transform
(INTT) on the input tensor. This is the inverse operation of the
polynomial.ntt
operation.
The input tensor is interpreted as a point-value representation of the
output polynomial at powers of a primitive n
-th root of unity (see
polynomial.ntt
). The ring of the polynomial is taken from the required
encoding attribute of the tensor.
The choice of primitive root may be optionally specified.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes: ¶
Attribute | MLIR Type | Description |
---|---|---|
root | ::mlir::polynomial::PrimitiveRootAttr | an attribute containing an integer and its degree as a root of unity
|
Operands: ¶
Operand | Description |
---|---|
input | ranked tensor of integer values |
Results: ¶
Result | Description |
---|---|
output | An element of a polynomial ring. |
polynomial.leading_term
(polynomial::LeadingTermOp) ¶
Compute the leading term of the polynomial.
Syntax:
operation ::= `polynomial.leading_term` operands attr-dict `:` type($input) `->` `(` type($degree) `,` type($coefficient) `)`
The degree of a polynomial is the largest $k$ for which the coefficient
a_k
of x^k
is nonzero. The leading term is the term a_k * x^k
, which
this op represents as a pair of results. The first is the degree k
as an
index, and the second is the coefficient, whose type matches the
coefficient type of the polynomial’s ring attribute.
Example:
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<#ring>
%1, %2 = polynomial.leading_term %0 : !polynomial.polynomial<#ring> -> (index, i32)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
input | An element of a polynomial ring. |
Results: ¶
Result | Description |
---|---|
degree | index |
coefficient | integer |
polynomial.monic_monomial_mul
(polynomial::MonicMonomialMulOp) ¶
Multiply a polynomial by a monic monomial.
Syntax:
operation ::= `polynomial.monic_monomial_mul` operands attr-dict `:` functional-type(operands, results)
Multiply a polynomial by a monic monomial, meaning a polynomial of the form
1 * x^k
for an index operand k
.
In some special rings of polynomials, such as a ring of polynomials
modulo x^n - 1
, monomial_mul
can be interpreted as a cyclic shift of
the coefficients of the polynomial. For some rings, this results in
optimized lowerings that involve rotations and rescaling of the
coefficients of the input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
input | polynomial-like |
monomialDegree | index |
Results: ¶
Result | Description |
---|---|
output | polynomial-like |
polynomial.monomial
(polynomial::MonomialOp) ¶
Create a polynomial that consists of a single monomial.
Syntax:
operation ::= `polynomial.monomial` operands attr-dict `:` functional-type(operands, results)
Construct a polynomial that consists of a single monomial term, from its degree and coefficient as dynamic inputs.
The coefficient type of the output polynomial’s ring attribute must match
the coefficient
input type.
Example:
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%deg = arith.constant 1023 : index
%five = arith.constant 5 : i32
%0 = polynomial.monomial %five, %deg : (i32, index) -> !polynomial.polynomial<#ring>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
coefficient | integer |
degree | index |
Results: ¶
Result | Description |
---|---|
output | An element of a polynomial ring. |
polynomial.mul
(polynomial::MulOp) ¶
Multiplication operation between polynomials.
Syntax:
operation ::= `polynomial.mul` operands attr-dict `:` type($result)
Performs polynomial multiplication on the operands. The operands may be single polynomials or containers of identically-typed polynomials, i.e., polynomials from the same underlying ring with the same coefficient types.
Multiplication is defined to occur in the ring defined by the ring attribute of the two operands, meaning the multiplication is taken modulo the coefficientModulus and the polynomialModulus of the ring.
Example:
// multiply two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant int<x**5 - x + 1> : !polynomial.polynomial<#ring>
%2 = polynomial.mul %0, %1 : !polynomial.polynomial<#ring>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
lhs | polynomial-like |
rhs | polynomial-like |
Results: ¶
Result | Description |
---|---|
result | polynomial-like |
polynomial.mul_scalar
(polynomial::MulScalarOp) ¶
Multiplication by a scalar of the field.
Syntax:
operation ::= `polynomial.mul_scalar` operands attr-dict `:` type($polynomial) `,` type($scalar)
Multiplies the polynomial operand’s coefficients by a given scalar value. The operation is defined to occur in the ring defined by the ring attribute of the two operands, meaning the multiplication is taken modulo the coefficientModulus of the ring.
The scalar
input must have the same type as the polynomial ring’s
coefficientType.
Example:
// multiply two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<#ring>
%1 = arith.constant 3 : i32
%2 = polynomial.mul_scalar %0, %1 : !polynomial.polynomial<#ring>, i32
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
polynomial | polynomial-like |
scalar | integer |
Results: ¶
Result | Description |
---|---|
output | polynomial-like |
polynomial.ntt
(polynomial::NTTOp) ¶
Computes point-value tensor representation of a polynomial.
Syntax:
operation ::= `polynomial.ntt` $input attr-dict `:` qualified(type($input)) `->` type($output)
polynomial.ntt
computes the forward integer Number Theoretic Transform
(NTT) on the input polynomial. It returns a tensor containing a point-value
representation of the input polynomial. The output tensor has shape equal
to the degree of the ring’s polynomialModulus
. The polynomial’s RingAttr
is embedded as the encoding attribute of the output tensor.
Given an input polynomial F(x)
over a ring whose polynomialModulus
has
degree n
, and a primitive n
-th root of unity omega_n
, the output is
the list of $n$ evaluations
f[k] = F(omega[n]^k) ; k = {0, ..., n-1}
The choice of primitive root may be optionally specified.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes: ¶
Attribute | MLIR Type | Description |
---|---|---|
root | ::mlir::polynomial::PrimitiveRootAttr | an attribute containing an integer and its degree as a root of unity
|
Operands: ¶
Operand | Description |
---|---|
input | An element of a polynomial ring. |
Results: ¶
Result | Description |
---|---|
output | ranked tensor of integer values |
polynomial.sub
(polynomial::SubOp) ¶
Subtraction operation between polynomials.
Syntax:
operation ::= `polynomial.sub` operands attr-dict `:` type($result)
Performs polynomial subtraction on the operands. The operands may be single polynomials or containers of identically-typed polynomials, i.e., polynomials from the same underlying ring with the same coefficient types.
Subtraction is defined to occur in the ring defined by the ring attribute of the two operands, meaning the subtraction is taken modulo the coefficientModulus and the polynomialModulus of the ring.
Example:
// subtract two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant int<x**5 - x + 1> : !polynomial.polynomial<#ring>
%2 = polynomial.sub %0, %1 : !polynomial.polynomial<#ring>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, Scalarizable
, Tensorizable
, Vectorizable
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
lhs | polynomial-like |
rhs | polynomial-like |
Results: ¶
Result | Description |
---|---|
result | polynomial-like |
polynomial.to_tensor
(polynomial::ToTensorOp) ¶
Creates a tensor containing the coefficients of a polynomial.
Syntax:
operation ::= `polynomial.to_tensor` $input attr-dict `:` type($input) `->` type($output)
polynomial.to_tensor
creates a dense tensor value containing the
coefficients of the input polynomial. The output tensor contains the
coefficients in degree-increasing order.
Operations that act on the coefficients of a polynomial, such as extracting
a specific coefficient or extracting a range of coefficients, should be
implemented by composing to_tensor
with the relevant tensor
dialect
ops.
The output tensor has shape equal to the degree of the polynomial ring attribute’s polynomialModulus, including zeroes.
Example:
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%two = arith.constant 2 : i32
%five = arith.constant 5 : i32
%coeffs = tensor.from_elements %two, %two, %five : tensor<3xi32>
%poly = polynomial.from_tensor %coeffs : tensor<3xi32> -> !polynomial.polynomial<#ring>
%tensor = polynomial.to_tensor %poly : !polynomial.polynomial<#ring> -> tensor<1024xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands: ¶
Operand | Description |
---|---|
input | An element of a polynomial ring. |
Results: ¶
Result | Description |
---|---|
output | ranked tensor of integer values |
Attributes ¶
FloatPolynomialAttr ¶
an attribute containing a single-variable polynomial with double precision floating point coefficients
A polynomial attribute represents a single-variable polynomial with double precision floating point coefficients.
The polynomial must be expressed as a list of monomial terms, with addition or subtraction between them. The choice of variable name is arbitrary, but must be consistent across all the monomials used to define a single attribute. The order of monomial terms is arbitrary, each monomial degree must occur at most once.
Example:
#poly = #polynomial.float_polynomial<0.5 x**7 + 1.5>
Parameters: ¶
Parameter | C++ type | Description |
---|---|---|
polynomial | FloatPolynomial |
IntPolynomialAttr ¶
an attribute containing a single-variable polynomial with integer coefficients
A polynomial attribute represents a single-variable polynomial with integer
coefficients, which is used to define the modulus of a RingAttr
, as well
as to define constants and perform constant folding for polynomial
ops.
The polynomial must be expressed as a list of monomial terms, with addition or subtraction between them. The choice of variable name is arbitrary, but must be consistent across all the monomials used to define a single attribute. The order of monomial terms is arbitrary, each monomial degree must occur at most once.
Example:
#poly = #polynomial.int_polynomial<x**1024 + 1>
Parameters: ¶
Parameter | C++ type | Description |
---|---|---|
polynomial | ::mlir::polynomial::IntPolynomial |
PrimitiveRootAttr ¶
an attribute containing an integer and its degree as a root of unity
Syntax:
#polynomial.primitive_root<
::mlir::IntegerAttr, # value
::mlir::IntegerAttr # degree
>
A primitive root attribute stores an integer root value
and an integer
degree
, corresponding to a primitive root of unity of the given degree in
an unspecified ring.
This is used as an attribute on polynomial.ntt
and polynomial.intt
ops
to specify the root of unity used in lowering the transform.
Example:
#poly = #polynomial.primitive_root<value=123 : i32, degree : 7 index>
Parameters: ¶
Parameter | C++ type | Description |
---|---|---|
value | ::mlir::IntegerAttr | |
degree | ::mlir::IntegerAttr |
RingAttr ¶
an attribute specifying a polynomial ring
Syntax:
#polynomial.ring<
Type, # coefficientType
::mlir::IntegerAttr, # coefficientModulus
::mlir::polynomial::IntPolynomialAttr # polynomialModulus
>
A ring describes the domain in which polynomial arithmetic occurs. The ring
attribute in polynomial
represents the more specific case of polynomials
with a single indeterminate; whose coefficients can be represented by
another MLIR type (coefficientType
); and, if the coefficient type is
integral, whose coefficients are taken modulo some statically known modulus
(coefficientModulus
).
Additionally, a polynomial ring can specify a polynomialModulus, which converts
polynomial arithmetic to the analogue of modular integer arithmetic, where
each polynomial is represented as its remainder when dividing by the
modulus. For single-variable polynomials, an “polynomialModulus” is always specificed
via a single polynomial, which we call polynomialModulus
.
An expressive example is polynomials with i32 coefficients, whose
coefficients are taken modulo 2**32 - 5
, with a polynomial modulus of
x**1024 - 1
.
#poly_mod = #polynomial.int_polynomial<-1 + x**1024>
#ring = #polynomial.ring<coefficientType=i32,
coefficientModulus=4294967291:i32,
polynomialModulus=#poly_mod>
%0 = ... : polynomial.polynomial<#ring>
In this case, the value of a polynomial is always “converted” to a
canonical form by applying repeated reductions by setting x**1024 = 1
and simplifying.
The coefficient and polynomial modulus parameters are optional, and the coefficient modulus is only allowed if the coefficient type is integral.
The coefficient modulus, if specified, should be positive and not larger
than 2 ** width(coefficientType)
.
If the coefficient modulus is not specified, the handling of coefficients overflows is determined by subsequent lowering passes, which may choose to wrap around or widen the overflow at their discretion.
Note that coefficient modulus is contained in i64
by default, which is signed.
To specify a 64 bit number without intepreting it as a negative number, its container
type should be manually specified like coefficientModulus=18446744073709551615:i128
.
Parameters: ¶
Parameter | C++ type | Description |
---|---|---|
coefficientType | Type | |
coefficientModulus | ::mlir::IntegerAttr | |
polynomialModulus | ::mlir::polynomial::IntPolynomialAttr |
TypedFloatPolynomialAttr ¶
a typed float_polynomial
Syntax:
#polynomial.typed_float_polynomial<
::mlir::Type, # type
::mlir::polynomial::FloatPolynomialAttr # value
>
Example:
!poly_ty = !polynomial.polynomial<ring=<coefficientType=f32>>
#poly = float<1.4 x**7 + 4.5> : !poly_ty
#poly_verbose = #polynomial.typed_float_polynomial<1.4 x**7 + 4.5> : !poly_ty
Parameters: ¶
Parameter | C++ type | Description |
---|---|---|
type | ::mlir::Type | |
value | ::mlir::polynomial::FloatPolynomialAttr |
TypedIntPolynomialAttr ¶
a typed int_polynomial
Syntax:
#polynomial.typed_int_polynomial<
::mlir::Type, # type
::mlir::polynomial::IntPolynomialAttr # value
>
Example:
!poly_ty = !polynomial.polynomial<ring=<coefficientType=i32>>
#poly = int<1 x**7 + 4> : !poly_ty
#poly_verbose = #polynomial.typed_int_polynomial<1 x**7 + 4> : !poly_ty
Parameters: ¶
Parameter | C++ type | Description |
---|---|---|
type | ::mlir::Type | |
value | ::mlir::polynomial::IntPolynomialAttr |
Types ¶
PolynomialType ¶
An element of a polynomial ring.
Syntax:
!polynomial.polynomial<
::mlir::polynomial::RingAttr # ring
>
A type for polynomials in a polynomial quotient ring.
Parameters: ¶
Parameter | C++ type | Description |
---|---|---|
ring | ::mlir::polynomial::RingAttr | an attribute specifying a polynomial ring |