SPIR-V Dialect to LLVM Dialect conversion manual
This manual describes the conversion from SPIR-V Dialect to LLVM Dialect. It assumes familiarity with both, and describes the design choices behind the modelling of SPIR-V concepts in LLVM Dialect. The conversion is an ongoing work, and is expected to grow as more features are implemented.
Conversion can be performed by invoking an appropriate conversion pass:
mlir-opt -convert-spirv-to-llvm <filename.mlir>
This pass performs type and operation conversions for SPIR-V operations as described in this document.
Type Conversion ¶
This section describes how SPIR-V Dialect types are mapped to LLVM Dialect.
Scalar types ¶
SPIR-V Dialect | LLVM Dialect |
---|---|
i<bitwidth> | !llvm.i<bitwidth> |
si<bitwidth> | !llvm.i<bitwidth> |
ui<bitwidth> | !llvm.i<bitwidth> |
f16 | f16 |
f32 | f32 |
f64 | f64 |
Vector types ¶
SPIR-V Dialect | LLVM Dialect |
---|---|
vector<<count> x <scalar-type>> | vector<<count> x <scalar-type>> |
Pointer types ¶
A SPIR-V pointer also takes a Storage Class. At the moment, conversion does not take it into account.
SPIR-V Dialect | LLVM Dialect |
---|---|
!spirv.ptr< <element-type>, <storage-class> > | !llvm.ptr |
Array types ¶
SPIR-V distinguishes between array type and run-time array type, the length of which is not known at compile time. In LLVM, it is possible to index beyond the end of the array. Therefore, runtime array can be implemented as a zero length array type.
Moreover, SPIR-V supports the notion of array stride. Currently only natural
strides (based on
VulkanLayoutUtils
) are supported. They
are also mapped to LLVM array.
SPIR-V Dialect | LLVM Dialect |
---|---|
!spirv.array<<count> x <element-type>> | !llvm.array<<count> x <element-type>> |
!spirv.rtarray< <element-type> > | !llvm.array<0 x <element-type>> |
Struct types ¶
Members of SPIR-V struct types may have decorations and offset information. Currently, there is no support of member decorations conversion for structs. For more information see section on Decorations.
Usually we expect that each struct member has a natural size and alignment. However, there are cases (e.g. in graphics) where one would place struct members explicitly at particular offsets. This case is not supported at the moment. Hence, we adhere to the following mapping:
Structs with no offset are modelled as LLVM packed structures.
Structs with natural offset (i.e. offset that equals to cumulative size of the previous struct elements or is a natural alignment) are mapped to naturally padded structs.
Structs with unnatural offset (i.e. offset that is not equal to cumulative size of the previous struct elements) are not supported. In this case, offsets can be emulated with padding fields (e.g. integers). However, such a design would require index recalculation in the conversion of ops that involve memory addressing.
Examples of SPIR-V struct conversion are: ```mlir !spirv.struct<i8, i32> => !llvm.struct<packed (i8, i32)> !spirv.struct<i8 [0], i32 [4]> => !llvm.struct<(i8, i32)>
// error !spirv.struct<i8 [0], i32 [8]> ```
Not implemented types ¶
The rest of the types not mentioned explicitly above are not supported by the
conversion. This includes ImageType
and MatrixType
.
Operation Conversion ¶
This section describes how SPIR-V Dialect operations are converted to LLVM Dialect. It lists already working conversion patterns, as well as those that are an ongoing work.
There are also multiple ops for which there is no clear mapping in LLVM. Conversion for those have to be discussed within the community on the case-by-case basis.
Arithmetic ops ¶
SPIR-V arithmetic ops mostly have a direct equivalent in LLVM Dialect. Such
exceptions as spirv.SMod
and spirv.FMod
are rare.
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spirv.FAdd | llvm.fadd |
spirv.FDiv | llvm.fdiv |
spirv.FNegate | llvm.fneg |
spirv.FMul | llvm.fmul |
spirv.FRem | llvm.frem |
spirv.FSub | llvm.fsub |
spirv.IAdd | llvm.add |
spirv.IMul | llvm.mul |
spirv.ISub | llvm.sub |
spirv.SDiv | llvm.sdiv |
spirv.SRem | llvm.srem |
spirv.UDiv | llvm.udiv |
spirv.UMod | llvm.urem |
Bitwise ops ¶
SPIR-V has a range of bit ops that are mapped to LLVM dialect ops, intrinsics or may have a specific conversion pattern.
Direct conversion ¶
As with arithmetic ops, most of bitwise ops have a semantically equivalent op in LLVM:
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spirv.BitwiseAnd | llvm.and |
spirv.BitwiseOr | llvm.or |
spirv.BitwiseXor | llvm.xor |
Also, some of bitwise ops can be modelled with LLVM intrinsics:
SPIR-V Dialect op | LLVM Dialect intrinsic |
---|---|
spirv.BitCount | llvm.intr.ctpop |
spirv.BitReverse | llvm.intr.bitreverse |
spirv.Not
¶
spirv.Not
is modelled with a xor
operation with a mask with all bits set.
%mask = llvm.mlir.constant(-1 : i32) : i32
%0 = spirv.Not %op : i32 => %0 = llvm.xor %op, %mask : i32
Bitfield ops ¶
SPIR-V dialect has three bitfield ops: spirv.BitFieldInsert
,
spirv.BitFieldSExtract
and spirv.BitFieldUExtract
. This section will first
outline the general design of conversion patterns for this ops, and then
describe each of them.
All of these ops take base
, offset
and count
(insert
for
spirv.BitFieldInsert
) as arguments. There are two important things to note:
offset
andcount
are always scalar. This means that we can have the following case:%0 = spirv.BitFieldSExtract %base, %offset, %count : vector<2xi32>, i8, i8
To be able to proceed with conversion algorithms described below, all operands have to be of the same type and bitwidth. This requires broadcasting of
offset
andcount
to vectors, for example for the case above it gives:// Broadcasting offset %offset0 = llvm.mlir.undef : vector<2xi8> %zero = llvm.mlir.constant(0 : i32) : i32 %offset1 = llvm.insertelement %offset, %offset0[%zero : i32] : vector<2xi8> %one = llvm.mlir.constant(1 : i32) : i32 %vec_offset = llvm.insertelement %offset, %offset1[%one : i32] : vector<2xi8> // Broadcasting count // ...
offset
andcount
may have different bitwidths frombase
. In this case, both of these operands have to be zero extended (since they are treated as unsigned by the specification) or truncated. For the above example it would be:// Zero extending offset after broadcasting %res_offset = llvm.zext %vec_offset: vector<2xi8> to vector<2xi32>
Also, note that if the bitwidth of
offset
orcount
is greater than the bitwidth ofbase
, truncation is still permitted. This is because the ops have a defined behaviour withoffset
andcount
being less than the size ofbase
. It creates a natural upper bound on what valuesoffset
andcount
can take, which is 64. This can be expressed in less than 8 bits.
Now, having these two cases in mind, we can proceed with conversion for the ops and their operands.
spirv.BitFieldInsert
¶
This operation is implemented as a series of LLVM Dialect operations. First step
would be to create a mask with bits set outside [offset
, offset
+ count
-
1]. Then, unchanged bits are extracted from base
that are outside of
[offset
, offset
+ count
- 1]. The result is or
ed with shifted insert
.
// Create mask
// %minus_one = llvm.mlir.constant(-1 : i32) : i32
// %t0 = llvm.shl %minus_one, %count : i32
// %t1 = llvm.xor %t0, %minus_one : i32
// %t2 = llvm.shl %t1, %offset : i32
// %mask = llvm.xor %t2, %minus_one : i32
// Extract unchanged bits from the Base
// %new_base = llvm.and %base, %mask : i32
// Insert new bits
// %sh_insert = llvm.shl %insert, %offset : i32
// %res = llvm.or %new_base, %sh_insert : i32
%res = spirv.BitFieldInsert %base, %insert, %offset, %count : i32, i32, i32
spirv.BitFieldSExtract
¶
To implement spirv.BitFieldSExtract
, base
is shifted left by [sizeof(base
) -
(count
+ offset
)], so that the bit at offset
+ count
- 1 is the most
significant bit. After, the result is shifted right, filling the bits with the
sign bit.
// Calculate the amount to shift left.
// %size = llvm.mlir.constant(32 : i32) : i32
// %t0 = llvm.add %count, %offset : i32
// %t1 = llvm.sub %size, %t0 : i32
// Shift left and then right to extract the bits
// %sh_left = llvm.shl %base, %t1 : i32
// %t2 = llvm.add %offset, %t1 : i32
// %res = llvm.ashr %sh_left, %t2 : i32
%res = spirv.BitFieldSExtract %base, %offset, %count : i32, i32, i32
spirv.BitFieldUExtract
¶
For this op a similar pattern as for spirv.BitFieldInsert
is used. First, a mask
with bits set at [0, count
- 1] is created. Then base
is shifted by offset
and the mask is applied.
// Create a mask
// %minus_one = llvm.mlir.constant(-1 : i32) : i32
// %t0 = llvm.shl %minus_one, %count : i32
// mask = llvm.xor %t0, %minus_one : i32
// Shift Base and apply mask
// %sh_base = llvm.lshr %base, %offset : i32
// %res = llvm.and %sh_base, %mask : i32
%res = spirv.BitFieldUExtract %base, %offset, %count : i32, i32, i32
Cast ops ¶
Direct conversions ¶
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spirv.ConvertFToS | llvm.fptosi |
spirv.ConvertFToU | llvm.fptoui |
spirv.ConvertSToF | llvm.sitofp |
spirv.ConvertUToF | llvm.uitofp |
spirv.Bitcast ¶
This operation has a direct counterpart in LLVM: llvm.bitcast
. It is treated
separately since it also supports pointer to pointer bit pattern-preserving type
conversion, apart from regular scalar or vector of numerical type.
Special cases ¶
Special cases include spirv.FConvert
, spirv.SConvert
and spirv.UConvert
. These
operations are either a truncate or extend. Let’s denote the operand component
width as A, and result component width as R. Then, the following mappings are
used:
spirv.FConvert
¶
Case | LLVM Dialect op |
---|---|
A < R | llvm.fpext |
A > R | llvm.fptrunc |
spirv.SConvert
¶
Case | LLVM Dialect op |
---|---|
A < R | llvm.sext |
A > R | llvm.trunc |
spirv.UConvert
¶
Case | LLVM Dialect op |
---|---|
A < R | llvm.zext |
A > R | llvm.trunc |
The case when A = R is not possible, based on SPIR-V Dialect specification:
The component width cannot equal the component width in Result Type.
Comparison ops ¶
SPIR-V comparison ops are mapped to LLVM icmp
and fcmp
operations.
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spirv.IEqual | llvm.icmp "eq" |
spirv.INotEqual | llvm.icmp "ne" |
spirv.FOrdEqual | llvm.fcmp "oeq" |
spirv.FOrdGreaterThan | llvm.fcmp "ogt" |
spirv.FOrdGreaterThanEqual | llvm.fcmp "oge" |
spirv.FOrdLessThan | llvm.fcmp "olt" |
spirv.FOrdLessThanEqual | llvm.fcmp "ole" |
spirv.FOrdNotEqual | llvm.fcmp "one" |
spirv.FUnordEqual | llvm.fcmp "ueq" |
spirv.FUnordGreaterThan | llvm.fcmp "ugt" |
spirv.FUnordGreaterThanEqual | llvm.fcmp "uge" |
spirv.FUnordLessThan | llvm.fcmp "ult" |
spirv.FUnordLessThanEqual | llvm.fcmp "ule" |
spirv.FUnordNotEqual | llvm.fcmp "une" |
spirv.SGreaterThan | llvm.icmp "sgt" |
spirv.SGreaterThanEqual | llvm.icmp "sge" |
spirv.SLessThan | llvm.icmp "slt" |
spirv.SLessThanEqual | llvm.icmp "sle" |
spirv.UGreaterThan | llvm.icmp "ugt" |
spirv.UGreaterThanEqual | llvm.icmp "uge" |
spirv.ULessThan | llvm.icmp "ult" |
spirv.ULessThanEqual | llvm.icmp "ule" |
Composite ops ¶
Currently, conversion supports rewrite patterns for spirv.CompositeExtract
and
spirv.CompositeInsert
. We distinguish two cases for these operations: when the
composite object is a vector, and when the composite object is of a non-vector
type (i.e. struct, array or runtime array).
Composite type | SPIR-V Dialect op | LLVM Dialect op |
---|---|---|
vector | spirv.CompositeExtract | llvm.extractelement |
vector | spirv.CompositeInsert | llvm.insertelement |
non-vector | spirv.CompositeExtract | llvm.extractvalue |
non-vector | spirv.CompositeInsert | llvm.insertvalue |
spirv.EntryPoint
and spirv.ExecutionMode
¶
First of all, it is important to note that there is no direct representation of entry points in LLVM. At the moment, we use the following approach:
spirv.EntryPoint
is simply removed.In contrast,
spirv.ExecutionMode
may contain important information about the entry point. For example,LocalSize
provides information about the work-group size that can be reused.In order to preserve this information,
spirv.ExecutionMode
is converted to a struct global variable that stores the execution mode id and any variables associated with it. In C, the struct has the structure shown below.// No values are associated // There are values that are associated // with this entry point. // with this entry point. struct { struct { int32_t executionMode; int32_t executionMode; }; int32_t values[]; };
// spirv.ExecutionMode @empty "ContractionOff" llvm.mlir.global external constant @{{.*}}() : !llvm.struct<(i32)> { %0 = llvm.mlir.undef : !llvm.struct<(i32)> %1 = llvm.mlir.constant(31 : i32) : i32 %ret = llvm.insertvalue %1, %0[0] : !llvm.struct<(i32)> llvm.return %ret : !llvm.struct<(i32)> }
Logical ops ¶
Logical ops follow a similar pattern as bitwise ops, with the difference that
they operate on i1
or vector of i1
values. The following mapping is used to
emulate SPIR-V ops behaviour:
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spirv.LogicalAnd | llvm.and |
spirv.LogicalOr | llvm.or |
spirv.LogicalEqual | llvm.icmp "eq" |
spirv.LogicalNotEqual | llvm.icmp "ne" |
spirv.LogicalNot
has the same conversion pattern as bitwise spirv.Not
. It is
modelled with xor
operation with a mask with all bits set.
%mask = llvm.mlir.constant(-1 : i1) : i1
%0 = spirv.LogicalNot %op : i1 => %0 = llvm.xor %op, %mask : i1
Memory ops ¶
This section describes the conversion patterns for SPIR-V dialect operations that concern memory.
spirv.AccessChain
¶
spirv.AccessChain
is mapped to llvm.getelementptr
op. In order to create a
valid LLVM op, we also add a 0 index to the spirv.AccessChain
’s indices list in
order to go through the pointer.
// Access the 1st element of the array
%i = spirv.Constant 1: i32
%var = spirv.Variable : !spirv.ptr<!spirv.struct<f32, !spirv.array<4xf32>>, Function>
%el = spirv.AccessChain %var[%i, %i] : !spirv.ptr<!spirv.struct<f32, !spirv.array<4xf32>>, Function>, i32, i32
// Corresponding LLVM dialect code
%i = ...
%var = ...
%0 = llvm.mlir.constant(0 : i32) : i32
%el = llvm.getelementptr %var[%0, %i, %i] : (!llvm.ptr, i32, i32, i32), !llvm.struct<packed (f32, array<4 x f32>)>
spirv.Load
and spirv.Store
¶
These ops are converted to their LLVM counterparts: llvm.load
and
llvm.store
. If the op has a memory access attribute, then there are the
following cases, based on the value of the attribute:
Aligned: alignment is passed on to LLVM op builder, for example:
mlir // llvm.store %ptr, %val {alignment = 4 : i64} : !llvm.ptr spirv.Store "Function" %ptr, %val ["Aligned", 4] : f32
None: same case as if there is no memory access attribute.
Nontemporal: set
nontemporal
flag, for example:mlir // %res = llvm.load %ptr {nontemporal} : !llvm.ptr %res = spirv.Load "Function" %ptr ["Nontemporal"] : f32
Volatile: mark the op as
volatile
, for example:mlir // %res = llvm.load volatile %ptr : !llvm.ptr f32> %res = spirv.Load "Function" %ptr ["Volatile"] : f32
Otherwise the conversion fails as other cases (MakePointerAvailable
,MakePointerVisible
,NonPrivatePointer
) are not supported yet.
spirv.GlobalVariable
and spirv.mlir.addressof
¶
spirv.GlobalVariable
is modelled with llvm.mlir.global
op. However, there is a
difference that has to be pointed out.
In SPIR-V dialect, the global variable returns a pointer, whereas in LLVM
dialect the global holds an actual value. This difference is handled by
spirv.mlir.addressof
and llvm.mlir.addressof
ops that both return a pointer
and are used to reference the global.
// Original SPIR-V module
spirv.module Logical GLSL450 {
spirv.GlobalVariable @struct : !spirv.ptr<!spirv.struct<f32, !spirv.array<10xf32>>, Private>
spirv.func @func() -> () "None" {
%0 = spirv.mlir.addressof @struct : !spirv.ptr<!spirv.struct<f32, !spirv.array<10xf32>>, Private>
spirv.Return
}
}
// Converted result
module {
llvm.mlir.global private @struct() : !llvm.struct<packed (f32, [10 x f32])>
llvm.func @func() {
%0 = llvm.mlir.addressof @struct : !llvm.ptr
llvm.return
}
}
The SPIR-V to LLVM conversion does not involve modelling of workgroups. Hence,
we say that only current invocation is in conversion’s scope. This means that
global variables with pointers of Input
, Output
, and Private
storage
classes are supported. Also, StorageBuffer
storage class is allowed for
executing
SPIR-V CPU Runner tests.
Moreover, bind
that specifies the descriptor set and the binding number and
built_in
that specifies SPIR-V BuiltIn
decoration have no conversion into
LLVM dialect.
Currently llvm.mlir.global
s are created with private
linkage for Private
storage class and External
for other storage classes, based on SPIR-V spec:
By default, functions and global variables are private to a module and cannot be accessed by other modules. However, a module may be written to export or import functions and global (module scope) variables.
If the global variable’s pointer has Input
storage class, then a constant
flag is added to LLVM op:
spirv.GlobalVariable @var : !spirv.ptr<f32, Input> => llvm.mlir.global external constant @var() : f32
spirv.Variable
¶
Per SPIR-V dialect spec, spirv.Variable
allocates an object in memory, resulting
in a pointer to it, which can be used with spirv.Load
and spirv.Store
. It is
also a function-level variable.
spirv.Variable
is modelled as llvm.alloca
op. If initialized, an additional
store instruction is used. Note that there is no initialization for arrays and
structs since constants of these types are not supported in LLVM dialect (TODO).
Also, at the moment initialization is only possible via spirv.Constant
.
// Conversion of VariableOp without initialization
%size = llvm.mlir.constant(1 : i32) : i32
%res = spirv.Variable : !spirv.ptr<vector<3xf32>, Function> => %res = llvm.alloca %size x vector<3xf32> : (i32) -> !llvm.ptr
// Conversion of VariableOp with initialization
%c = llvm.mlir.constant(0 : i64) : i64
%c = spirv.Constant 0 : i64 %size = llvm.mlir.constant(1 : i32) : i32
%res = spirv.Variable init(%c) : !spirv.ptr<i64, Function> => %res = llvm.alloca %[[SIZE]] x i64 : (i32) -> !llvm.ptr
llvm.store %c, %res : i64, !llvm.ptr
Note that simple conversion to alloca
may not be sufficient if the code has
some scoping. For example, if converting ops executed in a loop into alloca
s,
a stack overflow may occur. For this case, stacksave
/stackrestore
pair can
be used (TODO).
Miscellaneous ops with direct conversions ¶
There are multiple SPIR-V ops that do not fit in a particular group but can be converted directly to LLVM dialect. Their conversion is addressed in this section.
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spirv.Select | llvm.select |
spirv.Undef | llvm.mlir.undef |
Shift ops ¶
Shift operates on two operands: shift
and base
.
In SPIR-V dialect, shift
and base
may have different bit width. On the
contrary, in LLVM Dialect both base
and shift
have to be of the same
bitwidth. This leads to the following conversions:
if
base
has the same bitwidth asshift
, the conversion is straightforward.if
base
has a greater bit width thanshift
, shift is sign or zero extended first. Then the extended value is passed to the shift.otherwise, the conversion is considered to be illegal.
// Shift without extension
%res0 = spirv.ShiftRightArithmetic %0, %2 : i32, i32 => %res0 = llvm.ashr %0, %2 : i32
// Shift with extension
%ext = llvm.sext %1 : i16 to i32
%res1 = spirv.ShiftRightArithmetic %0, %1 : i32, i16 => %res1 = llvm.ashr %0, %ext: i32
spirv.Constant
¶
At the moment spirv.Constant
conversion supports scalar and vector constants
only.
Mapping ¶
spirv.Constant
is mapped to llvm.mlir.constant
. This is a straightforward
conversion pattern with a special case when the argument is signed or unsigned.
Special case ¶
SPIR-V constant can be a signed or unsigned integer. Since LLVM Dialect does not have signedness semantics, this case should be handled separately.
The conversion casts constant value attribute to a signless integer or a vector of signless integers. This is correct because in SPIR-V, like in LLVM, how to interpret an integer number is also dictated by the opcode. However, in reality hardware implementation might show unexpected behavior. Therefore, it is better to handle it case-by-case, given that the purpose of the conversion is not to cover all possible corner cases.
// %0 = llvm.mlir.constant(0 : i8) : i8
%0 = spirv.Constant 0 : i8
// %1 = llvm.mlir.constant(dense<[2, 3, 4]> : vector<3xi32>) : vector<3xi32>
%1 = spirv.Constant dense<[2, 3, 4]> : vector<3xui32>
Not implemented ops ¶
There is no support of the following ops:
- All atomic ops
- All group ops
- All matrix ops
- All CL ops
As well as:
- spirv.CompositeConstruct
- spirv.ControlBarrier
- spirv.CopyMemory
- spirv.FMod
- spirv.GL.Acos
- spirv.GL.Asin
- spirv.GL.Atan
- spirv.GL.Cosh
- spirv.GL.FSign
- spirv.GL.SAbs
- spirv.GL.Sinh
- spirv.GL.SSign
- spirv.MemoryBarrier
- spirv.mlir.referenceof
- spirv.SMod
- spirv.SpecConstant
- spirv.Unreachable
- spirv.VectorExtractDynamic
Control flow conversion ¶
Branch ops ¶
spirv.Branch
and spirv.BranchConditional
are mapped to llvm.br
and
llvm.cond_br
. Branch weights for spirv.BranchConditional
are mapped to
corresponding branch_weights
attribute of llvm.cond_br
. When translated to
proper LLVM, branch_weights
are converted into LLVM metadata associated with
the conditional branch.
spirv.FunctionCall
¶
spirv.FunctionCall
maps to llvm.call
. For example:
%0 = spirv.FunctionCall @foo() : () -> i32 => %0 = llvm.call @foo() : () -> f32
spirv.FunctionCall @bar(%0) : (i32) -> () => llvm.call @bar(%0) : (f32) -> ()
spirv.mlir.selection
and spirv.mlir.loop
¶
Control flow within spirv.mlir.selection
and spirv.mlir.loop
is lowered directly
to LLVM via branch ops. The conversion can only be applied to selection or loop
with all blocks being reachable. Moreover, selection and loop control attributes
(such as Flatten
or Unroll
) are not supported at the moment.
// Conversion of selection
%cond = spirv.Constant true %cond = llvm.mlir.constant(true) : i1
spirv.mlir.selection {
spirv.BranchConditional %cond, ^true, ^false llvm.cond_br %cond, ^true, ^false
^true: ^true:
// True block code // True block code
spirv.Branch ^merge => llvm.br ^merge
^false: ^false:
// False block code // False block code
spirv.Branch ^merge llvm.br ^merge
^merge: ^merge:
spirv.mlir.merge llvm.br ^continue
}
// Remaining code ^continue:
// Remaining code
// Conversion of loop
%cond = spirv.Constant true %cond = llvm.mlir.constant(true) : i1
spirv.mlir.loop {
spirv.Branch ^header llvm.br ^header
^header: ^header:
// Header code // Header code
spirv.BranchConditional %cond, ^body, ^merge => llvm.cond_br %cond, ^body, ^merge
^body: ^body:
// Body code // Body code
spirv.Branch ^continue llvm.br ^continue
^continue: ^continue:
// Continue code // Continue code
spirv.Branch ^header llvm.br ^header
^merge: ^merge:
spirv.mlir.merge llvm.br ^remaining
}
// Remaining code ^remaining:
// Remaining code
Decorations conversion ¶
Note: these conversions have not been implemented yet
GLSL extended instruction set ¶
This section describes how SPIR-V ops from GLSL extended instructions set are mapped to LLVM Dialect.
Direct conversions ¶
SPIR-V Dialect op | LLVM Dialect op |
---|---|
spirv.GL.Ceil | llvm.intr.ceil |
spirv.GL.Cos | llvm.intr.cos |
spirv.GL.Exp | llvm.intr.exp |
spirv.GL.FAbs | llvm.intr.fabs |
spirv.GL.Floor | llvm.intr.floor |
spirv.GL.FMax | llvm.intr.maxnum |
spirv.GL.FMin | llvm.intr.minnum |
spirv.GL.Log | llvm.intr.log |
spirv.GL.Sin | llvm.intr.sin |
spirv.GL.Sqrt | llvm.intr.sqrt |
spirv.GL.SMax | llvm.intr.smax |
spirv.GL.SMin | llvm.intr.smin |
Special cases ¶
spirv.InverseSqrt
is mapped to:
%one = llvm.mlir.constant(1.0 : f32) : f32
%res = spirv.InverseSqrt %arg : f32 => %sqrt = "llvm.intr.sqrt"(%arg) : (f32) -> f32
%res = fdiv %one, %sqrt : f32
spirv.Tan
is mapped to:
%sin = "llvm.intr.sin"(%arg) : (f32) -> f32
%res = spirv.Tan %arg : f32 => %cos = "llvm.intr.cos"(%arg) : (f32) -> f32
%res = fdiv %sin, %cos : f32
spirv.Tanh
is modelled using the equality tanh(x) = {exp(2x) - 1}/{exp(2x) + 1}
:
%two = llvm.mlir.constant(2.0: f32) : f32
%2xArg = llvm.fmul %two, %arg : f32
%exp = "llvm.intr.exp"(%2xArg) : (f32) -> f32
%res = spirv.Tanh %arg : f32 => %one = llvm.mlir.constant(1.0 : f32) : f32
%num = llvm.fsub %exp, %one : f32
%den = llvm.fadd %exp, %one : f32
%res = llvm.fdiv %num, %den : f32
Function conversion and related ops ¶
This section describes the conversion of function-related operations from SPIR-V to LLVM dialect.
spirv.func
¶
This op declares or defines a SPIR-V function and it is converted to
llvm.func
. This conversion handles signature conversion, and function control
attributes remapping to LLVM dialect function
passthrough
attribute.
The following mapping is used to map SPIR-V function control to LLVM function attributes:
SPIR-V Function Control Attributes | LLVM Function Attributes |
---|---|
None | No function attributes passed |
Inline | alwaysinline |
DontInline | noinline |
Pure | readonly |
Const | readnone |
spirv.Return
and spirv.ReturnValue
¶
In LLVM IR, functions may return either 1 or 0 value. Hence, we map both ops to
llvm.return
with or without a return value.
Module ops ¶
Module in SPIR-V has one region that contains one block. It is defined via
spirv.module
op that also takes a range of attributes:
- Addressing model
- Memory model
- Version-Capability-Extension attribute
spirv.module
is converted into ModuleOp
. This plays a role of enclosing scope
to LLVM ops. At the moment, SPIR-V module attributes are ignored.
SPIR-V CPU Runner Tests ¶
The mlir-cpu-runner
has support for executing a gpu
dialect kernel on the
CPU via SPIR-V to LLVM dialect conversion. This is referred to as the “SPIR-V
CPU Runner”. The --link-nested-modules
flag needs to be passed for this.
Currently, only single-threaded kernels are supported.
To build the required runtime libaries, add the following option to cmake
:
-DMLIR_ENABLE_SPIRV_CPU_RUNNER=1
Pipeline ¶
The gpu
module with the kernel and the host code undergo the following
transformations:
Convert the
gpu
module into SPIR-V dialect, lower ABI attributes and update version, capability and extension.Emulate the kernel call by converting the launching operation into a normal function call. The data from the host side to the device is passed via copying to global variables. These are created in both the host and the kernel code and later linked when nested modules are folded.
Convert SPIR-V dialect kernel to LLVM dialect via the new conversion path.
After these passes, the IR transforms into a nested LLVM module - a main module
representing the host code and a kernel module. These modules are linked and
executed using ExecutionEngine
.
Walk-through ¶
This section gives a detailed overview of the IR changes while running SPIR-V CPU Runner tests. First, consider that we have the following IR. (For simplicity some type annotations and function implementations have been omitted).
gpu.module @foo {
gpu.func @bar(%arg: memref<8xi32>) {
// Kernel code.
gpu.return
}
}
func.func @main() {
// Fill the buffer with some data
%buffer = memref.alloc : memref<8xi32>
%data = ...
call fillBuffer(%buffer, %data)
"gpu.launch_func"(/*grid dimensions*/, %buffer) {
kernel = @foo::bar
}
}
Lowering gpu
dialect to SPIR-V dialect results in
spirv.module @__spv__foo /*VCE triple and other metadata here*/ {
spirv.GlobalVariable @__spv__foo_arg bind(0,0) : ...
spirv.func @bar() {
// Kernel code.
}
spirv.EntryPoint @bar, ...
}
func.func @main() {
// Fill the buffer with some data.
%buffer = memref.alloc : memref<8xi32>
%data = ...
call fillBuffer(%buffer, %data)
"gpu.launch_func"(/*grid dimensions*/, %buffer) {
kernel = @foo::bar
}
}
Then, the lowering from standard dialect to LLVM dialect is applied to the host code.
spirv.module @__spv__foo /*VCE triple and other metadata here*/ {
spirv.GlobalVariable @__spv__foo_arg bind(0,0) : ...
spirv.func @bar() {
// Kernel code.
}
spirv.EntryPoint @bar, ...
}
// Kernel function declaration.
llvm.func @__spv__foo_bar() : ...
llvm.func @main() {
// Fill the buffer with some data.
llvm.call fillBuffer(%buffer, %data)
// Copy data to the global variable, call kernel, and copy the data back.
%addr = llvm.mlir.addressof @__spv__foo_arg_descriptor_set0_binding0 : ...
"llvm.intr.memcpy"(%addr, %buffer) : ...
llvm.call @__spv__foo_bar()
"llvm.intr.memcpy"(%buffer, %addr) : ...
llvm.return
}
Finally, SPIR-V module is converted to LLVM and the symbol names are resolved for the linkage.
module @__spv__foo {
llvm.mlir.global @__spv__foo_arg_descriptor_set0_binding0 : ...
llvm.func @__spv__foo_bar() {
// Kernel code.
}
}
// Kernel function declaration.
llvm.func @__spv__foo_bar() : ...
llvm.func @main() {
// Fill the buffer with some data.
llvm.call fillBuffer(%buffer, %data)
// Copy data to the global variable, call kernel, and copy the data back.
%addr = llvm.mlir.addressof @__spv__foo_arg_descriptor_set0_binding0 : ...
"llvm.intr.memcpy"(%addr, %buffer) : ...
llvm.call @__spv__foo_bar()
"llvm.intr.memcpy"(%buffer, %addr) : ...
llvm.return
}