Chapter 5: Partial Lowering to Lower-Level Dialects for Optimization
At this point, we are eager to generate actual code and see our Toy language take life. We will use LLVM to generate code, but just showing the LLVM builder interface here wouldn’t be very exciting. Instead, we will show how to perform progressive lowering through a mix of dialects coexisting in the same function.
To make it more interesting, in this chapter we will consider that we want to
reuse existing optimizations implemented in a dialect optimizing affine
transformations: Affine
. This dialect is tailored to the computation-heavy
part of the program and is limited: it doesn’t support representing our
toy.print
builtin, for instance, neither should it! Instead, we can target
Affine
for the computation heavy part of Toy, and in the
next chapter directly target the LLVM IR
dialect for lowering
print
. As part of this lowering, we will be lowering from the
TensorType that Toy
operates on
to the
MemRefType that is indexed via
an affine loop-nest. Tensors represent an abstract value-typed sequence of data,
meaning that they don’t live in any memory. MemRefs, on the other hand,
represent lower level buffer access, as they are concrete references to a region
of memory.
Dialect Conversions
MLIR has many different dialects, so it is important to have a unified framework
for
converting between them.
This is where the DialectConversion
framework comes into play. This framework
allows for transforming a set of illegal operations to a set of legal ones.
To use this framework, we need to provide two things (and an optional third):
- This is the formal specification of what operations or dialects are legal for the conversion. Operations that aren’t legal will require rewrite patterns to perform legalization.
A set of Rewrite Patterns
- This is the set of patterns used to convert illegal operations into a set of zero or more legal ones.
Optionally, a Type Converter.
- If provided, this is used to convert the types of block arguments. We won’t be needing this for our conversion.
Conversion Target ¶
For our purposes, we want to convert the compute-intensive Toy
operations into
a combination of operations from the Affine
, Arith
, Func
, and MemRef
dialects
for further optimization. To start off the lowering, we first define our
conversion target:
void ToyToAffineLoweringPass::runOnOperation() {
// The first thing to define is the conversion target. This will define the
// final target for this lowering.
mlir::ConversionTarget target(getContext());
// We define the specific operations, or dialects, that are legal targets for
// this lowering. In our case, we are lowering to a combination of the
// `Affine`, `Arith`, `Func`, and `MemRef` dialects.
target.addLegalDialect<affine::AffineDialect, arith::ArithDialect,
func::FuncDialect, memref::MemRefDialect>();
// We also define the Toy dialect as Illegal so that the conversion will fail
// if any of these operations are *not* converted. Given that we actually want
// a partial lowering, we explicitly mark the Toy operations that don't want
// to lower, `toy.print`, as *legal*. `toy.print` will still need its operands
// to be updated though (as we convert from TensorType to MemRefType), so we
// only treat it as `legal` if its operands are legal.
target.addIllegalDialect<ToyDialect>();
target.addDynamicallyLegalOp<toy::PrintOp>([](toy::PrintOp op) {
return llvm::none_of(op->getOperandTypes(),
[](Type type) { return type.isa<TensorType>(); });
});
...
}
Above, we first set the toy dialect to illegal, and then the print operation as
legal. We could have done this the other way around. Individual operations
always take precedence over the (more generic) dialect definitions, so the order
doesn’t matter. See ConversionTarget::getOpInfo
for the details.
Conversion Patterns ¶
After the conversion target has been defined, we can define how to convert the
illegal operations into legal ones. Similarly to the canonicalization
framework introduced in
chapter 3, the
DialectConversion
framework also uses
RewritePatterns to perform the conversion logic.
These patterns may be the RewritePatterns
seen before or a new type of pattern
specific to the conversion framework ConversionPattern
. ConversionPatterns
are different from traditional RewritePatterns
in that they accept an
additional operands
parameter containing operands that have been
remapped/replaced. This is used when dealing with type conversions, as the
pattern will want to operate on values of the new type but match against the
old. For our lowering, this invariant will be useful as it translates from the
TensorType currently being
operated on to the
MemRefType. Let’s
look at a snippet of lowering the toy.transpose
operation:
/// Lower the `toy.transpose` operation to an affine loop nest.
struct TransposeOpLowering : public mlir::ConversionPattern {
TransposeOpLowering(mlir::MLIRContext *ctx)
: mlir::ConversionPattern(TransposeOp::getOperationName(), 1, ctx) {}
/// Match and rewrite the given `toy.transpose` operation, with the given
/// operands that have been remapped from `tensor<...>` to `memref<...>`.
llvm::LogicalResult
matchAndRewrite(mlir::Operation *op, ArrayRef<mlir::Value> operands,
mlir::ConversionPatternRewriter &rewriter) const final {
auto loc = op->getLoc();
// Call to a helper function that will lower the current operation to a set
// of affine loops. We provide a functor that operates on the remapped
// operands, as well as the loop induction variables for the inner most
// loop body.
lowerOpToLoops(
op, operands, rewriter,
[loc](mlir::PatternRewriter &rewriter,
ArrayRef<mlir::Value> memRefOperands,
ArrayRef<mlir::Value> loopIvs) {
// Generate an adaptor for the remapped operands of the TransposeOp.
// This allows for using the nice named accessors that are generated
// by the ODS. This adaptor is automatically provided by the ODS
// framework.
TransposeOpAdaptor transposeAdaptor(memRefOperands);
mlir::Value input = transposeAdaptor.input();
// Transpose the elements by generating a load from the reverse
// indices.
SmallVector<mlir::Value, 2> reverseIvs(llvm::reverse(loopIvs));
return rewriter.create<mlir::AffineLoadOp>(loc, input, reverseIvs);
});
return success();
}
};
Now we can prepare the list of patterns to use during the lowering process:
void ToyToAffineLoweringPass::runOnOperation() {
...
// Now that the conversion target has been defined, we just need to provide
// the set of patterns that will lower the Toy operations.
mlir::RewritePatternSet patterns(&getContext());
patterns.add<..., TransposeOpLowering>(&getContext());
...
Partial Lowering ¶
Once the patterns have been defined, we can perform the actual lowering. The
DialectConversion
framework provides several different modes of lowering, but,
for our purposes, we will perform a partial lowering, as we will not convert
toy.print
at this time.
void ToyToAffineLoweringPass::runOnOperation() {
...
// With the target and rewrite patterns defined, we can now attempt the
// conversion. The conversion will signal failure if any of our *illegal*
// operations were not converted successfully.
if (mlir::failed(mlir::applyPartialConversion(getOperation(), target, patterns)))
signalPassFailure();
}
Design Considerations With Partial Lowering ¶
Before diving into the result of our lowering, this is a good time to discuss
potential design considerations when it comes to partial lowering. In our
lowering, we transform from a value-type, TensorType, to an allocated
(buffer-like) type, MemRefType. However, given that we do not lower the
toy.print
operation, we need to temporarily bridge these two worlds. There are
many ways to go about this, each with their own tradeoffs:
Generate
load
operations from the bufferOne option is to generate
load
operations from the buffer type to materialize an instance of the value type. This allows for the definition of thetoy.print
operation to remain unchanged. The downside to this approach is that the optimizations on theaffine
dialect are limited, because theload
will actually involve a full copy that is only visible after our optimizations have been performed.Generate a new version of
toy.print
that operates on the lowered typeAnother option would be to have another, lowered, variant of
toy.print
that operates on the lowered type. The benefit of this option is that there is no hidden, unnecessary copy to the optimizer. The downside is that another operation definition is needed that may duplicate many aspects of the first. Defining a base class in ODS may simplify this, but you still need to treat these operations separately.Update
toy.print
to allow for operating on the lowered typeA third option is to update the current definition of
toy.print
to allow for operating the on the lowered type. The benefit of this approach is that it is simple, does not introduce an additional hidden copy, and does not require another operation definition. The downside to this option is that it requires mixing abstraction levels in theToy
dialect.
For the sake of simplicity, we will use the third option for this lowering. This involves updating the type constraints on the PrintOp in the operation definition file:
def PrintOp : Toy_Op<"print"> {
...
// The print operation takes an input tensor to print.
// We also allow a F64MemRef to enable interop during partial lowering.
let arguments = (ins AnyTypeOf<[F64Tensor, F64MemRef]>:$input);
}
Complete Toy Example ¶
Let’s take a concrete example:
toy.func @main() {
%0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
%2 = toy.transpose(%0 : tensor<2x3xf64>) to tensor<3x2xf64>
%3 = toy.mul %2, %2 : tensor<3x2xf64>
toy.print %3 : tensor<3x2xf64>
toy.return
}
With affine lowering added to our pipeline, we can now generate:
func.func @main() {
%cst = arith.constant 1.000000e+00 : f64
%cst_0 = arith.constant 2.000000e+00 : f64
%cst_1 = arith.constant 3.000000e+00 : f64
%cst_2 = arith.constant 4.000000e+00 : f64
%cst_3 = arith.constant 5.000000e+00 : f64
%cst_4 = arith.constant 6.000000e+00 : f64
// Allocating buffers for the inputs and outputs.
%0 = memref.alloc() : memref<3x2xf64>
%1 = memref.alloc() : memref<3x2xf64>
%2 = memref.alloc() : memref<2x3xf64>
// Initialize the input buffer with the constant values.
affine.store %cst, %2[0, 0] : memref<2x3xf64>
affine.store %cst_0, %2[0, 1] : memref<2x3xf64>
affine.store %cst_1, %2[0, 2] : memref<2x3xf64>
affine.store %cst_2, %2[1, 0] : memref<2x3xf64>
affine.store %cst_3, %2[1, 1] : memref<2x3xf64>
affine.store %cst_4, %2[1, 2] : memref<2x3xf64>
// Load the transpose value from the input buffer and store it into the
// next input buffer.
affine.for %arg0 = 0 to 3 {
affine.for %arg1 = 0 to 2 {
%3 = affine.load %2[%arg1, %arg0] : memref<2x3xf64>
affine.store %3, %1[%arg0, %arg1] : memref<3x2xf64>
}
}
// Multiply and store into the output buffer.
affine.for %arg0 = 0 to 3 {
affine.for %arg1 = 0 to 2 {
%3 = affine.load %1[%arg0, %arg1] : memref<3x2xf64>
%4 = affine.load %1[%arg0, %arg1] : memref<3x2xf64>
%5 = arith.mulf %3, %4 : f64
affine.store %5, %0[%arg0, %arg1] : memref<3x2xf64>
}
}
// Print the value held by the buffer.
toy.print %0 : memref<3x2xf64>
memref.dealloc %2 : memref<2x3xf64>
memref.dealloc %1 : memref<3x2xf64>
memref.dealloc %0 : memref<3x2xf64>
return
}
Taking Advantage of Affine Optimization ¶
Our naive lowering is correct, but it leaves a lot to be desired with regards to
efficiency. For example, the lowering of toy.mul
has generated some redundant
loads. Let’s look at how adding a few existing optimizations to the pipeline can
help clean this up. Adding the LoopFusion
and AffineScalarReplacement
passes
to the pipeline gives the following result:
func.func @main() {
%cst = arith.constant 1.000000e+00 : f64
%cst_0 = arith.constant 2.000000e+00 : f64
%cst_1 = arith.constant 3.000000e+00 : f64
%cst_2 = arith.constant 4.000000e+00 : f64
%cst_3 = arith.constant 5.000000e+00 : f64
%cst_4 = arith.constant 6.000000e+00 : f64
// Allocating buffers for the inputs and outputs.
%0 = memref.alloc() : memref<3x2xf64>
%1 = memref.alloc() : memref<2x3xf64>
// Initialize the input buffer with the constant values.
affine.store %cst, %1[0, 0] : memref<2x3xf64>
affine.store %cst_0, %1[0, 1] : memref<2x3xf64>
affine.store %cst_1, %1[0, 2] : memref<2x3xf64>
affine.store %cst_2, %1[1, 0] : memref<2x3xf64>
affine.store %cst_3, %1[1, 1] : memref<2x3xf64>
affine.store %cst_4, %1[1, 2] : memref<2x3xf64>
affine.for %arg0 = 0 to 3 {
affine.for %arg1 = 0 to 2 {
// Load the transpose value from the input buffer.
%2 = affine.load %1[%arg1, %arg0] : memref<2x3xf64>
// Multiply and store into the output buffer.
%3 = arith.mulf %2, %2 : f64
affine.store %3, %0[%arg0, %arg1] : memref<3x2xf64>
}
}
// Print the value held by the buffer.
toy.print %0 : memref<3x2xf64>
memref.dealloc %1 : memref<2x3xf64>
memref.dealloc %0 : memref<3x2xf64>
return
}
Here, we can see that a redundant allocation was removed, the two loop nests
were fused, and some unnecessary load
s were removed. You can build toyc-ch5
and try yourself: toyc-ch5 test/Examples/Toy/Ch5/affine-lowering.mlir -emit=mlir-affine
. We can also check our optimizations by adding -opt
.
In this chapter we explored some aspects of partial lowering, with the intent to optimize. In the next chapter we will continue the discussion about dialect conversion by targeting LLVM for code generation.